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The effects of long-duration spaceflight on crewmember neck musculature have not
been adequately studied. The purpose of this study was to evaluate the changes
in the neck musculature on pre-flight and post-flight magnetic resonance imaging
(MRI) examinations of six crewmembers on 4- to 6-month missions equipped with the
advanced resistive exercise device (aRED). The MRI images were resliced to remove
variations in spinal curvature, the cross-sectional area (CSA), and muscle fat infiltration
(MFI) of neck musculature at the C1-C2, C4-C5, C7-T1, and T1-T2 intervertebral disc
levels were measured bilaterally. Percent changes in the neck muscle CSA and fatty
infiltration following spaceflight were calculated, and mixed models were used to assess
significance of these changes. Crewmembers on missions equipped with the aRED
experienced an average 25.1% increase in CSA for the trapezius muscle at C6-C7,
an average 11.5% increase in CSA for the semispinalis capitis muscle at C4-C5, an
average 9.0% increase in CSA for the sternocleidomastoid muscle at C4-C5, and
an average 23.1% increase in CSA for the rhomboid minor at T1-T2. There were no
significant changes in the CSA of the levator scapulae, splenius capitis, rectus capitis
posterior major, scalenus anterior, scalenus posterior, scalenus medius, longissimus
capitis, or obliquus capitis inferior muscles at the locations measured. None of the
muscles analyzed experienced statistically significant changes in fatty infiltration with
spaceflight. Our study indicates that long-duration spaceflight conditions are associated
with preservation of CSA in most neck muscles and significant increases in the CSAs of
the trapezius, semispinalis capitis, sternocleidomastoid, and rhomboid minor muscles.
This may indicate that cervical muscles are not subjected to the same degradative
effects microgravity imparts on the majority of muscles.

Keywords: advanced resistive exercise device, astronaut, cosmonaut, cross-sectional area, cervical muscle,
microgravity, muscle hypertrophy, magnetic resonance imaging

INTRODUCTION

Lower extremity skeletal muscle atrophy has been established for crewmembers on long-duration
spaceflights (LeBlanc et al., 2000a; Ploutz-Snyder et al., 2015). The risk of injury to astronauts while
on mission, upon landing, and after returning to gravity can be increased as a result of microgravity
induced muscle degradation (LeBlanc et al., 1998, 2000a,b; Adams et al., 2003; Lang et al., 2004;
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Ploutz-Snyder et al., 2015). One common spinal injury in
astronauts is a herniated nucleus pulposus (i.e., herniated disc).
Disc herniations occur 4.3 times more often in astronauts’
lifetimes, with the incidence of herniation in the cervical spine
being 21.4 times higher than that of the civilian population
(Johnston et al., 2010). The immediate risk of disc herniation
upon return from mission is even higher; astronauts are 35.9
times more likely to experience a herniation during the first year
post-flight (Johnston et al., 2010). Recent studies have found an
association between spinal muscle atrophy and decreased lumbar
lordosis that can lead to disc herniation (Bailey et al., 2018;
Green and Scott, 2018).

Prior studies have not reported any significant changes in
overall neck musculature following long-duration spaceflight
(LeBlanc et al., 2000a). However, there is limited information
on the changes of individual neck muscles and the effects of
current in-flight exercise interventions on the neck musculature.
Bed rest studies have been used to investigate physiological
effects of microgravity, given the ease of conducting tests,
and the ability to recruit larger sample sizes. One such study
focusing on neck muscle changes after 60 days of bed rest found
significant increases in muscle volume for the splenius capitis,
spinalis cervicis, longus capitis, longus colli, levator scapulae,
sternocleidomastoid, and all three scalenes (Belavý et al., 2013).
However, it has been postulated that differences in cervical
movements during spaceflight compared to bed rest may lead
to differences in spinal muscle changes between the two groups
(LeBlanc et al., 1992). Therefore, studies of spaceflight spinal
musculature are needed to supplement and validate the results
of bed rest studies.

It is important to note that muscle atrophy/hypertrophy is
only one component affecting crewmember injury risk following
long-duration spaceflight. The combination of spaceflight-
induced loss of muscle strength, sensorimotor impairment,
reduced postural stability, and bone loss contributes to injury
during the dynamic loading encountered in spacecraft landings,
post-flight falls, and in daily living (LeBlanc et al., 2000a; Lang
et al., 2004; Muir et al., 2011; Wood et al., 2011). To address these
concerns, in 2008 the International Space Station (ISS) mission
18 introduced an advanced resistive exercise device (aRED) to
simulate earth-based gravitational pull and mimic weight-bearing
exercise. Previous studies have investigated the effects of long-
duration spaceflight on paraspinal muscles, reporting decreased
cross-sectional area (CSA) measurements in the erector spinae,
multifidus, and quadratus lumborum muscles (Burkhart et al.,
2018; McNamara et al., 2019). However, bed rest studies suggest
that these beneficial effects may not translate to the cervical
region (Belavý et al., 2013).

