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Abstract: Deoxynivalenol (DON) is a common trichothecene mycotoxin found worldwide. DON has
broad toxicity towards animals and humans. However, the mechanism of DON-induced neurotoxicity
in vitro has not been fully understood. This study investigated the hypothesis that DON toxicity
in neurons occurs via the mitochondrial apoptotic pathway. Using piglet hippocampal nerve cells
(PHNCs), we evaluated the effects of different concentrations of DON on typical indicators of
apoptosis. The obtained results demonstrated that DON treatment inhibited PHNC proliferation and
led to morphological, biochemical, and transcriptional changes consistent with apoptosis, including
decreased mitochondrial membrane potential, mitochondrial release of cytochrome C (CYCS) and
apoptosis inducing factor (AIF), and increased abundance of active cleaved-caspase-9 and cleaved-
caspase-3. Increasing concentrations of DON led to decreased B-cell lymphoma-2 (Bcl-2) expression
and increased expression of BCL2-associated X (Bax) and B-cell lymphoma-2 homology 3 interacting
domain death agonist (Bid), which in turn increased transcriptional activity of the transcription
factors AIF and P53 (a tumor suppressor gene, promotes apoptosis). The addition of a caspase-8
inhibitor abrogated these effects. These results reveal that DON induces apoptosis in PHNCs via
the mitochondrial apoptosis pathway, and caspase-8 is shown to play an important role during
apoptosis regulation.
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Key Contribution: This study highlights that DON induces apoptosis in PHNCs via the mitochon-
drial apoptosis pathway; and that caspase-8 plays an important role during apoptosis regulation.

1. Introduction

Deoxynivalenol (DON) is a trichothecene mycotoxin mostly produced by Fusarium
graminearum and F. culmorum. Trichothecene is the most common toxin found in numerous
foods and agricultural products, such as corn, maize, wheat, barley, and oats [1,2]. In many
countries, DON contamination in foods and animal feeds has been a ubiquitous problem
that potentially causes poisoning and doing great harm to humans and animals [3–5].
DON toxicity has broad mechanisms in different species. Alternations in pharmacokinetic
properties (i.e., absorption, distribution, metabolism, and excretion) of DON in different
animal species might account for its varied sensitivities. In animal models, the most
common consequences of extended nutritional exposure to DON are reduced weight
gain, anorexia, and malnutrition, with different susceptibilities observed among different
species [6,7]. Fusarium toxin contamination levels are the highest among cereals [8]. DON
contamination is the highest in cereals [8] and often occurs with other mycotoxins [9].
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Nevertheless, the toxic effects of DON on human beings have attracted more and more
attention worldwide [10] and is therefore of significant importance to veterinary medicine,
plant breeding, pathology, and public health.

DON toxicity is dose- and occurrence-dependent both in humans and in animals,
and exerts a range of responses including neurotoxicity, cytotoxicity, immunotoxicity,
carcinogenesis, and teratogenicity [11–15]. Two well-known neurologic consequences of
DON have attracted interest in its neuro-pharmacologic properties. DON causes anorexia at
low dietary concentrations, while at higher doses, induces vomiting [16]. DON impairment
of weight gain is strongly associated with reduced food intake, which may occur through
interference with the intestinal motility and eating desires. These effects likely derive
from dysregulation of neuroendocrine signaling and growth hormone signaling within the
enteric and central nervous systems [17,18]. Emesis associated with DON is thought to be
related to its effect on serotonergic signaling [19].

Despite extensive studies on DON’s broad toxicity, limited information is available on
its neurotoxicity. Our previous publications have suggested that DON exposures can affect
the cerebral lipid peroxidation, neurotransmitters secretion, and the balance of calcium
homeostasis in chicks [13]. DON acts through the calcium / calmodulin / calmodulin-
dependent protein kinase II (Ca2+/CaM/CaMKII) signaling pathway to influence cerebral
lipid peroxidation and neurotransmitter levels in piglets [20]. Currently, most research
focuses on the neurotoxic effect of DON on piglets, but its mechanism involving nerve
cells is unclear. Apoptosis is an active and orderly process in which the stimulating factors
inside and outside the cells of the normal body are activated and regulated by strict
regulatory signals [21]. Mitochondria are one of the most important cellular organelles
for cellular energy production and survival, and the mitochondrial pathway is crucial
in intracellular apoptosis signaling cascade. The apoptosis caused by the mitochondrial
pathway is mainly caused by the changes of protein, gene, and mitochondrial membrane
permeability caused by the stimulation of the apoptosis signal [22]. Pig is considered the
most sensitive species to the toxicity of DON. Therefore, we used piglet hippocampal
nerve cells (PHNCs) as a neuronal cell model, focusing on mechanisms of DON-induced
apoptosis and mitochondrial signaling.

