
Drosophila Ribosomal Protein Mutants Control Tissue
Growth Non-Autonomously via Effects on the
Prothoracic Gland and Ecdysone
Jane I. Lin1,2, Naomi C. Mitchell3, Marina Kalcina3, Elly Tchoubrieva1, Mary J. Stewart4¤, Steven J.

Marygold5, Cherryl D. Walker5, George Thomas6, Sally J. Leevers5, Richard B. Pearson1,2,7., Leonie M.

Quinn3.*, Ross D. Hannan1,2,7,8.*

1 Peter MacCallum Cancer Centre, East Melbourne, Australia, 2 Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia,

3 Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia, 4 Department of Biological Sciences, North Dakota State University, Fargo, North

Dakota, United States of America, 5 Growth Regulation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom, 6 University of Cincinnati

Medical Center, Cincinnati, Ohio, United States of America, 7 Department of Biochemistry and Cell Biology, Monash University, Clayton, Australia, 8 School of Biomedical

Sciences, The University of Queensland, Brisbane, Australia

Abstract

The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many
Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could
lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small
rough eye phenotype in a cyclin E hypomorphic mutant (cycEJP). We demonstrated that the suppression of cycEJP by the
RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of
UAS-RpS6 RNAi transgenics revealed that the suppression of cycEJP is exerted via a mechanism extrinsic to the eye, whereby
reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental
timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain
the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp
mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously.
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Introduction

One of the early phenotypic classes identified in Drosophila was the

Minutes, which were classified based on the heterozygous adults

having short slender bristles on the body, a generally smaller body

size and a delay in the onset of metamorphosis [1]. It has long been

considered that understanding the basis for these phenotypes will

provide fundamental clues to the mechanisms underlying the

control of cell growth and proliferation as well as of tissue and organ

size [2]. In 1976 it became apparent that many Minute genes encode

Ribosomal proteins (Rps) [3] and by 2007 most of the Minutes were

confidently ascribed to the Rp genes [4]. In all organisms, Rps are

essential for the assembly and optimal functioning of the ribosome

and are, therefore, obligate for protein synthesis and cell growth

(reviewed in [5–6]). Due to their essential role in ribosome

biogenesis, mutations that reduce Rp expression would be expected

to limit cell growth. This cell intrinsic requirement for Rps explains

many aspects of the Minute phenotype, such as the thin bristles and

reduced body size in some Minutes. In contrast, other aspects of the

Minute phenotype have remained enigmatic.

Paradoxically, reduced levels of some Drosophila Rps result in

overgrowth of specific tissues. For example, RpS6 mutant larvae

have overgrown lymph glands, due to increased growth and over-

proliferation of the lymph gland cells [7], and develop melanotic

masses [8–9], a characteristic feature of over-proliferation of

hemocytes [10]. Thus reduced RpS6 expression results in tissue

overgrowth, consistent with RpS6 having a tumour suppressor like

function. Similarly, we have shown that RpL5 or RpL38

heterozygous adult flies exhibit significant increases in the size of

the wings due to increased cell growth [11]. Rps have also been

implicated as tumour suppressors in the vertebrate zebrafish

model, where a genetic screen identified a link between malignant

peripheral nerve sheath tumours and heterozygosity for several

loss-of-function Rp mutations [12].
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In mammalian systems, there is also evidence that Rp

heterozygosity is frequently associated with tissue overgrowth

and predisposition to cancer. For example, mutations in RpS19,

RpS17, RpS24, RpL35a, RpS7, RpL5, RpL11, RpS10 and RpS26

have been associated with the human disease Diamond Blackfan

Anemia (DBA), a dominant autosomal bone marrow failure

syndrome, characterised by hypoplastic anemia with a predispo-

sition to leukemia [13–19]. Mutations in RpS14 are also associated

with 5q- syndrome and predisposition to acute myeloid leukemia

[20–21]. Although RpS19 heterozygosity disrupts ribosome

biogenesis [22–24], how reduced levels of Rps promote the

excessive proliferation associated with progression to leukemia

remains unclear and whether the mechanism is related to tissue

overgrowth of Minutes has not been investigated.

Defining the mechanisms by which Rp heterozygosity results in

tissue overgrowth and how reduction in a certain Rp gene

predisposes a specific tissue to overproliferation in Drosophila is

critical to understanding the processes linking growth and

proliferation with tissue homeostasis. Furthermore, the insight

provided by the Drosophila system may provide important clues in

understanding how Rp mutations can promote cancer in humans.

Development of the Drosophila eye has been extensively used to

identify and characterise regulators of growth and proliferation

[25–26]. The Drosophila eye is composed of a highly organised

array of photoreceptor clusters or ommatidia, which develop from

an epithelial monolayer known as the eye imaginal disc.

Differentiation of the ommatidia occurs in a wave that moves

from the posterior toward the anterior. The anterior cells divide

asynchronously and are separated from the differentiated posterior

compartment by the morphogenetic furrow (MF) [27]. Mitotic

division cycles become synchronized in the MF where cells are

paused in G1 and a subset of photoreceptor cells are specified. The

remaining retinal cells synchronously re-enter the cell cycle in the

‘‘Second Mitotic Wave’’ (SMW), which is composed of a tight

band of DNA synthesis and mitosis. These final cell divisions

provide the cells required for differentiation of the ommatidial

structures that form the adult eye [28].

A hypomorphic mutation of cycE, cycEJP [29], reduces cycE

expression during eye imaginal disc development to result in

decreased S phases and small, rough adult eyes due to fewer cells

(Figure 1A, compare i with ii) [29]. cycEJP therefore provides a

sensitised genetic background to identify modifiers of eye

proliferation, with suppressors of the phenotype being classed as

‘‘tumour suppressors’’ and predicted to normally function as cell

cycle inhibitors [26]. To examine the mechanism(s) underlying the

overgrowth phenotypes exhibited by some Minutes we have taken

advantage of the unexpected observation that mutant RpS6

suppresses the hypo-proliferative, small eye phenotype of cycEJP

mutants [26]. The data presented here confirm that reduced

function of RpS6 suppresses the cycEJP small eye phenotype and we

further demonstrate that this is not associated with restored

proliferation in the SMW. Suppression of the cycEJP adult eye

phenotype was observed with Rp mutants for both the small

subunit (RpS12 and RpS19) and the large subunit (RpL38), which

suggests the ability to restore eye size may be a more general

property of reduced Rp abundance. Further investigation revealed

that reduced RpS6 does not, however, lead to increased levels of

CycE protein in the eye and that reduction of RpS6 specifically in

the eye does not suppress the cycEJP small eye phenotype. Instead

we demonstrate that reduced Rp levels in the prothoracic gland in

RpS6 mutants decreased the activity of steroid hormone ecdysone,

delayed development and hence allowed additional time for

restoration of growth in the cycEJP mutants.

Results

Rp mutants suppress the cycEJP hypomorphic small eye
phenotype

Mammalian cyclin E (cycE) is a well-characterised oncogene and,

like the Drosophila homolog, regulates G1- to S-phase progression

[30–32]. The cycEJP hypomorphic mutant has reduced cycE

expression predominantly in the developing eye imaginal disc

and, as a result, fewer S phases and small, rough adult eyes

(Figure 1A ii and [29]). Previously a genetic screen for modifiers of

the cycEJP phenotype identified the RpS6 mutant RpS6air8, which

reduces RpS6 expression, as a suppressor of the cycEJP small eye

phenotype [26]. This observation is consistent with previous

observations that reduced RpS6 expression can promote prolifer-

ation in RpS6 mutant larvae [7–9].