Magnetic resonance imaging (MRI) is a commonly used
imaging modality for measuring the size and composition of
the neck muscles (Elliott et al., 2005; Belavý et al., 2013).
Performing these measurements both before and after long-
duration spaceflight allows for the investigation of the effects
of microgravity on overall muscle health. The primary objective
of this study was to assess pre- to post-flight changes in the
neck muscle CSA on cervical MRI images of crewmembers
(n = 6) on 4- to 6-month aRED-equipped missions. The initial

hypothesis was that neck muscles would undergo declines in CSA
as a result of prolonged microgravity. In addition, measures of
muscle composition were explored as a secondary analysis. It was
hypothesized that neck muscles would experience greater levels
of fatty infiltration with long-duration spaceflight.

MATERIALS AND METHODS

The mission durations, pre- and post-flight MRI scans and
isokinetic data, and in-flight exercise training logs were obtained
from the National Aeronautics and Space Administration
(NASA) Life Sciences Data Archive and Lifetime Surveillance
of Astronaut Health project. Written informed consent was
obtained from each crewmember and the study protocols
were approved by the institutional review boards at the Wake
Forest School of Medicine and at NASA. Pre- and post-
flight T1-weighted MRI scans of the cervical regions were
acquired using a Siemens Magnetom Verio 3T scanner for six
crewmembers (average age, 48± 4.8 years) on expeditions lasting
166± 14.8 days in duration (NASA, 2017).

To ensure accurate comparison of pre- and post- flight neck
muscle CSA, consistent measurement location was used. Our
image analysis protocol accounted for inconsistencies in lordotic
curvature during patient positioning. Moreover, a decrease in
lordotic curvature has been associated with spaceflight, and
our measurement techniques were adjusted to correct for
these changes (Stemper et al., 2010). Prior studies have made
these corrections by aligning the axial view parallel to each
intervertebral disc during scan acquisition (Stemper et al.,
2010). Since the MRI scans were collected retrospectively in
our study, we employed a method for reslicing the MRI scans,
using Mimics software (v20, Materialise, Leuven, Belgium),
to allow for consistent measurements. The Mimics reslicing
tool axially resliced the MRI images in the direction of a
user defined curve. To orient the axial view parallel to the
intervertebral discs, a curve was created in the sagittal view
which passed through the centroids of each vertebra and traveled
perpendicularly through the intervertebral discs (Figure 1A).
When resliced along this curve, the newly created axial view
aligned parallel to the intervertebral discs at every vertebral
level (Figure 1B). To ensure a consistent reslicing method
between scans, the resliced curve was generated using the
sagittal slice cutting through the center of the spinal cord
at the C2-C3 intervertebral disc level. This vertebral level
was chosen since the retrospective MRI scans were originally
aligned parallel to the C2-C3 intervertebral disc per the
scanning protocol.

After reslicing the scans, the neck muscle CSA measurements
were collected using the Mimics measurement tool. This
tool uses an algorithm based on Hounsfield Unit values to
interpolate muscle boundaries between manually selected points.
Several points were chosen along the perimeter of each neck
muscle to create a smooth, accurate muscle boundary and
determine muscle CSA.

To ensure accurate comparison of muscle CSA from pre- to
post-flight scans, the vertebral level at which the measurements
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FIGURE 1 | (A) Centroids for each cervical vertebra were determined.
(B) Spline curve through centroids was used to produce a re-sliced scan that
standardized neck curvature across subjects.

were made was based on previous literature (Elliott et al.,
2007; Fernandez-de-Las-Penas et al., 2007; Oksanen et al., 2008;
Stemper et al., 2010). Muscles not measured in previous studies
were measured at the same vertebral level as the neighboring
muscles or at the most inferior intervertebral disc present on all
scans (T1-T2). Twelve cervical muscles were measured at one
of four measurement locations shown in Figure 2 and Table 1.
Measurements were made on both the right and left sides of
each muscle, providing a total of 12 pre-flight and 12 post-flight
samples for each muscle across the six crewmembers. The mean
pre- to post-flight percent change for each muscle was calculated
by summing the individual changes and dividing by the sample
size (n = 12).