2. Results
2.1. DON Induces Apoptotic Nuclear Changes in PHNCs

Laser confocal microscopy was used to detect nuclear features (Figure 1). Normal
nuclei appear uniform blue under laser confocal microscopy (Figure 1A), while apoptotic
nuclei appear small and bright blue. When the concentration of DON is higher than
125 ng/mL, the morphology of the nucleus showed dose-dependent deformation with
higher DON concentration, and the nuclei showed not uniformly stained (Figure 1B–F).

2.2. DON Significantly Increases Rate of Apoptosis in PHNCs

Cell apoptosis was investigated by flow cytometry after 24 h of exposure to different
DON concentrations (0, 125, 250, 500, 1000, or 2000 ng/mL). The proportion of cell apoptosis
is shown in Figure 2. Compared to untreated (control) PHNCs, the apoptotic rates for
PHNCs in DON treatment groups increased significantly (p < 0.01). The apoptotic rate
increased in a dose-dependent way between 125–1000 ng/mL, while the apoptotic rate of
the 2000 ng/mL DON treatment group was lower than at 1000 ng/mL DON. Therefore,
1000 ng/mL of DON was used as the optimal concentration in subsequent trials for the
addition of 10 µM (Figure 2D) caspase-8 inhibitor such as (Z-IETD-FMK, ZIF).

The influence of DON on feasibility of PHNCs after 24 h incubation was examined
via the cell counting kit-8 (CCK-8) cell viability assay kit. The results showed a dose-
dependent decrease in cell viability from 0 to 2000 ng/mL DON (Figure 2C): compared
with the untreated (control) group, the viability of DON-treated cells was significantly
decreased (p < 0.01), with minimal viability observed for cells dosed with 2000 ng/mL
of DON.
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Figure 1. Apoptotic nuclear morphological changes highlighted by Hoechst 33,258 staining in cells treated with graded 
concentration of Deoxynivalenol (DON) (0–2000 ng/mL) for 24 h (800×). (A–F) indicates the effect of different concentra-
tions of DON on the nucleus. The nuclei of DON-treated piglet hippocampal nerve cells (PHNCs) appeared bright blue. 
The intensity, proportion of nuclei appearing bright blue increased, and the morphology of the nucleus showed dose-
dependent deformation with the increase of DON concentration. 

2.2. DON Significantly Increases Rate of Apoptosis in PHNCs 
Cell apoptosis was investigated by flow cytometry after 24 h of exposure to different 

DON concentrations (0, 125, 250, 500, 1000, or 2000 ng/mL). The proportion of cell apop-
tosis is shown in Figure 2. Compared to untreated (control) PHNCs, the apoptotic rates 
for PHNCs in DON treatment groups increased significantly (p < 0.01). The apoptotic rate 
increased in a dose-dependent way between 125–1000 ng/mL, while the apoptotic rate of 
the 2000 ng/mL DON treatment group was lower than at 1000 ng/mL DON. Therefore, 
1000 ng/mL of DON was used as the optimal concentration in subsequent trials for the 
addition of 10 μM (Figure 2D) caspase-8 inhibitor such as (Z-IETD-FMK, ZIF). 

The influence of DON on feasibility of PHNCs after 24 h incubation was examined 
via the cell counting kit-8 (CCK-8) cell viability assay kit. The results showed a dose-de-
pendent decrease in cell viability from 0 to 2000 ng/mL DON (Figure 2C): compared with 
the untreated (control) group, the viability of DON-treated cells was significantly de-
creased (p < 0.01), with minimal viability observed for cells dosed with 2000 ng/mL of 
DON. 

Figure 1. Apoptotic nuclear morphological changes highlighted by Hoechst 33,258 staining in cells treated with graded
concentration of Deoxynivalenol (DON) (0–2000 ng/mL) for 24 h (800×). (A–F) indicates the effect of different concentrations
of DON on the nucleus. The nuclei of DON-treated piglet hippocampal nerve cells (PHNCs) appeared bright blue. The
intensity, proportion of nuclei appearing bright blue increased, and the morphology of the nucleus showed dose-dependent
deformation with the increase of DON concentration.