We utilised the cycEJP small eye phenotype to examine the

mechanisms by which reducing Rp levels can result in tissue

overgrowth. As the original RpS6air8 line was no longer available to

confirm the previous findings [26], we demonstrated suppression

of cycEJP using an alternate RpS6 mutation, RpS6WG1288 [8–9],

which also exhibits the classic Minute phenotype of slender bristles

(not shown) and a developmental delay (Figure 3C, red data

points). RpS6WG1288/+ restored the eye size and reduced roughness

in the cycEJP background to give adult eyes with a more wild-type

appearance (Figure 1A, compare i and ii with iii). Thus, two

independent RpS6 mutations (RpS6air8 and RpS6WG1288) suppress

the cycE hypomorphic small eye phenotype, consistent with

reduced RpS6 function leading to increased proliferation in the

cycEJP mutant.

In order to test whether suppression of cycEJP was specific to

mutation of RpS6 or was potentially a more general consequence

of reducing Rp levels, we tested two other Rp mutants that give

Minute phenotypes, RpS12s2783 and RpS19bEP3448. Reducing RpS12

and RpS19 levels, with the mutant alleles RpS12s2783 [33] and

RpS19bEP3448 (http://flybase.org/reports/FBrf0104946.html) re-

sulted in a moderate suppression of cycEJP (Figure 1A iv and v,

respectively). The cycEJP eye phenotype was also suppressed with a

Author Summary

Ribosomes are required for protein synthesis, which is
essential for cell growth and division, thus mutations that
reduce Rp expression would be expected to limit cell
growth. Paradoxically, heterozygous deletion or mutation
of certain Rps can actually promote growth and prolifer-
ation and in some cases bestow predisposition to cancer.
The underlying mechanism(s) behind these unexpected
overgrowth phenotypes despite impairment of ribosome
biogenesis has remained obscure. We have addressed this
question using the power of Drosophila genetics, taking
advantage of our observation that four different Rp
mutants, or Minutes, are able to suppress a small rough
eye phenotype associated with a mutation of the essential
controller of cell proliferation cyclin E (cycEJP). Our findings
demonstrate that suppression of cycEJP by the RpS6
mutant is exerted via a tissue non-autonomous mecha-
nism whereby reduced Rp in the prothoracic gland
decreases activity of the steroid hormone ecdysone,
delaying development and hence allowing time for
compensatory growth. These data provide for the first
time a rationale to explain the counter-intuitive organ
overgrowth phenotypes observed for certain Drosophila
Minutes. Our findings also have implications for the effect
of Rp mutants on endocrine related control of tissue
growth in higher organisms.

Minutes Control Tissue Growth Non-Autonomously
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large subunit Rp mutant, RpL382b1 [11] (Figure S1). The finding

that mutations in four different Rps from both subunits suppress

the cycEJP phenotype suggests that this may be a common feature

of Minutes.

RpS6 does not suppresses cycEJP by restoring Cyclin E
protein levels in the eye

The majority of the suppressors examined in detail from the

original cycEJP screen demonstrated the ability to restore CycE

protein towards wild-type levels and an associated increase in S

phase progression [26]. Thus we examined whether RpS6WG1288

might similarly restore CycE levels in the eye. However,

examination of CycE levels in eye discs from 3rd instar larvae

revealed that this was not the case (Figure 1B, compare i and iii

with iv). As reported previously [29] and consistent with the

reduced CycE levels, S phase cells were also reduced in eye discs of

cycEJP (Figure 1C iii). In line with the finding that CycE was not

altered, the reduced S phases in the SMW of cycEJP were not

obviously increased by reducing RpS6 (Figure 1C iv). Thus

suppression of the cycEJP phenotype occurs in the absence of

obvious changes to CycE abundance and S phase progression.

To monitor whether there was an overall change to cell cycle

progression in the eye, we carried out anti-phosphohistone H3

staining to identify cells in mitosis as an alternative measure of cell

cycles in the SMW (Figure 1D and quantified in 1E). The SMW of

cycEJP mutants exhibited a significant reduction in their mitotic

index as expected (Figure 1D iii and 1E). Importantly however the

mitotic index was not restored in cycEJP eyes by the RpS6 mutant

(Figure 1D iv and 1E). Therefore in these animals there is not a

significant increase in the rate of cell cycle progression in the

SMW, which suggests that this is unlikely to be the mechanism

underlying suppression of cycEJP by the RpS6 mutant.

Specific reduction of RpS6 in the eye does not suppress
cycEJP

The findings above suggested that the suppression of cycEJP by

the RpS6 mutant was not associated with either restoration of

CycE or with altered cell cycle progression. As the cycEJP

hypomorph predominantly affects the eye, we sought to test

whether specific reduction of RpS6 in the cycEJP eye could suppress

the phenotype. Using the eye specific GMR-Gal4 to drive

expression of a UAS-RpS6 RNAi transgene, in both the SMW

and differentiated cells posterior to the morphogenetic furrow [34–

35], resulted in a smaller eye with a glassy appearance and

necrotic patches (Figure 2A, compare iii with iv) [36] and 50%

reduction in RpS6 mRNA in eye-antennal discs (Figure 2B). We

then tested whether specific reduction of RpS6 in the eye could

suppress the cycEJP phenotype. Reducing RpS6 with GMR-Gal4,

which results in a small eye phenotype alone, was unable to

suppress the cycEJP phenotype, and rather resulted in an additive

reduction in eye size (Figure 2C, compare ii with iv). Due to the

severity of the GMR.RpS6 RNAi phenotype we also tested

knockdown with an alternate eye driver Ey-Gal4, which is

expressed in all eye cells [37–38]. This resulted in ,20%

reduction in RpS6 mRNA in eye-antennal discs (Figure 2B) and

did not produce an obvious adult eye phenotype alone (Figure 2A,

compare v with vi). Thus like heterozygous RpS6WG1288/+,

Ey.RpS6 RNAi does not result in an obvious eye phenotype

(Figure 2A, compare i with ii). However, in direct contrast to

RpS6WG1288/+, Ey.RpS6 RNAi enhanced rather than suppressed

the cycEJP rough eye phenotype (Figure 2D, compare ii with iv).

Together these data demonstrated that reducing the abundance of

RpS6 in the eye, either robustly or modestly, was unlikely to be the

mechanism underlying suppression of the cycE hypomorphic

phenotype by the RpS6 mutant.

RpS6 suppresses cycEJP in an eye tissue non-autonomous
manner

Because specifically reducing RpS6 in the eye did not suppress

the cycEJP small eye phenotype, we considered the possibility that

the interaction between RpS6 and cycEJP might be mediated by a

mechanism extrinsic to the eye. To test this we placed UAS-RpS6

RNAi expression under the control of a range of ubiquitous Gal4

drivers in an effort to replicate the environment of the RpS6

mutant, by reducing RpS6 in the whole fly. Knockdown of RpS6

with the strong ubiquitous drivers Daughterless-Gal4 or Tubulin-Gal4

resulted in either early larval or embryonic lethality (Table S1).

This is likely to be a result of RpS6 levels dropping below the

threshold required for sufficient ribosome assembly and thus

protein synthesis to support cell growth and proliferation.

Consistent with this observation, reduction of RpS6 mRNA levels

with strong drivers expressed in specific embryonic segments or

larval domains also resulted in lethality (Engrailed-Gal4, Patched-

Gal4) or shrivelled, stumpy wings (MS1096-Gal4) (Table S1 and

Figure S2, compare iii with iv).