Muscle fat infiltration (MFI) was also measured in Mimics
(Figure 3). Muscles were segmented in a single slice, creating
regions of interests for each muscle at the same vertebral
level as the aforementioned CSA measurement. The segmented
pixels across the CSA of each muscle were then automatically
aggregated and the mean pixel intensity (MPI) extracted. At each
examined vertebral level, a selection of subcutaneous fat was also
analyzed and the MPI extracted. The MFI was then reported
as a ratio of muscle MPI to fat MPI multiplied by 100 to yield
an estimate of percent fat content in the muscle, as shown in
Equation 1 (Elliott et al., 2005; Valentin et al., 2015).

MFI =
MPImuscle

MPIfat reference
∗ 100 (1)

Statistical analysis was performed using SAS (Version 9.4.
SAS Institute Inc., Cary, NC, United States) using a 0.05 level
of significance. Shapiro-Wilk w tests were performed to assess
the distribution of data. To account for the repeated measures
by subject and side, for each of the outcomes of interest (CSA
and MFI), mixed models with a random side effect with an
unstructured covariance matrix were used to model changes
from pre- to post-spaceflight, and allowing for separate residual
variance for each muscle type. This model allows for correlation

FIGURE 2 | Cross-sectional measurements were acquired at specific
intervertebral levels for the longissimus capitis (LC), obliquus capitis inferior
(OC), rectus capitis posterior major (RC), sternocleidomastoid (SCM), levator
scapulae (LS), trapezius (TPZ), semispinalis capitis (SC), splenius (SPL),
scalenus posterior (SP), scalenus medius (SM), scalenus anterior (SA), and
rhomboid minor (RM).

between measures on the same side and between the left and right
sides for each subject. Comparisons between the neck muscle
CSA changes in this study and historical volumetric bed rest
studies with resistive exercise were performed according to the
calculations outlined by Whitley and Ball (2002) to compare two
means arising from unpaired data.

A subset of four crewmembers had in-flight exercise
logs that documented their time using the cycle ergometer
with vibration isolation and stabilization system (CEVIS),
time using a treadmill, as well as frequency of aRED
usage. These crewmembers also had pre- and post-functional
fitness assessments consisting of peak trunk flexion torque.
Crewmembers also had pre- and post-fitness assessments
for maximum pushups, situps, and pullups performed in
two minutes, maximum fingertip distance during a sit and reach
exercise, and maximum weight lifted while performing smith
bench presses and leg presses. No logs of in-flight nutrition were
available in this subset.

Shapiro-wilk tests were performed on all exercise frequencies
and trunk flexion torque changes to evaluate for normally
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TABLE 1 | Vertebral level of muscle cross-sectional area (CSA) measurements.

Measurement
location

Muscles measures

C1-C2
intervertebral
disc

Longissimus capitis, obliquus capitis inferior, rectus capitis
posterior major (Elliott et al., 2007)

C4-C5
intervertebral
disc

Levator scapulae (Oksanen et al., 2008; Stemper et al., 2010),
semispinalis capitis (Elliott et al., 2007; Oksanen et al., 2008),
splenius (combined capitis and cervicis) (Elliott et al., 2007;
Oksanen et al., 2008; De Loose et al., 2009),
sternocleidomastoid (Oksanen et al., 2008; Stemper et al.,
2010), and trapezius (Elliott et al., 2007; Oksanen et al., 2008;
Stemper et al., 2010)

C7-T1
intervertebral
disc

Scalenus anterior (De Loose et al., 2009), scalenus medius
(De Loose et al., 2009), and scalenus posterior
(De Loose et al., 2009)

T1-T2
intervertebral
disc

Rhomboid minor

distributed results. Trunk flexion torque was individually linearly
regressed against lumbopelvic muscle changes to assess for
any trunk flexion torque changes as a result of radiologically
observed findings. Lumbopelvic muscle changes with normal
distributions were individually linearly regressed against CEVIS
(min/day), treadmill (min/day), and aRED (uses/day) to evaluate
for significant changes resulting from crewmembers’ choice
of in-flight fitness routine. These values were determined by
taking the total minutes spent using CEVIS or treadmill and
total flight use of aRED and normalizing by the mission
duration in days.