2.3. DON Reduces Mitochondrial Membrane Potential

Mitochondrial membrane potential (MMP) was evaluated using flow cytometry after
24 h of DON exposure at different concentrations (0, 125, 250, 500, 1000, or 2000 ng/mL;
ZIF; 1000 ng/mL + ZIF). As shown in Figure 3, the MMP of DON-treated PHNCs decreased
significantly with increasing concentrations of DON, compared to untreated (control) cells
(p < 0.01). The MMP was significantly increased in the 1000 ng/mL DON + ZIF treatment
group compared to the 1000 ng/mL unaided DON treatment group (p < 0.01).

2.4. Influence of DON on Genes Expression Associated with Apoptosis

After PHNCs were grown with specified concentrations of DON (0, 125, 250, 500,
1000, or 2000 ng/mL), ZIF, or 1000 ng/mL DON + ZIF for 24 h, real-time PCR was used
to detect mRNA expression levels of Bcl-2, Bax, and Bid (Figure 4). Compared with
untreated (control) PHNCs, the P53, Bax, and Bid mRNA expression levels as well as the
ratio of Bax/Bcl-2 increased significantly (p < 0.01) with increasing concentrations of DON,
and highest at the concentration of 1000 ng/mL. The mRNA expression levels of Bcl-2
reduced with increasing concentrations of DON, and the effects were significant when the
concentrations exceeded 500 ng/mL (p < 0.01). In addition, P53, and Bid mRNA expression
levels as well as the Bax/Bcl-2 proportion were significantly reduced (p < 0.01) in PHNCs
treated with 1000 ng/mL DON + ZIF compared to treatment with 1000 ng/mL DON alone.
Compared with 1000 ng/mL DON group, Bcl-2 mRNA expression was significantly higher
in 1000 ng/mL DON + ZIF group (p < 0.01).
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Figure 2. Effect of DON on PHNCs apoptosis rate and cells activity: (A) Flow cytometry of DON-treated PHNC apoptosis 
at different concentration; (B) The effect of different concentration of DON on PHNCs apoptosis rate, the apoptosis rate 
was increased with increasing concentrations of DON, and was highest at 1000 ng/mL; (C) The effect of different concen-
tration of DON on PHNCs activity, cell activity was decreased with increasing concentrations of DON; (D)The effect of 
different concentration of Z-IETD-FMK (ZIF) on PHNCs activity, cell activity was decreased with increasing concentra-
tions of ZIF. Data are presented as mean values ± SD (n = 3). ** DON group was highly significant different from controls 
(p < 0.01). Δ ZIF group was highly significant different from controls (p < 0.05). ΔΔ ZIF group was highly significant dif-
ferent from controls (p < 0.01). 
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24 h of DON exposure at different concentrations (0, 125, 250, 500, 1000, or 2000 ng/mL; 
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treatment group compared to the 1000 ng/mL unaided DON treatment group (p < 0.01). 

Figure 2. Effect of DON on PHNCs apoptosis rate and cells activity: (A) Flow cytometry of DON-treated PHNC apoptosis
at different concentration; (B) The effect of different concentration of DON on PHNCs apoptosis rate, the apoptosis rate was
increased with increasing concentrations of DON, and was highest at 1000 ng/mL; (C) The effect of different concentration
of DON on PHNCs activity, cell activity was decreased with increasing concentrations of DON; (D)The effect of different
concentration of Z-IETD-FMK (ZIF) on PHNCs activity, cell activity was decreased with increasing concentrations of ZIF.
Data are presented as mean values ± SD (n = 3). ** DON group was highly significant different from controls (p < 0.01).
∆ ZIF group was highly significant different from controls (p < 0.05). ∆∆ ZIF group was highly significant different from
controls (p < 0.01).