In contrast to the strong Gal4 drivers, reducing RpS6 mRNA

levels with the relatively weaker ubiquitous driver, Actin-Gal4,

resulted in viable flies (Figure S2, compare i with ii), which had a

reduction in RpS6 mRNA similar to the levels seen in RpS6WG1288/+
larvae (Figure 2B, compare striped black and striped green bars).

Importantly, this low-level reduction of RpS6 throughout the fly

resulted in suppression of the cycEJP eye phenotype (Figure 2E,

compare ii with iv) and a significant increase in eye size (Figure 2F,

green bars). These data suggested that factors extrinsic to the eye

were essential for suppression of cycEJP by the RpS6 mutant,

consistent with our inability to detect changes in CycE activity or

protein levels in the eye in the RpS6 mutant background.

Suppression of the cycEJP phenotype by the RpS6 mutant
is reversed by Ecdysone

As Rp mutations are associated with a developmental delay, we

considered the possibility that the cell non-autonomous mecha-

nism by which mutant RpS6WG1288 and RpS6 RNAi suppressed

cycEJP might involve, at least in part, the ecdysone pathway, which

Figure 1. RpS6 mutant suppresses the small rough eye phenotype of cycEJP, but not through restoring CycE protein levels. (A)
Scanning electron micrographs (SEM) of female adult eyes with genotypes as indicated. Orientation of eyes: anterior (left) posterior (right). Scale bar
100 mm. (B) Confocal images of 3rd instar eye imaginal discs stained for CycE and DNA with genotypes as indicated. White boxes mark the band of
cycE cells. Images were taken at 406 magnification. Orientation of eye discs: anterior (left), posterior (right). Scale bar equals 50 mm. (C) Confocal
images of 3rd instar eye imaginal discs stained for BrdU incorporation and DNA with genotypes as indicated. White boxes mark the band of S phase
cells. Images were taken at 406magnification. Orientation of eye discs: anterior (left), posterior (right). Scale bar equals 50 mm. (D) Confocal images of
3rd instar eye imaginal discs stained for cells in the SMW (PH3) and DNA with genotypes as indicated. White boxes mark the band of cells in SMW.
Images were taken at 406magnification with 0.76optical zoom. Orientation of eye discs: anterior (left), posterior (right). Scale bar equals 50 mm. (E)
Graph quantifying the number of cells in the SMW. Results are represented as the mean +/2 standard error. Statistical analysis applied: unpaired t-
test, where ** = p,0.01, NS = not significant and n = 3.
doi:10.1371/journal.pgen.1002408.g001

Minutes Control Tissue Growth Non-Autonomously
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Figure 2. Reducing RpS6 by RNAi in the whole fly, but not specifically in the eye, suppresses cycEJP. (A) Light micrographs of female
adults bearing the genotypes as indicated. GMR-Gal4 drives expression in differentiated eye photoreceptor cells. Ey-Gal4 drives expression in all eye
cells. (B) Graph showing the relative mRNA levels of RpS6 from the RpS6 mutant, eye specific reductions of RpS6 (GMR-Gal4 and Ey-Gal4) and
ubiquitous reductions of RpS6 (Actin-Gal4) as measured by qRT-PCR. RNA samples were extracted from ten 3rd instar larvae or thirty 3rd instar eye
imaginal discs. Samples were normalised to equal amounts of RNA (1 mg). Results are represented as the mean +/2 standard error (n = 3). Statistical
analysis applied: One-way ANOVA, where * = p,0.05, *** = p,0.001. (C–E) Light micrographs of female adult eyes bearing the genotypes indicated.

Minutes Control Tissue Growth Non-Autonomously
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is known to control timing of development and thus the growth

period of the larvae. Specifically, release of ecdysone from the

prothoracic gland (PG) dictates the timing of the metamorphosis

from larvae to pupae (reviewed in [39]). As adult fly size is

determined by the size of the larva at the time of pupal molt, the

timing of ecdysone release plays a vital role in the growth of the fly

[40]. We therefore examined whether RpS6WG1288/+ might

suppress the cycEJP eye phenotype via an ecdysone-dependent,

cell non-autonomous mechanism.

Previous studies have reported a role for the PG as a size-

assessment organ [41–43]. Inhibiting the growth of the PG causes

an underestimation of body size and results in pupation at a larger

size. Conversely, promoting the growth of the PG results in smaller

flies [41–43]. For example, overexpression of a dominant negative

isoform of PI3 Kinase (Dp110DN) specifically in the PG blocks

insulin pathway signalling and PG growth [41]. The smaller PG

and associated reduction in ecdysone levels in these animals results

in larger pupae and adults due to an extended larval growth period

[41–43].

We therefore tested if the RpS6 mutant might suppress the

cycEJP phenotype by impairing PG growth and, as a consequence,

affecting the level of ecdysone. During eye disc development the

morphogenetic furrow moves forward by one row of ommatidia

(3–4 cell rows) every 70 minutes [44] and the doubling time for

cells in the proliferating, anterior portion of the eye disc is

approximately 12 hours [45]. Thus a developmental delay would

provide the anterior asynchronously dividing cells and the cells

comprising the second mitotic wave of the eye imaginal disc extra

time to grow and divide in order to compensate for the

proliferation rate defect resulting from reduced CycE activity.

First, examination of heterozygous RpS6 (RpS6WG1288/+) PGs,

marked by expression of GFP, revealed that the glands were 35%

smaller than GFP marked control PGs at the same time after egg

deposition (AED) (Figure 3A, compare i with ii and quantified in

2B). This is also consistent with reports of RpS6air8 mutant larvae

having small, abnormal PGs [7]. As a direct consequence of

reduced PG growth, it would also be expected that RpS6WG1288/+
larvae should be developmentally delayed. Examination of

developmental timing in RpS6WG1288/+ heterozygotes revealed

that reducing the levels of RpS6 resulted in a delay in eclosion of up

to 18 hours, compared to wild type (Figure 3C, compare open

black circle with open red triangle). Importantly, the delay

associated with the RpS6 mutant is reduced by addition of the

active form of ecdysone, 20-hydroxyecdysone (20E) (Figure 3C,

red data points and statistical analysis shown in Table S3), which

suggests the delay in the RpS6 mutant is dependent on ecdysone

levels.

The observation that the number of SMW divisions in the

RpS6WG1288/+; cycEJP/cycEJP eyes were not significantly different

to cycEJP alone suggests that the developmental delay and

associated extra time for more cell divisions might underlie

suppression of cycEJP. To investigate this possibility we tested

whether suppression of cycEJP by the RpS6 mutant was impaired

when the developmental delay is reduced by addition of 20E

(Figure 3D). First we demonstrated that the RpS6WG1288/+; cycEJP/

cycEJP animals had a developmental delay comparable to that for

the RpS6 mutant alone, which could be reduced by the addition of

ecdysone (Figure 3C, blue data points and statistical analysis

shown in Table S3). Importantly, acceleration of development by

the addition of 20E to the RpS6WG1288/+; cycEJP/cycEJP larvae

resulted in a failure to suppress the small eye phenotype

(Figure 3D, compare iv with viii). Thus suppression of the cycEJP

phenotype by the RpS6 mutant is dependent on a developmental

delay, which is sensitive to the level of ecdysone.