RESULTS

Pre- to post-flight changes in the muscle CSA are shown in
Figure 4 and Table 2. The Shapiro-Wilk w test confirmed a
normal distribution of all neck muscle changes (p > 0.05). Post-
flight increases in muscle CSA were observed in the semispinalis
capitis (mean: 11.5%, SE: 4.4%, p = 0.0106), sternocleidomastoid
(mean: 9.0%, SE: 2.3%, p = 0.0001), trapezius (mean: 25.1%, SE:
9.9%, p = 0.0125), and the rhomboid minor (mean: 23.1%, SE:
11.7%, p = 0.0500).

Three of six crewmembers had increases in CSA for both
semispinalis capitis muscles following spaceflight ranging from
5.0 to 19.9%. The remaining three crewmembers had one
semispinalis capitis muscle with an increase and one with a
decrease in CSA following spaceflight of −1.1 to −11.6% on one
side, and increases from 12.1 to 46.5% on the other side.

Five of the six crewmembers had increases in CSA for
both sternocleidomastoid muscles following spaceflight ranging
from 0.4% to 15.2%. The remaining crewmember had one
sternocleidomastoid muscle with an increase (6.9%) and one with
a decrease (−10.8%) in CSA following spaceflight.

Four of the six crewmembers (67%) had increases in CSA
for both trapezius muscles following spaceflight ranging from
8.7 to 91.2%. One crewmember had one trapezius muscle with
an increase (11.9%) and one with a decrease (−2.7%) in CSA

FIGURE 3 | Example of muscle fat infiltration (MFI) calculation. White outlined
regions of interest represent a muscle (left semispinalis capitis) and
subcutaneous fat reference used for the MFI measurement at the C4-C5
vertebral level. The resulting MFI calculation is shown, in which the mean pixel
intensity (MPI) of muscle was reported as a percentage of the reference fat
MPI.

FIGURE 4 | Changes in neck muscle cross-sectional area (CSA) with
long-duration spaceflight. Error bar denotes standard error. ∗Denotes
significance with p < 0.05.

following spaceflight. One crewmember had decreases in CSA
for both trapezius muscles following spaceflight ranging from
−15.6 to−28.9%.

Three of the six crewmembers had increases in CSA for both
rhomboid minor muscles following spaceflight ranging from 23.8
to 85.8%. Two of the six crewmembers had decreases in CSA
for both rhomboid minor muscles following spaceflight ranging
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TABLE 2 | Absolute (mm2) and percent changes in muscle cross-sectional area (CSA) for the six crewmembers (Subject 1–Subject 6).

Disc location Muscle Subject 1 Subject 2 Subject 3

Left Right Left Right Left Right

Pre Post % Pre Post % Pre Post % Pre Post % Pre Post % Pre Post %

C1-C2 Longissimus capitis 73.6 90.4 22.9 85.6 98.0 14.4 88.8 89.2 0.5 65.3 82.7 26.7 82.9 69.3 −16.4 53.1 69.0 30.0

Obliquus capitis inferior 99.8 93.5 −6.4 91.0 95.0 4.3 177.2 203.1 14.6 227.9 174.0 −23.7 416.2 390.8 −6.1 275.9 274.9 −0.4

Rectus capitis posterior major 148.0 145.8 −1.5 127.7 128.0 0.2 145.0 126.7 −12.6 83.2 107.3 29.0 97.6 152.7 56.5 103.3 131.6 27.4

C4-C5 Levator scapulae 258.1 283.8 9.9 240.2 328.2 36.6 334.5 314.2 −6.1 366.7 392.3 7.0 625.3 599.6 −4.1 607.9 626.8 3.1

Semispinalis capitis 333.7 389.2 16.6 396.0 350.1 −11.6 202.1 232.6 15.1 254.3 305.0 19.9 235.7 275.9 17.1 296.9 335.8 13.1

Splenius capitis 244.1 252.8 3.6 191.1 222.7 16.5 168.3 214.1 27.2 221.0 275.2 24.5 274.5 213.8 −22.1 325.6 294.6 −9.5

Sternocleido-mastoid 364.3 419.5 15.2 408.2 448.7 9.9 519.7 545.2 4.9 463.5 589.7 27.2 634.1 678.8 7.0 555.3 557.3 0.4

Trapezius 260.1 297.0 14.2 225.7 318.7 41.2 135.1 151.2 11.9 200.6 195.1 −2.7 777.8 1149.0 47.7 1090.0 1377.6 26.4

C7-T1 Scalenus anterior 202.9 184.9 −8.9 152.2 191.3 25.6 116.4 119.1 2.3 153.4 150.3 −2.0 231.6 161.5 −30.3 128.9 171.5 33.0