2.5. Effects of DON on Proteins Related with Apoptosis

The relative expression of CYCS, AIF, caspase-3, caspase-9, cleaved-caspase-9, and
cleaved-caspase3 (Figure 5A) in DON-treated PHNCs compared to untreated PHNCs
showed that, expressions of mitochondrial AIF and CYCS (Mito AIF and Mito CYCS) were
significantly decreased (p < 0.01) with DON concentrations between 250–1000 ng/mL,
reaching the lowest at 1000 ng/mL (Figure 5B). In contrast, expression of AIF and CYCS
in the cytoplasm (Cyto AIF and Cyto CYCS) was significantly increased and reached the
highest level at 1000 ng/mL DON.
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Figure 3. Effect of DON on mitochondrial membrane potentials in PHNC: (A) Different concentration
of DON-treated PHNCs mitochondrial membrane potentials; (B) The effect of different concentration
of DON on PHNCs mitochondrial membrane potentials. The MMP of PHNCs decreased with
increasing concentrations of DON, caspase-8 inhibitor ZIF increased it. Data are mean values ± SD
(n = 3). ** Highly significant difference vs. controls (p < 0.01). ## Highly significant difference vs.
1000 ng/mL DON group (p < 0.01).
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Figure 4. Effect of DON on apoptosis-related gene expression. The expression of bcl-2 mRNA was decreased, and the
expression of bax, bid, p53 mRNA were dose-dependent increased with the increase of DON concentration, these effects
were greatest when DON concentration was 1000 ng/mL. Caspase-8 inhibitor ZIF increased the expression of bcl-2 mRNA
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group (p < 0.01).
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cells treated with 1000 ng/mL DON + ZIF, after comparison with 1000 ng/mL DON alone. 

  

Figure 5. Effect of DON on apoptosis-related protein expression: (A) Western blot was used to detect proteins expression;
(B) The effect of DON on Caspase3, Caspase9, cleaved-Caspase9(cle-Caspase9), cleaved-Caspase3(cle-Caspase3), Cyt C
and AIF expression. The protein expression of Mito Cyt C, Mito AIF, Caspase 3, and Caspase 9 were decreased, and the
protein expression of Cyto Cyt C, Cyto AIF, cle-Caspase3 and cle-Caspase9 were dose-dependent increased with the increase
of DON concentration, these effects were greatest when DON concentration was 1000 ng/mL. Caspase-8 inhibitor ZIF
increased the expression of Mito Cyt C, Mito AIF, Caspase 3, and Caspase 9 and decreased the expression of Cyto Cyt C,
Cyto AIF, cle-Caspase3, and cle-Caspase9. Data are mean values ± SD (n = 3). * Significant difference vs. controls (p < 0.05).
** Highly significant difference vs. controls (p < 0.01). ## Highly significant difference vs. 1000 ng/mL DON group (p < 0.01).

Cleaved-caspase-9 and cleaved-caspase-3 levels were significantly increased (p < 0.05)
with DON concentrations between 250–1000 ng/mL, peaking at 1000 ng/mL (Figure 5B).
Caspase-9 and caspase-3 expression was decreased (p < 0.05) with DON concentrations
between 250–2000 ng/mL. Compared to PHNCs treated with 1000 ng/mL DON, Mito AIF
and Mito CYCS expression in PHNCs treated with 1000 ng/mL DON + ZIF was increased,
but the changes were not statistically significant. However, expression of Cyto AIF and
Cyto CYCS in PHNCs treated with 1000 ng/mL DON + ZIF was significantly decreased
compared to 1000 ng/mL DON group (p < 0.01). Expression of cleaved-caspase-9 and
cleaved-caspase-3 in PHNCs treated with 1000 ng/mL DON + ZIF significantly increased
(p < 0.01), while expression of caspase-9 and caspase-3 in PHNCs treated with 1000 ng/mL
DON + ZIF showed the opposite effect.

2.6. Effect of DON on Caspase-3 Activity

After 24 h exposure to increasing concentrations of DON (0, 125, 250, 500, 1000,
2000 ng/mL), ZIF, or 1000 ng/mL DON + ZIF, we found that untreated (control) PHNCs
showed minimal or even no expression of caspase-3, while cells treated with DON indicated
increased expression of caspase-3 with higher concentrations of DON, reached the highest
at 1000 ng/mL DON (Figure 6). Caspase-3 expression was significantly reduced in PHNC
cells treated with 1000 ng/mL DON + ZIF, after comparison with 1000 ng/mL DON alone.