Reducing RpS6 specifically in the prothoracic gland
impairs growth and causes a developmental delay

To further test our hypothesis that reduced levels of individual

Rps in the PG of Minute mutants might restore proliferation in the

cycEJP eye by inducing a developmental delay, we sought to reduce

Rp expression in the PG using AmnC651-Gal4 which drives

expression in the PG [41] and UAS-Rp RNAi for RpS6, RpS13

or RpL38. We first demonstrated the RNAi was able to reduce

RpS6 protein by knocking down specifically in the PG, and

staining with an anti-RpS6 antibody (Figure S3A). Consistent with

the importance of Rps for growth, reducing Rps in the PG resulted

in much smaller PGs in these larvae compared with the control at

the equivalent time point of 5 days AED (Figure 4A ii–iv).

Moreover, reduction of RpS6 levels resulted in PGs that were

smaller than for the RpS6WG1288/+ PGs, suggesting a greater

reduction in RpS6 (compare Figure 4A ii to Figure 3A ii).

Examination of the AmnC651.RpS6 RNAi PGs at 12 days AED

revealed that the size of the gland was still considerably smaller

than the control PG (data not shown). As a smaller PG would be

predicted to result in less ecdysone synthesis and release, we

examined if the reduction in PG size affected ecdysone activity in

the larvae. qRT-PCR was performed on whole larvae to measure

ecdysone activity indirectly by quantifying the mRNA levels of an

ecdysone responsive gene, E74B [41]. E74B levels were normalised

to Actin-5C, a non-ecdysone responsive gene. RNAi-mediated

reduction of RpS6, RpS13 or RpL38 in the PG resulted in up to

90% decrease in E74B expression (Figure 4B), suggesting strongly

reduced ecdysone activity, reflecting the small size of the PG.

Consistent with the robust reduction in PG size and reduced

ecdysone activity, we observed an extreme developmental delay in

the larvae with RNAi-mediated knockdown of RpS6, RpS13 or

RpL38 in the PG. At day 5, these larvae were smaller in size

compared with control larvae (Figure 4C, compare i with ii–v).

While the control larvae underwent pupation as normal at day 5,

larvae with reduction of RpS6, RpS13 or RpL38 specifically in the

PG continued to feed and grow beyond day 10 to become giant

larvae, which fail to pupate (Figure 4C, compare vi with vii–viii, x).

The phenotype for the RpL5 knockdown in the PG was even more

dramatic, being 2nd instar larval lethal (Figure 4C ix), suggesting

that RpL5 was knocked down below the threshold required for cell

intrinsic growth [36,46–47] and, therefore, development of the PG

gland. This is consistent with the lethality that results when strong

drivers are used to express RNAi transgenes targeting the Rps

investigated here (Table S2).

The AmnC561-Gal4 insertion is not expressed solely in the PG,

being expressed throughout the ring gland early, in some cells in

the ventral ganglion and in neurosecretory cells of the brain [41].

As the neurosecretory cells of the brain can also play a role in

developmental timing and growth [48], we addressed the

Act-Gal4 drives expression in all cells. Orientation of eyes: anterior (left), posterior (right). (F) Graph of average eye area. (GMR.+) n = 13, (GMR.+,
cycEJP/cycEJP) n = 13, (GMR.RpS6 RNAi) n = 15, (GMR.RpS6 RNAi; cycEJP/cycEJP) n = 19, (Ey.+) n = 21, (Ey.+; cycEJP/cycEJP) n = 11, (Ey.RpS6 RNAi)
n = 17, (Ey.RpS6 RNAi; cycEJP/cycEJP) n = 12, (Act.+) n = 16, (Act.+; cycEJP/cycEJP) n = 42, (Act.RpS6 RNAi) n = 31, (Act.RpS6 RNAi; cycEJP/cycEJP)
n = 49. Results are represented as the mean +/2 standard error. Statistical analysis applied: One-way ANOVA, where *** = p,0.001 and NS = not
significant.
doi:10.1371/journal.pgen.1002408.g002

Minutes Control Tissue Growth Non-Autonomously

PLoS Genetics | www.plosgenetics.org 6 December 2011 | Volume 7 | Issue 12 | e1002408



Figure 3. RpS6 mutant larvae have smaller prothoracic glands and an ecdysone dependent developmental delay. (A) Confocal images
of 3rd instar prothoracic glands marked with GFP with genotypes indicated. Magnification 406. Scale bar 50 mM. (B) Graph of average PG size. Results
are represented as the mean +/2 standard error. Statistical analysis applied: unpaired t-test, where * = p,0.05 (n = 3). (C) Graph representing the time
to eclosion after egg deposition (AED) of genotypes indicated raised in the presence or absence of ecdysone (20E). AmnC651-Gal4 drives expression in
the prothoracic gland. (D) Light micrographs of female adult eyes bearing the genotypes indicated raised in the presence or absence of ecdysone
(20E). Orientation of eyes: anterior (left), posterior (right).
doi:10.1371/journal.pgen.1002408.g003
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Figure 4. Reducing Rps by RNAi in the PG results in developmental delay and small prothoracic glands. (A) Confocal images of 3rd instar
prothoracic glands marked with GFP at day 5 with genotypes indicated. AmnC651-Gal4 drives expression in the prothoracic gland. Dp110DN is a
dominant-negative form of PI3K. Magnification 406. Scale bar 50 mM. (B) qRT-PCR of relative mRNA levels of an ecdysone responsive gene E74B. RNA
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possibility that RpS6 knockdown in these cells might be responsible

for the overgrowth by using another driver, P0206-Gal4 [43], that

also expresses in the PG, but not in the neurosecretory cells.

Consistent with the effect being mediated through defects in PG

development, knockdown of either RpS6 or RpL38 using P0206-

Gal4 also resulted in an extreme developmental delay whereby

larvae continue to feed for greater than 20 days and fail to pupate,

which was associated with a smaller PG (Figure S4A).

The impaired growth and developmental delay is
mediated by ecdysone

To assess whether the reduced ecdysone production was the

cause of the developmental delay and larval overgrowth resulting

from Rp knockdown in the PG, 20E was introduced to the food of

AmnC651.RpS6 RNAi larvae (Figure 5A). The addition of 20E

resulted in a variable restoration of pupariation, which ranged

from progression towards cuticle darkening in larvae to cuticle

development and early pupal morphology (Figure 5A, compare v

with vi–vii and Figure 5B green bars). Although the

AmnC651.RpS6 RNAi larvae were able to pupate, the ectopic

addition of 20E was unable to initiate the final steps of

metamorphosis, including the formation of adult structures. This

suggests that ,30% of the endogenous 20E activity achieved by

feeding the larvae (Figure 5B) is sufficient to trigger pupariation,

but is below the threshold required for adult metamorphosis. The

failure of metamorphosis may be confounded by the fact that

pupae, unlike larvae, can no longer take up 20E by feeding.

Indeed, the largest peak of endogenous ecdysone release occurs

after cuticle formation and is required for the formation of adult

structures [39].

To confirm this failure to restore pupation was not due to

insufficient 20E in the food we carried out a control rescue

experiment with an alternate growth regulator, PI3K, which has

previously been shown to modulate PG size and development

[41]. Despite having a PG size similar to that of AmnC651.RpS6

RNAi (Figure 4A, compare ii with v) and associated extreme

developmental delay, the AmnC651.Dp110DN (dominant negative

PI3K) larvae were only moderately delayed and pupated, but

eclosed as larger flies (Figure 5A, compare viii with x, and [41]).