Scalenus medius 173.6 163.5 −5.8 169.0 135.6 −19.8 169.8 168.6 −0.7 169.8 184.0 8.4 109.8 151.1 37.6 104.8 125.9 20.2

Scalenus posterior 296.1 126.1 −57.4 127.5 145.8 14.4 57.6 60.1 4.4 69.7 76.5 9.8 110.0 86.3 −21.5 66.4 62.4 −6.0

T1-T2 Rhomboid minor 42.4 71.1 35.0 72.1 133.9 85.8 101.7 185.2 82.1 110.6 185.1 67.4 245.2 181.9 −25.8 223.7 178.8 −20.1

Disc location Muscle Subject 4 Subject 5 Subject 6

Left Right Left Right Left Right

Pre Post % Pre Post % Pre Post % Pre Post % Pre Post % Pre Post %

C1-C2 Longissimus capitis 42.8 40.3 −5.9 58.9 32.0 −45.7 83.7 80.8 −3.5 71.2 75.7 6.3 25.9 44.5 71.6 56.6 55.7 −1.6

Obliquus capitis inferior 126.8 160.0 26.2 205.1 232.6 13.4 348.9 314.5 −9.8 352.9 260.4 −26.2 404.8 301.3 −25.6 427.0 389.2 −8.9

Rectus capitis posterior major 82.1 97.1 18.3 109.2 72.2 −33.9 88.9 99.7 12.1 106.4 141.6 33.1 147.0 132.6 −9.8 139.5 129.4 −7.2

C4-C5 Levator scapulae 171.8 162.7 −5.3 149.8 141.8 −5.3 205.0 248.9 21.4 245.8 233.5 −5.0 476.7 404.8 −15.1 449.4 397.3 −11.6

Semispinalis capitis 170.2 178.7 5.0 180.1 195.0 8.3 388.4 374.3 −3.6 401.8 450.4 12.1 222.2 325.6 46.5 479.9 474.4 −1.1

Splenius capitis 174.8 170.3 −2.5 344.2 263.6 −23.4 289.4 408.8 41.3 320.5 336.8 5.1 398.6 252.5 −36.7 366.5 373.3 1.9

Sternocleido-mastoid 321.4 343.7 6.9 379.3 338.3 −10.8 539.4 612.7 13.6 623.4 706.9 13.4 517.0 580.4 12.3 592.9 636.6 7.4

Trapezius 107.9 117.3 8.7 87.9 128.4 46.1 251.4 402.3 60.0 242.4 463.5 91.2 320.7 227.9 −28.9 263.8 222.7 −15.6

C7-T1 Scalenus anterior 98.0 99.3 1.3 110.9 101.0 −8.9 156.4 175.8 12.4 143.3 137.4 −4.1 144.1 109.9 −23.8 110.7 111.9 1.0

Scalenus medius 151.2 155.2 2.6 113.8 94.1 −17.4 99.3 118.6 19.4 129.4 145.4 12.4 146.1 104.2 −28.7 105.2 94.0 −10.7

Scalenus posterior 86.0 76.2 −11.4 74.7 80.6 7.9 173.0 200.4 15.8 189.7 226.4 19.3 98.0 85.1 −13.1 213.9 210.1 −1.8

T1-T2 Rhomboid minor 60.0 60.3 0.4 98.4 91.0 −7.6 243.4 185.3 −23.9 200.5 195.2 −2.6 133.3 172.2 29.2 128.9 159.6 23.8

Absolute and percent changes in Muscle CSA pre- to post-flight.
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from −2.6 to −25.8%. One crewmember had one trapezius
muscle with an increase (0.4%) and one with a decrease (−7.6%)
in CSA following spaceflight.

Neck muscles with non-significant CSA changes included
the longissimus capitis (mean: 8.4%, 7.9% SE), obliquus capitis
inferior (mean: −4.0%, 5.8% SE), rectus capitis posterior major
(mean: 9.4%, 6.8% SE), levator scapulae (mean: 2.2%, 4.3% SE),
splenius capitis (mean: 2.2%, 6.2% SE), scalenus anterior (mean:
−0.1%, 5.4% SE), scalenus medius (mean: 1.5%, 5.5% SE), and
scalenus posterior (mean:−3.2%, 6.3% SE).

Linear fits of the CSA changes in sternocleidomastoid
vs. trapezius, sternocleidomastoid vs. semispinalis capitis,
sternocleidomastoid vs. rhomboid minor, trapezius vs.
semispinalis capitis, trapezius vs. rhomboid minor, and
semispinalis capitis vs. rhomboid minor all resulted in statistically
non-significant trends (α = 0.05).