2.7. Effect of DON on the Transcriptional Activities of AIF and P53

We examined the relationship between mitochondrial release of the transcription
factors AIF and P53 and nuclear transcription using EMSA. Transcriptional activities
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of AIF and P53 in PHNCs treated with DON significantly increased with higher DON
concentrations (p < 0.01) (Figure 7). AIF and P53 transcriptional activity was significantly
reduced in PHNCs treatment with 1000 ng/mL DON + ZIF, when compared to 1000 ng/mL
DON alone (p < 0.01).
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Figure 6. Effect of DON on Caspase3 activation (400×). Cells were treated for 24 h with differ-
ent concentrations of DON (0, 125, 250, 500, 1000, 2000 ng/mL, ZIF, 1000 ng/mL DON+ZIF) and
cleaved-caspase-3 was then measured, subjected to immunofluorescence analysis of cleaved-caspase3
activation(red), and nuclei were counterstained with DAPI (blue). When DON concentration was
higher than 125 ng/mL, the expression of cleaved-caspase-3 was increased and the maximum expres-
sion was at 1000 ng/mL. Caspase-8 inhibitor ZIF decreased the expression of cleaved-caspase-3.
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Figure 7. Effects of DON on the transcription activities of AIF and P53. Cells were treated for
24 h with different concentrations of DON (0, 125, 250, 500, 1000, 2000 ng/mL, ZIF, 1000 ng/mL
DON + ZIF). Each treatment was replicated 3 times. Nuclear proteins were collected for the indicated
time. (A,B): the electrophoretic mobility shift assay (EMSA) results of AIF; (C,D): the EMSA results
of P53. DON was dose-dependent increased the transcriptional activities of AIF and P53 in PHNCs,
these effects were greatest when DON concentration was 1000 ng/mL. Caspase-8 inhibitor ZIF
decreased the transcriptional activities of AIF and P53. Data are mean values ± SD (n = 3). ** Highly
significant difference vs. controls (p < 0.01). ## Highly significant difference vs. 1000 ng/mL DON
group (p < 0.01).

3. Discussion

DON-induced apoptosis has been confirmed in various cell types including gastroin-
testinal tract and intestinal epithelial cells. However, there is little information about the
effects of DON in nerve cells, especially related to DON-induced apoptosis through the
mitochondrial signaling pathway. We have shown that DON significantly inhibited piglet
hippocampal nerve cells viability and promoted the release of LDH by damaging the mem-
brane integrity of PHNCs. DON induced PHNCs apoptosis and its mechanism of action is
related to the mitogen-activated protein kinase (MAPK) signal pathway [23]. However, the
specific target organelle (mitochondrion) and signal transduction mechanism need to be
further studied. Here, we used PHNCs to assess this mechanism (Graphical Abstract).

DON is known to be toxic to many cell types, with its significant cytotoxicity medi-
ated primarily through induction of apoptosis [24]. The inference of apoptotic chromatin
deviation with treatment of DON has been observed by fluorescence microscopy in lung
fibroblasts, human proximal tubule cells, and human colon cancer cells [25,26]. Our ex-
perimental results are consistent with these observations. We demonstrated that PHNC
viability decreased with increasing concentrations of DON, and that DON-treated cells
showed typical ultrastructural changes consistent with apoptosis including nuclear shrink-
age and dense fluorescence. DON can damage cell membranes, inhibit cell activity, and
promote LDH release, which leads to apoptosis and cell death in PC12 cells [27]. A previ-
ous study demonstrated that ZEA exposure impaired pGCs growth and apoptosis via the
miRNAs-mediated focal adhesion pathway [28], and Xu et al. reported that DON exposure
can induce apoptosis in intestinal porcine epithelial cells (IPEC-J2) [29]. We confirmed
through flow cytometry that apoptosis occurs in a DON dose-dependent fashion in PHNCs.
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The result is consistent with earlier observations. Overall, the above results revealed that
DON could persuade apoptosis of PHNCs, suggesting that further research focusing on
the mitochondrial apoptotic pathway is warranted.

In recent years, studies have shown that mitochondria are involved in almost all cell
apoptosis [30]. MMP results from the uneven distribution of protons and ions across the
mitochondrial membrane suggested MMP plays a significant role in the process of apopto-
sis, and it is thought that alterations in MMP occur in the earliest stages of apoptosis [31,32].
Once mitochondria are injured, the MMP is markedly decreased, leading to severe impair-
ment of mitochondrial function and eventually irreversible apoptosis. Caspase-8 is known
to play a crucial role in intervening Fas-persuaded apoptosis [33,34]. Once it is activated,
the classic apoptotic cascade including activation of caspase-3, -6, and -7 would occur and
ultimately leading to mitochondrial damages [35]. Due to its central role in apoptosis, we
choose an inhibitor of caspase-8 to demonstrate the role of the mitochondrial apoptosis
pathway in DON-associated toxicity. In this study, we labeled mitochondria of apoptotic
cells with JC-1 and measured its fluorescence using flow cytometry to quantify changes in
MMP. We found that MMP of PHNCs decreased significantly after 24 h exposure to con-
centrations of DON. MMP was significantly increased in PHNCs cured with 1000 ng/mL
DON + ZIF compared to 1000 ng/mL alone (p < 0.01), suggesting that caspase-8 inhibition
can prevent dissipation of the MMP. Altogether, our results confirmed that mitochondria
are involved in DON-mediated cell apoptosis.