We demonstrated that feeding 20E to larvae overexpressing

dominant negative PI3K in the PG (AmnC651.Dp110DN) restored

the time of pupation back to day 5, the adults eclosed at a normal

size (Figure 5A, compare iii and x with iv and xi), and E74B levels

were significantly increased compared to that of control (Figure 5B,

blue bars). This restoration of timing and size toward control

suggested that the 20E was successfully taken up and processed by

the AmnC651.Dp110DN larvae. The difference in the severity of the

phenotypes in terms of developmental delay, strongly suggested

that ecdysone levels are more sensitive to disruption of Rps and

ribosome biogenesis than to disruption of insulin pathway-

dependent growth in the PG

Reducing RpS6 levels using RNAi in the prothoracic gland
in cycEJP background suppresses the cycEJP phenotype

As RpS6 knockdown in the PG gland resulted in a failure to

undergo pupation, in order to carry out further studies we

examined whether we could reduce the severity of the phenotype

and facilitate development into adult stages using a temperature

sensitive isoform of the Gal4 repressor, Gal80 (Gal80TS [49]) that

allows temporal control of the induction of RpS6 knockdown by

RNAi in the PG. Thus, knockdown of RpS6 was delayed until late

2nd instar and although this still resulted in large, developmentally

delayed larvae (Figure 6A, compare i with v), these larvae were

able to undergo pupation and eclosed as large adults (Figure 6A,

compare ii with vi). In addition, we observed increases in the eye

size (Figure 6A, compare iii to vii) and statistically significant

increase in the wing size (Figure 6A, compare iv to viii, quantified

in 6B), in the AmnC651;Gal80TS.RpS6 RNAi adults compared with

control.

We then tested whether we were able to alter this overgrowth by

the addition of ecdysone. Indeed, addition of 20E to the

AmnC651;Gal80TS.RpS6 RNAi restores the adults to a similar size

to the AmnC651;Gal80TS control animals (Figure 6C, compare ii to

iv). This suggests that the overgrowth also depends on reduced

levels of ecdysone activity, as observed for the AmnC651.Dp110DN

animals (shown in Figure 5A xi where body size is similar to

control in AmnC651.Dp110DN +20E, Figure 5A ix). Thus the

overgrowth phenotype resulting from reduction of RpS6 in the PG

was sensitive to the level of 20E, which supports the hypothesis

that the developmental delay associated with knockdown of RpS6

specifically in the PG is due to impaired ecdysone release and

delayed metamorphosis.

Most importantly, reduction of RpS6 in the PG resulted in

suppression of the cycEJP eye phenotype, with a statistically

significant increase in adult eye size (Figure 6D, compare ii with iv,

and quantified in 6E). Thus, the ability of the RpS6 mutant to

suppress the cycEJP phenotype occurs, at least in part, through a

defect in PG growth and the associated delay in development. The

suppression by PG-driven RpS6 knockdown was not as strong as

observed for the RpS6 mutant, which could be a consequence of

the severe reduction in 20E activity in these animals (Figure 4B).

As ecdysone release is required for proper morphogenetic furrow

progression in eye discs [50], the drastic reduction in 20E levels in

the PG-driven RpS6 RNAi animals, specifically in a background of

diminished CycE levels, might also delay furrow progression.

Thus, even though extra time is spent during the larval growth

period, the suppression is incomplete because of the role of 20E in

controlling the developmental signals required for furrow

progression [50–51].

These data strongly support a model whereby RpS6WG1288/+
suppresses the small rough eye phenotype of cycEJP via a cell non-

autonomous mechanism. Reduced abundance of RpS6 in the PG

of cycEJP animals decreases PG size, ecdysone activity and

consequently results in a developmental delay and time for

additional growth of the eye. To definitively test this model, we

examined the effect of restoring RpS6 expression in the PG of

RpS6WG1288/+; cycEJP/cycEJP flies. According to the model above,

if the decrease in RpS6 expression specifically in the PG is

responsible for the ability of RpS6WG1288/+ to suppress the small

cycEJP eye phenotype, then we would predict that restoring RpS6

expression specifically in the PG in the RpS6WG1288/+; cycEJP/

cycEJP flies would prevent the developmental delay and inturn

prevent the suppression of the small eye phenotype. Consistent

with this, expression of RpS6 using the Phantom-Gal4 (Phm-Gal4)

driver [43], a PG specific driver, resulted in ectopic expression of

RpS6 in the PG (Figure S3B). Similar results were shown for

samples were extracted from 3rd instar larvae. Samples were normalised to Actin5C mRNA levels. (AmnC651.RpS6 RNAi) n = 4, (AmnC651.RpS13 RNAi)
n = 2, (AmnC651.RpL38 RNAi) n = 2. Results are represented as the mean +/2 standard error. Statistical analysis applied: unpaired t-test, where
*** = p,0.001. (C) Light micrographs of 5 days AED larvae (i–v) or 13 days AED adult (vi) or delayed larvae (vii–x) with genotypes marked.
doi:10.1371/journal.pgen.1002408.g004
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Figure 5. Addition of 20-hydroxyecdysone can partially rescue Amn.RpS6 RNAi larval lethality. (A) Light micrographs of day 8 pupae/
larvae or day 15 female adults bearing the genotypes indicated. The larvae were fed 0.75 mg/mL of 20E or equivalent concentration of 7.5% (v/v)
ETOH. (B) qRT-PCR of relative mRNA levels of an ecdysone responsive gene E74B from larvae with or without 0.75 mg/mL of 20E. RNA samples were
extracted from 3rd instar larvae. Samples were normalised to Actin5C mRNA levels. Results are represented as the mean +/2 standard error (n = 3).
Statistical analysis applied: unpaired t-test, where *** = p,0.001.
doi:10.1371/journal.pgen.1002408.g005
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enforced expression of RpS6 in the PG using PG driver AmnC651-

Gal4. Restoration of expression of RpS6 in the PGs of RpS6WG1288/+;

cycEJP/cycEJP flies using either the AmnC651-Gal4 (Figure 7A, compare

iii with iv) or Phm-Gal4 driver (Figure 7B, compare iii with iv)

prevented RpS6WG1288 from suppressing the cycEJP eye phenotype

(quantified in Figure 7C). Subsequent studies demonstrated this was

because enforced expression of RpS6 in the PG’s of RpS6WG1288

animal prevented the developmental delay (Figure 7D, green data

points and statistical analysis shown in Table S4). Together these

data are consistent with the above model and unequivocally

demonstrate that the ability of the RpS6WG1288/+ mutant to suppress

the cycEJP phenotype is due to reduction of RpS6 abundance

specifically in the PG.

In summary, these data strongly support the hypothesis that the

ability of the RpS6 mutant to suppress the cycEJP small rough eye

phenotype is, in large part, due to a reduction of PG size and an

associated decrease in ecdysone activity, which results in an

extended larval growth period that allows the eye discs extra time

to grow. This model predicts that manipulation of other growth

modulatory genes in the PG would also suppress the cycEJP

phenotype. Indeed, consistent with this model, overexpression of

UAS-Dp110DN in the PG was also able to suppress the cycEJP small

rough eye phenotype (Figure 6F, compare ii with iv). As observed

for the RpS6 mutant, CycE protein levels, BrdU and PH3 in the

AmnC651.Dp110DN, cycEJP/cycEJP eye imaginal discs were not

altered compared with cycEJP alone (Figure S5). As we do not see a

significant increase in the SMW divisions in these animals, when

compared with cycEJP alone, this further supports the idea that the

increased time spent in the larval growth stage allows more time

for division, which leads to suppression of the small eye phenotype.