None of the muscles analyzed showed stastistically significant
changes in fatty infiltration with spaceflight (Figure 5
and Table 3).

No significant regression equations were found to predict
muscle CSA percent change based on the mission duration (n = 4,
α = 0.05). However, there was a trend toward significance in
that crewmembers who spent longer time at the ISS tended to
have larger increases in their semispinalis capitis muscle CSA
equivalent to roughly a 2% additional increase per every five days
of extra time on the ISS (R2 = 0.88, p < 0.1) (Figure 6).

No significant regression equation to predict trunk flexion
strength based on the changes in muscle CSA was found
(n = 4, α = 0.05). However, there was a trend toward
significance in that crewmembers who had larger increases in
their trapezius tended to better preserve their truncal strength
compared to their peers. For every 3% increase in trapezius
muscle area, a crewmember tended to have an additional 1%
preserved truncal strength compared to their peers (R2 = 0.94,
p < 0.1) (Figure 7).

FIGURE 5 | Changes in neck MFI with long-duration spaceflight. Error bar
denotes standard error.

There were no other trends seen when comparing muscle
changes to mission duration or isokinetic strength changes.

DISCUSSION

The results of this study support prior studies that found long-
duration spaceflight does not lead to atrophy of the neck muscles
of astronauts. The study shows the degree to which different neck
muscles are affected on current ISS missions.

The novel finding of our study was the increase in
the trapezius, semispinalis capitis, rhomboid minor, and
sternocleidomastoid CSA. This may be attributed to the constant
daily use of these particular neck muscles during spaceflight;
however, further studies would be needed to test this hypothesis.
It is also possible that the neck muscle hypertrophy occured
because the muscles are not as heavily loaded on Earth as
lower back and limb musculature, decreasing the potential for
atrophy (Belavý et al., 2013). Collectively, these three muscle
groups are responsible for the flexion, extension, and torsion
movements of the neck that are required for nearly all everyday
tasks on the ISS and for maintaining an upright positioning of
the head. Furthermore, a lack of gravitational pull could weaken
the vestibular nuclei’s sense of balance and require more activity
of the neck muscles to move the head in order to take in visual
input to compensate. As such, it is reasonable to assume that
these muscles are adequately maintained or even strengthened
during spaceflight.

These data compare favorably with a volumetric analysis of
neck musculature during two months of bed rest with a resistive
exercise intervention (Belavý et al., 2013). The semispinalis
capitis, longissimus capitis, splenius capitis, levator scapulae,
sternocleidomastoid, and the anterior and posterior scalenes all
had similar changes or lack thereof. However, the astronaut
population had a decrease in posterior scalene size, unlike the bed
rest study, although neither study found statistical significance
in those results. These comparisons lend credence to the revised
hypothesis that lack of spinal loading is driving the enlargement
of neck muscles seen in this study since that was the main
commonality between the two study setups.

Conditions of decreased muscle strength such as sarcopenia
lead to increased mortality and decreased quality of life (Boutin
et al., 2015, 2017; Lenchik et al., 2018; Murea et al., 2018).
Astronauts are prone to sarcopenia manifesting as increased
fatigability and decreased strength of muscles (Thornton and
Rummel, 1977; Cruz-Jentoft et al., 2010). Muscle size is just
one metric to evaluate muscle strength. Bed rest studies have
also shown decreases in type I and type II myofiber CSAs
(Bamman et al., 1998). Aging and muscle-wasting diseases
have shown a relationship between muscle strength and fat
infiltration of muscle (Jones et al., 1983; Liu et al., 1993;
Ryan and Nicklas, 1999; Goodpaster et al., 2001; Visser et al.,
2002). Investigations into the fat content of neck muscles as
well as curvature and intervertebral disc changes may help
explain the persistence of herniated nucleus pulposus risk despite
preserved muscle size (Johnston et al., 2010; Bailey et al.,
2018; Green and Scott, 2018). While MFI was included in this
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TABLE 3 | Absolute and percent changes in muscle fat infiltration (MFI) for the six crewmembers (Subject 1–Subject 6).