Bcl-2 protein is contained in the endoplasmic reticulum, mitochondrial membrane,
and the nuclear envelope, through a region in its C-terminus [36–38]. Studies proposed that
that Bcl-2 may act on signaling molecules and mitochondrial and nuclear pore complexes
such as CYCS and apoptosis inducing factor AIF, and control cell signaling to prolong cell
survival [39]. The Bcl-2/Apaf-1/caspase-9 complex is directly combined with Apaf-1 to
inhibit the activation of caspase-9 by caspase-3. Bcl-2 may also regulate caspase on the
mitochondrial membrane and reduce its activity, but it does not affect the activation of
caspase-9 by CYCS and Apaf-1 [40]. Bid is a pro-apoptotic factor and its product tBid
has the ability to induce CYCS leakage from mitochondria [41–44], without dissipation of
the mitochondrial inner membrane potential. CYCS released into the cytoplasm activates
downstream caspase-9, further activates the caspase-3 cascade, and eventually leads to
apoptosis [45]. Bcl-2 protein can inhibit apoptosis by binding to Bid, Bim, or Bad, and
Bcl-2/Bax ratio concludes whether a cell will live after receiving apoptotic signals [38].
In our study, bcl-2, CYCs, caspase 3, and caspase 9 expression declined with higher
concentration of DON, with expression reaching a lowest at 1000 ng/mL. With increasing
of DON concentration, bid and bax expression increased, and at 1000 ng/mL, it reached
a maximum level. Variations in expression of bcl-2, CYCs, caspase 3, caspase 9, bax, and
bid in PHNCs preserved with 1000 ng/mL DON + ZIF were contrary to those treated with
1000 ng/mL DON alone. Our data support the conclusion that bcl-2, bax, and bid act a
decisive role in apoptosis in DON-treated cells. These results indicated that bcl-2, bax, bid,
CYCS, AIF, caspase-9, and caspase-3 contribute to DON-triggered apoptosis in PHNCs,
and CYCS is unconstrained into the cytoplasm from mitochondria when DON-triggered
apoptosis occurred, and that caspase-8 inhibition via ZIF could prevent the release of CYCS
from the mitochondria.

AIF is an active protein that induced apoptosis and located between the mitochondrial
double membranes. AIF is free from the mitochondria into the cytoplasm after stimulation
by an apoptosis signal, enters the nucleus where it facilitates DNA cleavage, which may
further contribute to apoptosis [46]. In our previous study [27], we found that AIF was
released into the cytoplasm from the mitochondria in cells treated with DON, and that this
release was prohibited by ZIF-mediated inhibition of caspase-8. The tumor suppressor gene
P53, a transcription factor central to regulation of apoptosis, possesses two functions: to
repair cell damage or to induce cell apoptosis. P53 could combine with DNA and checked
if DNA was damaged. After DNA damage was founded by P53, it would stimulate the
expression of cyclin-dependent kinase (CDK)-interacting protein (CIP), preventing cell
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division and allowing for DNA repair to occur. When DNA damage was higher than P53
repair, then the expression of P53 could promote cell apoptosis [47,48]. P53 could affect
cell apoptosis through inhibiting the Bcl-2 expression level and promoting Bax and Bak
expression [49]. In our study, the transcription activities of P53 were enhanced with the
increasing DON concentration, which confirmed the effect of P53 in cell apoptosis.

In summary, the present study indicates that DON can induce apoptosis of PHNCs
via triggering of the mitochondrial signal transduction pathway. The results in the current
study are similar to previous reports that DON induced mitochondria-dependent apoptosis
in porcine intestinal epithelial cells and rat anterior pituitary GH3 cells [50,51]. Our study
found that DON treatment led to induction of the pro-apoptotic genes Bax and Bid, while
Bcl-2 expression was repressed. DON treatment also led to cleavage (activation) of the
apoptosis-related proteins caspase-3 and caspase-9. These effects were diminished by
inhibition of caspase-8. In addition, Zhu et al. also reported that zearalenone induces
apoptosis and necrosis in porcine granulosa cells via a caspase-3- and caspase-9-dependent
mitochondrial signaling pathway [52]. Together, these data propose that mitochondrial
apoptosis might be a principal mechanism through which DON induces neurotoxicity, and
provide important insights for future studies on mechanisms of DON neurotoxicity.