Discussion

Since the Minutes were first described in 1929 [2], geneticists

have sought to understand the mechanisms underlying these

phenotypes as an avenue toward elucidating the complex

mechanisms controlling body size. More recently, heterozygous

mutations in multiple Rp genes have been associated with

overgrowth phenotypes [11–12,20], but the underlying mecha-

nism has remained poorly understood. We addressed this question

here taking advantage of a genetic screen for modifiers of a cycE

hypomorph, which identified an RpS6 mutant as a suppressor [26],

to investigate possible mechanisms by which Rp mutations may

contribute to overgrowth.

The cell non-autonomous model for suppression of
cycEJP and overgrowth phenotypes in Minutes

Our data demonstrate that Rp mutants suppress the cycE

phenotype via a mechanism extrinsic to the eye, involving control

of developmental timing though the PG. We propose the following

model to explain this phenomenon (Figure 8). Firstly, reduced Rp

levels in the PG of Rp mutant flies decreases ribosome biogenesis

thus inhibiting PG growth, which in turn results in reduced

ecdysone synthesis and a subsequent delay in development

(Figure 8A). The extended growth period resulting from the

developmental delay allows time for more cell divisions and

growth in the eye, thereby allowing the eye imaginal disc to

achieve normal size prior to pupation, thus suppressing the cycEJP

small eye phenotype (Figure 8B). In support of the tissue extrinsic

component of PG-ecdysone model, we have demonstrated that

reducing RpS6 specifically in the PG suppresses cycEJP (Figure 6D),

and conversely overexpression of RpS6 in the PG prevents

suppression of the cycEJP by mutant RpS6 (Figure 7A–7B).

As a developmental delay is a consistent feature of Minutes, it

was speculated by Brehme in 1939 that this aspect of the

phenotype might be due to insufficient ecdysone (as reviewed in

[47]). Our work confirms this hypothesis and importantly, also

provides a framework for how the Rp Minute collection of mutants

are associated with both impaired growth and, counter-intuitively,

tissue overgrowth (Figure 8A). In essence final tissue/body size in a

Minute fly is a product of interplay between the tissue intrinsic

effect of altering Rp levels in the cells of individual tissues and the

extrinsic effects of Rp mutants on hormone release (Figure 8A) and

thus developmental timing. As Rps and the rRNAs are required in

equimolar amounts to form functional ribosomes, the relative

contribution of tissue intrinsic versus extrinsic growth require-

ments to final tissue/body size would be dependent on the

expression level and stability of each Rp, which will dictate whether

levels of the specific Rp are rate-limiting for ribosome biogenesis in

a given tissue. Enlargement of tissues for any given Minute would

only occur if reduction of the Rp in the affected tissue did not

reduce levels below those required for tissue growth. If Rp levels

were below the threshold in a particular tissue, its growth would be

inhibited, effectively negating the effects of an increased larval

growth period provided by the developmental delay. This is

consistent with the observation that expression of a given Rp

mRNA varies between tissues [52–54], indicating that a particular

Rp may be rate limiting for proliferative growth in one tissue but

not in another. For example, while all of the Minutes are

developmentally delayed, wing overgrowth has not been widely

described, suggesting that the reduced levels of the relevant Rp

associated with the Minute in question are limiting in both the wing

and PG. In contrast, RpL382b1/+ and RpL52d2/+ flies have

overgrown wings [11] which suggests that the reduced level of

RpL38 associated with RpL382b1/+ flies is not limiting for

proliferative growth in wing discs but is limiting for PG growth,

thus the extended growth period results in larger adult wings.

Therefore the final size of the Minute and its individual tissues is the

net effect of both the tissue extrinsic effects of reducing Rps in the

PG, and the tissue intrinsic effects of reducing Rps in the cells of

other tissues (Figure 8A).

The mechanisms behind maintaining body/organ size are

complex, and in addition to intrinsic cellular growth rate and the

time spent in the growth phase prior to pupation described above,

recent studies of imaginal disc regeneration reveal that the final

size of Drosophila imaginal tissues is sensitive to an overarching

mechanism that slows the division rate of the non-regenerating

compartments even in the event of developmental delay [55]. This

Figure 6. Reducing RpS6 in the PG is associated with tissue overgrowth and suppresses cycEJP. (A) Light micrographs of larvae, whole
adult flies, adult eyes and wings bearing the genotypes: (i–iv) control (AmnC651; Tubulin-Gal80TS.+) and (v–viii) delaying reduction of RpS6 in the PG
until 2nd instar (AmnC651; Tubulin-Gal80TS.RpS6 RNAi). (B) Graph of average wing area. (AmnC651; Tubulin-Gal80TS.+) n = 7, (AmnC651; Tubulin-
Gal80TS.RpS6 RNAi) n = 10. Results are represented as the mean +/2 standard error. Statistical analysis applied: unpaired t-test, where *** = p,0.001.
(C) Light micrographs of female adult flies bearing the genotypes indicated raised in the presence or absence of ecdysone (20E). (D) Light
micrographs of female adult eyes bearing the genotypes indicated. Orientation of eyes: anterior (left), posterior (right). (E) Graph of average eye area.
(AmnC651; Tubulin-Gal80TS.+) n = 26, (AmnC651; Tubulin-Gal80TS.+; cycEJP/cycEJP) n = 26, (AmnC651; Tubulin-Gal80TS.RpS6 RNAi) n = 31, (AmnC651;
Tubulin-Gal80TS.RpS6 RNAi; cycEJP/cycEJP) n = 19. Results are represented as the mean +/2 standard error. Statistical analysis applied: unpaired t-test,
where *** = p,0.001. (F) Light micrographs of female adult eyes bearing the genotypes indicated. Orientation of eyes: anterior (left), posterior (right).
doi:10.1371/journal.pgen.1002408.g006
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may explain why the RpS6WG1288/+ mutant is able restore eye size

back toward the wild type size in a background sensitised to

impaired eye growth, ie., the cycEJP background, but does not

normally lead to eye overgrowth or overgrowth of other tissue

compartments, despite being associated with a developmental

delay.

Clearly however, these final size constraints can be overridden

or are not triggered in certain Minutes eg., RpL382b1/+ and

RpL52d2/+ flies which have overgrown wings. In these cases the

ongoing wing imaginal disc growth occurring during the extended

larval period appears to be sufficient to overcome the normal size

control checkpoints that normally restrict overgrowth of this tissue.

Consistent with this model, knockdown of RpS6 or RpL38

specifically in the PG rather than the whole fly using the ring

gland driver (P0206-Gal4) results in a smaller PG and develop-

mental delay, which is associated with overgrown larvae (Figure

S4A) and for RpL38 with significantly increased wing imaginal disc

size (Figure S4B–S4C).

Together these findings demonstrate the complexities of the cell

non-autonomous effects of Rp reduction on tissue growth, which

has implications for many of the experimental manipulations

carried out by Drosophila researchers. For example if mosaic clones

are generated in the whole animal using the Minute technique to

maximize size of mosaic clonal tissue, this might also impact on

PG growth and have unforeseen cell non-autonomous effects on

the tissue of interest, which will need to be taken into

consideration.