Disc location Muscle Subject 1 Subject 2 Subject 3

Left Right Left Right Left Right

Pre Post % Pre Post % Pre Post % Pre Post % Pre Post % Pre Post %

C1-C2 Longissimus Capitis 49.5 37.9 −23.3 59.2 42.9 −27.5 39.6 42.2 6.5 45.2 44.3 −2.0 46.1 44.3 −4.0 43.8 45.0 2.7

Obliquus Capitis inferior 45.6 33.8 −26.0 50.4 37.9 −24.8 36.5 40.3 10.3 38.8 40.0 3.1 46.2 43.0 −6.9 43.5 43.6 0.2

Rectus capitis posterior major 50.9 37.2 −26.8 58.6 39.3 −33.0 34.0 37.3 9.7 37.2 40.5 8.8 44.5 44.8 0.6 42.5 46.7 10.0

C4-C5 Levator scapulae 50.5 33.3 −34.0 51.0 30.5 −40.2 41.6 41.6 −0.2 38.7 35.7 −7.6 49.6 47.4 −4.4 40.1 40.9 2.0

Semispinalis capitis 55.6 36.0 −35.2 62.2 40.7 −34.6 43.3 40.6 −6.2 48.1 42.8 −11.0 45.9 48.9 6.7 46.6 50.8 9.1

Splenius capitis 49.3 35.1 −28.8 66.8 44.5 −33.4 41.8 40.8 −2.5 51.1 47.0 −8.1 46.4 49.7 7.3 49.9 58.0 16.1

Sternocleido-mastoid 57.9 38.3 −33.9 48.4 29.0 −40.1 47.0 45.9 −2.5 34.4 31.6 −7.9 54.5 56.2 3.3 37.1 38.8 4.6

Trapezius 48.0 32.8 −31.5 70.0 40.9 −41.6 43.5 41.4 −4.9 53.2 44.7 −16.0 50.3 51.2 1.7 49.4 59.1 19.7

C7-T1 Scalenus anterior 52.9 32.4 −38.6 48.1 26.8 −44.3 44.6 41.6 −6.7 36.1 32.5 −10.2 43.4 33.1 −23.8 39.0 29.7 −23.8

Scalenus medius 64.5 38.5 −40.3 54.3 32.1 −40.8 43.8 44.6 1.9 35.1 31.9 −9.2 47.6 40.3 −15.2 34.6 31.5 −9.2

Scalenus posterior 53.1 37.0 −30.2 53.8 32.8 −38.9 43.1 42.5 −1.6 36.3 31.8 −12.3 46.0 35.7 −22.4 30.2 27.0 −10.6

T1-T2 Rhomboid minor 48.2 42.9 −11.1 54.6 49.9 −8.7 43.7 40.6 −7.0 48.1 47.0 −2.2 50.3 50.0 −0.5 44.3 53.3 20.3

Disc location Muscle Subject 4 Subject 5 Subject 6

Left Right Left Right Left Right

Pre Post % Pre Post % Pre Post % Pre Post % Pre Post % Pre Post %

C1-C2 Longissimus capitis 38.7 37.7 −2.6 43.6 42.2 −3.3 41.1 36.9 −10.1 40.7 38.9 −4.2 38.9 31.8 −18.4 45.6 43.4 −4.8

Obliquus capitis inferior 41.5 39.1 −5.8 38.8 40.1 3.2 39.7 37.3 −6.0 40.8 35.6 −12.6 32.4 38.4 18.6 39.2 40.7 4.1

Rectus capitis posterior major 40.4 39.8 −1.6 41.3 43.3 4.8 39.8 37.0 −7.0 40.8 38.5 −5.7 36.9 37.2 0.7 41.4 42.3 2.1

C4-C5 Levator scapulae 41.0 37.6 −8.3 39.7 39.3 −1.1 46.2 38.8 −16.0 35.9 34.5 −3.6 43.6 44.2 1.5 46.7 42.5 −9.0

Semispinalis capitis 39.2 38.4 −2.1 44.2 42.5 −3.8 45.8 36.2 −20.9 44.9 39.9 −11.3 38.1 42.3 11.0 43.1 49.1 13.9

Splenius capitis 42.9 39.4 −8.1 49.9 48.2 −3.6 43.4 37.6 −13.5 43.6 38.9 −10.9 39.2 43.3 10.6 52.4 58.3 11.4

Sternocleido-mastoid 45.6 45.7 0.2 34.9 35.0 0.3 46.6 44.0 −5.6 34.5 37.4 8.3 45.0 50.3 11.7 40.3 38.8 −3.7

Trapezius 42.6 39.1 −8.3 42.8 51.8 20.9 46.9 40.6 −13.6 48.3 45.4 −6.0 41.8 42.0 0.5 59.0 60.5 2.6

C7-T1 Scalenus anterior 38.6 43.9 13.9 29.5 37.8 28.0 37.9 40.0 5.5 37.8 42.7 13.0 25.6 40.4 57.6 24.2 36.5 50.8