4. Materials and Methods
4.1. Cell Culture and Treatment

The piglet hippocampal nerve cells (PHNCs) were provided by Nanjing Keygen Bio-
logical Technology which were cultured in Dulbecco’s modified Eagle medium (DMEM)
(Thermo Scientific, Grand Island, NY, USA) comprising of fetal bovine serum (FBS, 10%),
(Clark Bioscience, Richmond, VA, USA), and 100 U/mL of penicillin, with 100 µg/mL
streptomycin under an atmosphere of 5% CO2. For ultrastructural studies and apoptosis
assays, PHNCs were grown in logarithmic phase, harvested, and seeded in 24-well plates
(1 × 105 cells/mL). The cells were incubated for 24 h and cured with ascending concen-
trations of DON (Sigma, St. Louis, MO) (0, 125, 250, 500, 1000, 2000 ng/mL) for 24 h, the
concentrations of DON were referred in our previous research [20]. In two experimental
groups, 10 µM caspase-8 inhibitor (Z-IETD-FMK, Keygen Biotech, Nanjing, China) was
added (0, 1000 ng/mL DON) 30 min prior to DON treatment to assess the mitochondrial
caspase-8-mediated apoptosis pathway in DON exposure response. Cells were collected
for evaluation of Cytochrome C, AIF, caspases, and bcl-2 family members.

4.2. Viability Assay

CCK-8 cell viability assay kit (Dojindo Molecular Technologies, Inc., Tokyo, Japan)
was used to detect cell viability rendering to the protocol of the manufacturer. Briefly,
1 × 105 cells/mL in a volume of 100 µL DMEM in 96-well plates were hatched for 24 h and
then cured with DON for 24 h. After 3 h incubation with 10 µL CCK-8 reagent in each well,
absorption at 450 nm was determined on a plate photometer (Thermo Scientific, Waltham,
MA, USA).

4.3. Hoechst 33,258 Staining

The impact of DON on the nuclear chromatin of cells was observed by Hoechst 33,258
staining. On sterile cover glasses, PHNCs were seeded and placed in 24-well plates for
24 h. The cells were then treated with the indicated concentrations of DON (0, 125, 250, 500,
1000, 2000 ng/mL) for 24 h. Cold PBS buffer was used to washed cells and fixed with 4%
formaldehyde for 30 min, and then hatched with 100 µL Hoechst 33,258 staining solution
for 5 min. After washing three times with PBS, the cells were viewed under a FV1000 laser
confocal microscope (Olympus, Tokyo, Japan).

4.4. Determination of Apoptotic Cells

An annexin V-FITC/PI cell apoptosis assay kit (Wanleibio, Shenyang, China) was
used to measure cell apoptosis. After treating for 24 h with different concentrations of



Toxins 2021, 13, 73 11 of 14

DON, the cells were collected using two PBS washes. Then, 500 µL obligatory buffers were
added to re-suspend the cell pellet, with the adding of 5 µL annexin V-binding and 5 µL
propidium iodide (PI). Cells were stained for 15 min in the dark at room temperature, and
then examined for apoptosis by a method called flow cytometry using 10,000 cells per
sample (Becton Dickinson, Franklin Lakes, NJ, USA).

4.5. Detection of the Mitochondrial Membrane Potential (MMP)

JC-1 fluorescence kit (Thermo Scientific, Waltham, MA, USA) was used to measure mi-
tochondrial membrane potential (MMP). PHNCs were treated with different concentrations
of DON, ZIF, or 1000 ng/mL DON+ZIF for 24 h. JC-1 working solution was prepared in
the proportion of 500 µL 1× incubation buffer to 1 µL JC-1. Cell pellets were re-suspended
in 500 µL JC-1 operational solution and the cells were hatched for 15 min at 37 ◦C. The
collected cells were washed two times with 500 µL 1× incubation buffer. Cells were then
re-suspended in 500 µL 1× incubation buffer and evaluated by flow cytometry.