The relationship between overgrowth in Minutes and
predisposition to cancer associated with Rp
haploinsufficiency in vertebrates

Our studies also raise the interesting question of whether the

cell non-autonomous mechanisms underlying tissue overgrowth

phenotypes of Minutes described here are relevant to the

mechanisms responsible for tissue-specific phenotypes associated

with Rp mutations in vertebrates. These ribosomopathies [56]

include abnormal erythrocyte maturation, thrombocytosis and a

predisposition to leukemia, associated with Rp haploinsufficiency

syndromes such as the 5q- syndrome and Diamond-Blackfan

anaemia (DBA) in humans [13,20] or nerve sheath tumours in

fish [12]. We think the cell non-autonomous mechanism

described herein is unlikely at least for the 5q- syndrome, as

the pathogenesis of ribosomal protein-mediated bone marrow

failure appears to be largely cell intrinsic involving ribosomal

stress mediated activation of p53 and defective development of

haematopoietic system [57]. This is not to say that cell extrinsic

effects of ribosomopathies may not contribute to development

defects and disease at some level in vertebrates, for example,

through defective growth of tissues important for release of

paracrine or endocrine acting hormones. Clearly additional

studies are required to determine to what extent altered Rp gene

dosage contributes to human disease other than bone marrow

failure and whether they are mediated by cell intrinsic or extrinsic

mechanism or, indeed both.

In summary, our findings establish that suppression of cycEJP by

the RpS6 mutant is exerted via a mechanism wherein reduced Rp

levels in the prothoracic gland decreases abundance of the steroid

hormone ecdysone, delaying development and hence allowing

additional time for tissue and organ overgrowth. These data

provide for the first time a rationale to explain the counter-

intuitive organ overgrowth phenotypes observed for certain

Drosophila Rp mutants. Furthermore, they provide new insight into

mechanisms governing tissue size homeostasis, suggesting that

different tissues may exhibit distinct thresholds of expression of

individual Rps. Thus, regulated expression of individual Rps could

exert tissue specific effects on cell growth and organ size.

Materials and Methods

Drosophila stocks and culture
Unless otherwise stated the fly strains used were obtained from

the Bloomington Stock Center and are described in FlyBase

(http://flybase.org). The UAS-RpS6 transgenic lines for overex-

pression were generated by cloning the full-length RpS6 cDNA

into pUAST and then injected into Drosophila embryos, as

previously described in [58]. The following strains were described

in: w2;cycEJP [29], AmnC651-Gal4 [41], Phm-Gal4 [43], P0206-Gal4

[42–43], UAS-Dp110DN [59], UAS-RasV12 [60], UAS-Cyclin E [61],

UAS-p35 [62], GMR-p21 [63], UAS-cycD and UAS-cdk4 [64].

Generation of ribosomal protein RNAi transgenic flies
RpS6 RNAi construct: the longest open reading frame for RpS6

(654 bp) was PCR amplified with primers 59-CTGCAG-

GAATTCGGACAGGTTGTGGAGGCCGAT-39 and 59-GGT-

ACCGAATTCTTACTTCTTGTCGCTGGAGACAG-39 (EcoRI

sequence underlined) and PCR products were digested with EcoRI

and ligated into the SYMpUAST vector [65].

RpS13, RpL5, RpL30 and RpL38 RNAi constructs: products were

digsted with XbaI and inserted into pWIZ as inverted repeats in a

two–step cloning process [66]. RpS13: the 302 bp coding region of

the 3rd exon was PCR amplified with primers 59-ATATTCTA-

GAGCATCATCCTGCGTGACTCGC-39 and 59-ATATTC-

TAGAGGCAACCAGGGCGGAGGC-39 (XbaI sequence under-

lined). RpL5: the 264 bp coding region of the 2nd exon PCR

amplified with primers 59-GCGCTCTAGAGGTTTCGTT-

AAGGTAGTC-39 and 59-GCATTCTAGACTGGATCCCG-

TATTTGGG-39. RpL30: the 199 bp 59UTR and coding region

of the 1st exon was PCR amplified with primers 59-GCATTC-

TAGATCGCCTGCAGTGCTTTAACC-39and 59-ATATTC-

TAGACTCAGGGCGGGCGTGTTGC-39. RpL38: the 213 bp

coding region of the 2nd exon was PCR amplified with primers 59-

GCGCTCTAGAATGCCACGGGAAATTAAAG-39 and 59-G-

CGCTCTAGATTATTTCACCTCCTTTAC-39. All constructs

were injected into Drosophila embryos, as previously described in

[58].

Temperature shift experiments with Gal80TS

Conditional expression of UAS-RpS6 RNAi was carried out

using a temperature sensitive isoform of Gal80, the repressor of

Gal4 (Gal80TS [49]). Larvae were raised at the permissive

temperature of 18uC and shifted at late 2nd instar to the restrictive

temperature of 25uC.

Figure 7. Restoring RpS6 expression in the PG inhibits the suppression of cycEJP by the RpS6WG1288 mutant. (A,B) Light micrographs of
female adult eyes bearing the genotypes indicated. Orientation of eyes: anterior (left), posterior (right). AmnC651-Gal4 and Phm-Gal4 drive expression
in the prothoracic gland. (C) Graph of average eye area. (AmnC651.+; cycEJP/cycEJP) n = 7, (RpS6WG1288/+; cycEJP/cycEJP; Phm.+) n = 6, (RpS6WG1288/
AmnC651.RpS6; cycEJP/cycEJP) n = 14. Results are represented as the mean +/2 standard error. Statistical analysis applied: unpaired t-test, where
*** = p,0.001. (D) Graph representing the time to eclosion after egg deposition (AED) of genotypes indicated. P0206-Gal4 is a ring gland specific
driver.
doi:10.1371/journal.pgen.1002408.g007

Minutes Control Tissue Growth Non-Autonomously

PLoS Genetics | www.plosgenetics.org 14 December 2011 | Volume 7 | Issue 12 | e1002408



Figure 8. The ecdysone model of cycEJP suppression and Minute overgrowth phenotype. (A) Diagram of the two effects of Rp reductions in
Drosophila. First is the intrinsic effect of reducing Rps in the prothoracic gland (PG). The second is an extrinsic effect on the target tissue. The final size
of the adult fly is the net consequence of both effects. (B) Model for suppression of cycEJP via altered PG size and ecdysone activity. In wild-type PGs,
ecdysone titres accumulate and allow normal growth of the eye imaginal disc (depicted by the grey gradient). In cycEJP eye discs, while the PG size is
normal, the eye discs have reduced proliferation/growth due to the cycEJP mutation. Reduction of RpS6 reduces PG size and ecdysone activity to
cause an extended larval growth period, allowing extra time for the cycEJP eye discs to grow.
doi:10.1371/journal.pgen.1002408.g008
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Assessing developmental delay
For each experiment, forty 1st instar larvae were collected

24 hour AED (0–4 hour collections) from lay cages with grape

agar plates. To measure time of eclosion, vials were checked for

the number of eclosed adults every 2 hours from 10 days AED

until adult flies no longer emerged. For 20-hydroxyecdysone

treatment twenty 1st instar larvae were collected 24 hour AED (0–

4 hour collections) and transferred into vials containing yeast paste

supplemented daily with 0.75 mg/ml of 20-hydroxyecdsyone

(Sigma).

Microscopy and imaging
Antibody staining, BrdU labelling and quantification were

carried out as described previously [67–68]. Antibodies used were

the anti-RpS6 polyclonal (raised in mice), anti-bromodeoxyuridine

(Becton Dickinson), PH3 (Upstate) and anti-cycE (rat) (a gift from

Helena Richardson). Serial sections of eye imaginal discs or

prothoracic glands were taken on a Zeiss Imager Z1 using the

LSM 510 Meta software. Image preparation and analysis were

conducted in Adobe Photoshop CS2 v9.0 and ImageJ v1.37.

For light microscopy images were captured on an Olympus

DP11 camera. Female adult eyes were imaged at 5.66 magni-

fication, and larvae or adult flies were imaged at 1.66 magni-

fication. All images were processed using Adobe Photoshop. Eye

area was measured by tracing around the perimeter of the

photoreceptor cells of cropped images using Metamorph Offline

version 7.6.3.0 software.