Scalenus medius 41.1 49.8 21.1 29.1 38.3 31.7 41.9 43.0 2.5 30.2 35.8 18.7 32.7 46.4 41.8 31.8 38.0 19.6

Scalenus posterior 39.3 47.7 21.6 33.9 41.2 21.6 40.6 39.9 −1.9 30.4 35.7 17.6 36.5 46.9 28.2 34.3 37.2 8.5

T1-T2 Rhomboid minor 41.8 44.4 6.2 47.7 51.0 6.9 51.1 35.8 −29.9 52.1 39.4 −24.4 33.8 46.0 36.2 32.0 52.9 65.3
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FIGURE 6 | Longer mission durations correlated with increased growth of the semispinalis capitis CSA (p < 0.05).

analysis, none of the changes with spaceflight were found to
be significant. At this time, the overall results of this study
describe the areal changes seen in the neck muscles, but do
not explain the persistence of spinal pain and injury in the
astronaut population. Further investigation would be necessary
to compare these spinal CSA changes to functional changes in
the muscles studied.

In-flight countermeasures are thought to aid in the prevention
of post-flight injuries (Sayson et al., 2013). However, aRED
lacks an exercise protocol that mimics terrestrial cervical spine
loading (Sayson et al., 2013), which may explain why spinal pain
and herniated discs persist despite the introduction of resistive
exercise on ISS missions (Laughlin et al., 2016). NASA’s Astronaut
Strength, Conditioning, and Rehabilitation team focuses on the
optimization of in-flight exercise regimens as well as post-
flight rehabilitation to mitigate the risks of these spinal injuries.
While the results of this study demonstrate maintenance of the
neck muscles onboard ISS, the risk of spinal injuries persist.
The inclusion of in-flight pharmacologic agents could be used
to aid in the maintenance of muscle health to offset in-flight
musculoskeletal changes and to improve the rates of recovery to
baseline values (LeBlanc et al., 2002; Zhang et al., 2011; Smith
et al., 2012; Leblanc et al., 2013; Lloyd et al., 2015; MacNabb et al.,
2016; Lang et al., 2017; Ramachandran et al., 2018). While many
pharmacotherapies such as bisphosphonates, osteoprotegerin,

sclerostin antibodies, and parathyroid hormone have been
proposed to quell bone loss, a few pharmacotherapies are being
studied to prevent muscle atrophy as well (Ramachandran
et al., 2018). These include myostatin inhibitors to encourage
muscle proliferation and peptide supplements to discourage
muscle atrophy (Ramachandran et al., 2018). It is important
to continue to quantify the current effects of ISS missions
on neck musculature when evaluating the efficacy of in-
flight interventions.

LIMITATIONS

Study limitations included a small sample size for both the overall
study (n = 6), and the sub-study using exercise logs and trunk
flexion torque changes (n = 4). However, there were only 18
crewmembers on ISS missions during the data collection period.
The study was also limited by the preponderance of male ISS
crewmembers during the data collection period. Finally, the study
was limited by the MRI scan parameters which did not allow for a
comprehensive evaluation of MFI. Ideally, studies should include
chemical-shift imaging methods such as the Dixon technique
to capture water- and fat-only images that can be utilized to
more accurately evaluate muscle fat content (Crawford et al.,
2016). The available scan data only made it possible to determine
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FIGURE 7 | Increased trapezius cross-sectional areas correlated with increased preservation of truncal strength (p < 0.05).

atrophy or hypertrophy of a muscle rather than muscle quality or
muscle strength. Despite these limitations, statistically significant
changes were found in four of the 12 muscles analyzed. Future
studies by our research team will address these limitations by
actively recruiting a more representative sample and combining
both MRI and computed tomography techniques to evaluate both
muscle composition and size.

CONCLUSION

Using pre- and post-flight MRI scan analysis, we quantified
changes in neck musculature in crewmembers of long-duration
space missions during the aRED era. None of the muscles
showed statistically significant decreases in their CSAs as a result
of prolonged microgravity. In addition, post-flight hypertrophy
was observed in the semispinalis capitis, sternocleidomastoid,
trapezius, and rhomboid minor muscles. Future studies should
include assessments of changes in intervertebral disc heights,
cervical curvature, and vertebral bone density, and cortical
thickness in order to create a more robust picture of how
microgravity places astronauts at increased risk for spine
injury. Eventually, future studies could allow for in-flight
interventions that target musculoskeletal changes and mitigate
the risk of injury.
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