4.6. RT-PCR Analysis

In PHNCs, expression of Bcl-2 family members was detected by RT-PCR. The cells
were treated with DON in different concentrations, ZIF, and 1000 ng/mL DON + ZIF
for 24 h, respectively. Total RNA was isolated via Trizol (TaKaRa, Dalian, China), and
cDNA was synthesized followed by a RT-PCR kit (Takara) rendering to the protocol of the
manufacturer. The designed primers are listed in Table 1. PCR conditions were 95 ◦C for
1 min, followed by 40 cycles of 95 ◦C for 15 s, 58 ◦C for 20 s, and 72 ◦C for 20 s.

4.7. Western Blot Analysis

To determined protein levels of cleaved-caspase-3, cleaved-caspase-9, cytochrome
C, and AIF Western blot analysis was used. DON was used in different concentration
treat PHNC, ZIF, and 1000 ng/mL DON + ZIF. A mitochondria/cytosol fractionation kit
(Beyotime Inst. Biotech, Beijing, China) was used to isolate mitochondrial and cytosolic
proteins. Aliquots of 50 µg proteins were detached on a 12% SDS-polyacrylamide gel for
cleaved-caspase-9, cleaved-caspase-3, and AIF, and on a 15% gel for cytochrome C, and
then moved to PVDF membrane. Membranes were blocked with TBST buffer containing 5%
bovine serum albumin and incubated with antibodies against β-actin (1:7500), AIF (1:200),
CYCS (1:200), cleaved-caspase-3 (1:750), and cleaved-caspase-9 (1:750) at 4 ◦C overnight,
followed by addition of horseradish peroxidase-linked anti-mouse/rabbit IgG. The bands
were imagined via Super Signal West femto kit.

Table 1. Parameters of primer for Bcl-2, Bax, Bid, P53, and GAPDH genes.

Gene Accession Number Primer Sequences (5′→3′) Product/bp

GAPDH NM_002046
Forward GGTGAAGGTCGGTGTGAACG

232Reverse CTCGCTCCTGGAAGATGGTG

Bcl-2 NC_000067.6
Forward TGGGATGCCTTTGTGGAACT

153Reverse GCAGGTTTGTCGACCTCACT

Bax NC_000073.6
Forward GGTTTCATCCAGGATCGAGCA

151Reverse TCCTCTGCAGCTCCATATTGC

Bid NM_197966.1
Forward AGCTACACAGCTTGTGCCAT

186Reverse CAGCTCGTCTTCGAGGTCTG

P53 NC_000077.6
Forward CCCAAACTGCTAGCTCCCAT

217Reverse GGAGGATTGTGTCTCAGCCC

4.8. Immunofluorescence Analysis

The activity of caspase-3 was analyzed by immunocytofluorescence using laser con-
focal microscopy (FV100, Olympus, Tokyo, Japan). Briefly, PHNCs were grown-up on
cover slips, and hatched with DON in different concentration, ZIF, or 1000 ng/mL DON
+ ZIF for 24 h and washed with cold PBS. After being static with 4% paraformaldehyde
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and with PBS washed thrice, the cells were permeabilized with 0.02% Triton X-100 for
3 min. Cells were blocked for 30 min at room temperature in 5% BSA, and hatched with
cleaved-caspase-3 antibody at 4 ◦C for the whole night with secondary antibody (1:200) for
1 h. It was then washed thrice with PBS; nuclei were stained with DAPI for 3 min. Pictures
were taken via Olympus FV10-ASW 1.7 Viewer software (Olympus, Tokyo, Japan).

4.9. Transcriptional Activity

The transcriptional activities of transcription factor AIF and P53 were determined
by EMSA. A nuclear protein extraction kit (Sangon Biotech Co., Ltd., Shanghai, China)
was used to isolate nuclear proteins. The concentrations of nuclear proteins were de-
termined by Bio-Rad protein assay reagent (Sangon Biotech Co., Ltd., Shanghai, China).
The binding reaction of extracted nuclear proteins (6 µg) with biotin-labeled probe was
performed rendering to the protocol of the manufacturer. The complexes were detached
by electrophoresis on non-denaturation 6% polyacrylamide Tris/borate/EDTA (TBE) gels
and moved into a membranes made up of nylon. Membranes were crosslinked by a UV
cross-linker (Cany Precision Instruments Co., Ltd., Shanghai, China) and the probe was
noticed with the help of enhanced chemiluminescence solution (ECL; Pierce Biotechnology
Inc., Chicago, IL, USA).

4.10. Statistical Analysis

All the data were expressed as mean ± standard deviation (SD). One-way ANOVA
were used for statistical comparison, followed by Tukey’s post hoc test. p < 0.05 was
measured statistically significant.
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