For electron microscopy female adult flies were progressively

fixed in 25% (v/v) acetone for 1 hour nutation at room tem-

perature, 50% (v/v) acetone for 1 hour nutation at room

temperature, 75% (v/v) acetone for 1 hour nutation at room

temperature, and finally stored in 100% acetone. The sample was

then critical point dried on a Balters CPD 030 Critical Point Dryer

and coated with gold particles in an Edwards 6150B Gold Sputter

Coater. Images were recorded on a Phillips XL30 FEG Field

Emission Electron Microscope.

Prothoracic gland size measurements
For measurements of prothoracic gland (PG) area size, confocal

images of PGs taken at 406 magnification were quantified with

BB Thermometer v1.1 Software (BenBritten.com).

Wing size measurements
Adult wings were mounted into Canada Balsam and xylene.

Images were taken at 4.56 magnification. Whole wing area was

measured using the magnetic lasso tool and record measurement

function of Adobe Photoshop.

Reverse Transcriptase–PCR (RT–PCR)
Total RNA was isolated from ten 3rd instar larvae or thirty 3rd

instar eye imaginal discs with TRIzol (GibcoBRL) following

manufacturer’s instructions. cDNA was synthesised from 1 mg

RNA using the Superscript First Strand synthesis system for RT-

PCR (Invitrogen) following the manufacturer’s guidelines. qRT-

PCR was carried out with SYBR Green under standard conditions

in the Step One Plus Real Time PCR system (Applied Biosystems)

Primer sequences were as follows:

RpS6 forward (TGTTCCAGCTCAACGTTTCCT)

RpS6 reverse (TCGTCGACCACTTCGAATAGC)

Actin 5C forward (CCCCAAGGCCAACCGTGAGA)

Actin 5C reverse (ACCCGAAGCGTACAGCGAGAGC)

E74B primers as published in [41].

Amplicon specificity was verified by melting curve analysis (65 to

90uC) after 40 cycles. An average Ct value for the three technical

replicates was calculated for each sample. The fold change

expression of RpS6 mRNA levels was normalised to equal RNA

and determined using the 22DDCT method. E74B mRNA levels

were normalised to Actin 5C mRNA levels of untreated control cells

and determined using the 22DDCT method [69].

Statistical analysis
Statistical analysis was performed in GraphPad Prism software

using either Unpaired t-test or One-way ANOVA, with Tukey’s

test for multiple comparisons, as stated in figure legends.

Supporting Information

Figure S1 RpL382b1 suppresses cycEJP. Light micrographs of

female adults bearing the genotypes indicated.

(TIF)

Figure S2 Reducing RpS6 in different tissues by RNAi. Light

micrographs of female adults bearing the genotypes indicated.

(TIF)

Figure S3 RpS6 protein is knocked down by UAS-RpS6 RNAi

and overexpressed by UAS-RpS6. (A,B) Confocal images of 3rd

instar prothoracic glands at day 5 stained for anti-RpS6 antibody

and DNA, genotypes marked. P0206-Gal4 is a ring gland specific

driver [42–43]. Phm-Gal4 is a PG specific driver [43]. Confocal

images were taken at equivalent settings (Zeiss Meta settings,

pinhole 1.2, gain 525) for comparison between the UAS-RpS6

RNAi and control. Due to increased levels in the overexpression

the settings used for comparing the UAS-RpS6 with the control

were lower (Zeiss Meta settings, pinhole 1.2, gain 345). (C)

Confocal images of 3rd instar eye-antennal imaginal disc (top

panel) and wing imaginal disc (bottom panel) at day 5 stained for

anti-RpS6 antibody and DNA, genotypes marked.

(TIF)

Figure S4 P0206-Gal4 driven reduction of RpL38 by RNAi also

results in small PGs and a larger wing disc. (A) Light micrographs

of 3rd instar larvae with genotypes indicated at day 5 for control

and day 10 for the UAS-RpS6 RNAi and UAS-RpL38 RNAi.

Confocal images of 3rd instar prothoracic glands at (day 5 for

control and day 10 for UAS-RpL38 RNAi) stained for DNA and

marked by co-expressing CD8-GFP. Magnification 406. Scale bar

50 mM. (B) Fluorescent images of 3rd instar wing discs (day 5 for

control and day 10 for UAS-RpL38 RNAi) stained for DNA

bearing the genotypes indicated. Magnification 206. (C) Graph of

average wing disc area. Results are represented as the mean +/2

standard error. Statistical analysis applied: unpaired t-test, where

* = p,0.05.

(TIF)

Figure S5 CycE, BrdU and PH3 analysis of eye discs from

AmnC651.Dp110DN suppression of cycEJP. (A) Confocal images of

3rd instar eye imaginal discs stained for CycE and DNA with

genotypes as indicated. White boxes mark the band of cycE cells in

the SMW. Images were taken at 406magnification. Orientation

of eye discs: anterior (left), posterior (right). Scale bar equals

50 mm. (B) Confocal images of BrdU incorporation in 3rd instar

eye imaginal discs also stained for and DNA with genotypes

indicated. White boxes mark the band of S phase cells. Images

were taken at 406magnification. Orientation of eye discs: anterior

(left), posterior (right). Scale bar equals 50 mm. (C) Confocal

images of 3rd instar eye imaginal discs stained for cells in the SMW

(PH3) and DNA with genotypes as indicated. White boxes mark
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the band of cells in SMW. Images were taken at 406
magnification with 0.76 optical zoom. Orientation of eye discs:

anterior (left), posterior (right). Scale bar equals 50 mm. (D) Graph

quantifying the number of cells in the SMW. Results are

represented as the mean +/2 standard error.

(TIF)

Table S1 Reducing RpS6 in different tissues by RNAi. A table of

the different Gal4 drivers used to induce knockdown of RpS6 with

UAS-RpS6 RNAi, and the phenotypes observed at 25uC and 18uC.

Drivers used: Actin-Gal4 (Act-Gal4), Tubulin-Gal4 (Tub-Gal4),

Daughterless-Gal4 (Da-Gal4), engrailed-Gal4 (En-Gal4), MS1096-Gal4,

Patched-Gal4 (Ptc-Gal4), Glass Multimer Reporter-Gal4 (GMR-Gal4),

Eyeless-Gal4 (Ey-Gal4). Abbreviations: 1st instar larvae (L1), 2nd

instar larvae (L2), 3rd instar larvae (L3). N/A – not tested.

(DOC)

Table S2 Effects of reducing RpS13, RpL5, RpL30 and RpL38 in

different tissues. A comparison between RpS6 RNAi phenotypes

(at 25uC) with those from RpS13, RpL5, RpL30 and RpL38 RNAi

with a range of GAL4 drivers including: Daughterless-Gal4 (Da-

Gal4), engrailed-Gal4 (En-Gal4), MS1096-Gal4, Patched-Gal4 (Ptc-

Gal4), Glass Multimer Reporter-Gal4 (GMR-Gal4), Eyeless-Gal4 (Ey-

Gal4). 1st instar larvae (L1), 2nd instar larvae (L2), 3rd instar larvae

(L3). N/A – not tested.

(DOC)

Table S3 Log rank test of developmental data. Log rank test as

calculated by GraphPad Prism software of genotypes as indicated

from Figure 3C.

(DOC)

Table S4 Log rank test of developmental data. Log rank test as

calculated by GraphPad Prism software of genotypes as indicated

from Figure 7D.

(DOC)
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