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Abstract: The real-time and accuracy of motion classification plays an essential role for the elderly
or frail people in daily activities. This study aims to determine the optimal feature extraction
and classification method for the activities of daily living (ADL). In the experiment, we collected
surface electromyography (sEMG) signals from thigh semitendinosus, lateral thigh muscle, and calf
gastrocnemius of the lower limbs to classify horizontal walking, crossing obstacles, standing up,
going down the stairs, and going up the stairs. Firstly, we analyzed 11 feature extraction methods,
including time domain, frequency domain, time-frequency domain, and entropy. Additionally,
a feature evaluation method was proposed, and the separability of 11 feature extraction algorithms
was calculated. Then, combined with 11 feature algorithms, the classification accuracy and time
of 55 classification methods were calculated. The results showed that the Gaussian Kernel Linear
Discriminant Analysis (GK-LDA) with WAMP had the highest classification accuracy rate (96%),
and the calculation time was below 80 ms. In this paper, the quantitative comparative analysis of
feature extraction and classification methods was a benefit to the application for the wearable sEMG
sensor system in ADL.
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1. Introduction

Due to the aging of the population, an increasing amount of elderly or weak people need help
in daily life [1–3]. With the development of wireless networks and wearable sensor technology,
a wearable sensor can sense the human body’s biological signal and classify the movement mode or
body posture [4–6]. The auxiliary equipment based on the surface electromyography (sEMG) sensing
systems, such as a rehabilitation robot and booster robot, can help the elderly or weak people to lead a
better life [7–9].

The sEMG sensor measures the potential generated by muscle activity. The sEMG signals are
generated in the range of 30 to 150 ms before human motion [10,11]. Therefore, the prediction of
human motion can be realized by feature extraction and classification technology.

The sEMG is recorded from the surface of the human skeletal muscle by the surface
electromyographic electrode, which contains much essential information related to limb movement.
The key problem of these studies is to extract effective features from signals according to different
motions [12]. The feature extraction methods of the sEMG signal mainly include time domain, frequency
domain, and time-frequency domain. Among them, time-domain analysis is the most commonly used
method such as integrated sEMG (IsEMG), mean absolute value (MAV), simple squared integration
(SSI), root mean squared (RMS), wavelength (WL), zero-crossing (ZC), and Willison amplitude
(WAMP) [13]. FEIYUN XIAO et al. used root mean square, waveform length, the absolute standard
deviation of difference, integrated sEMG signal (IsEMG), and sEMG low-pass filtered (50 Hz) signal
(LPFEMG) features to quickly and accurately estimate joint motion [14]. Osama dorgham et al.
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used time-domain features (such as MAV, RMS, VAR, and STD) to estimate muscle strength under
different loads [15]. Shengli Zhou et al. used the frequency domain analysis method of median
frequency (MDF) and peak frequency (PKF) to extract features, and combined with the Gaussian model,
the accuracy of motion classification reached 89.5% [16]. Erdem Yavuz et al. extracted sEMG signal
features by calculating Mel-Frequency Cepstral Coefficients (MFCCs) for basic motion classification [17].
The time-frequency domain analysis method can extract a large amount of information from the sEMG
signal, among which the wavelet transform (WT) feature extraction method is the research hotspot in
recent decades. Turker tuncer et al. used the iterative feature extraction method of discrete wavelet and
tested the human muscle force with an sEMG data set, and the classification accuracy was 92.96% [18].
C. Sravani et al. used the flexible analytic wavelet transform (FAWT) to decompose the sEMG signal into
eight sub-bands and extracted useful features, and the average accuracy of human motion classification
was 91.5% [19]. Xugang Xi et al. used wavelet transforms to decompose sEMG signals into 32 scale
signals and extracted sEMG features through coherent analysis to classify six movements of lower limbs,
and the average classification rate was 93.45% [20]. Haotian she et al. used the time-frequency analysis
method of the Stockwell transform (S-transform) and principal component analysis (PCA) to reduce the
feature vector’s dimension and improve classifier operation speed, the average classification accuracy
was 93.62% [21]. Hongfeng Chen et al. used the feature extraction method of the convolutional neural
network (CNN) to improve the accuracy of human motion classification [22]. However, sEMG is a
non-stationary, complex, and nonlinear signal. The entropy measurement method can reflect the sEMG
signal’s complexity, which helps extract the effective features of the sEMG signal [23–25]. Shangchun
Liao et al. used the method of integrating the entropy feature and wavelength feature of samples
to realize the classification of human upper limb motion. Without expensive hardware support,
the calculation was small, and the accuracy was 91.05% [26].

Another critical step of human motion classification is the selection of classification technology.
Based on the above feature extraction methods, researchers mainly used support a vector machine
(SVM), decision tree (DT), random forest (RF), nearest neighbor (KNN), and naive Bayes (NB) to
classify human motion [27–32]. Rohit Gupta et al. used a time-domain analysis method to classify the
movement of the lower limbs, and concluded that the linear discriminant analysis (LDA) classifier had
the highest accuracy, and for different feature subsets, the classification accuracy was between 89%
and 99% [33]. AI Qingsong et al. extracted the wavelet coefficients of sEMG, used linear discriminant
analysis (LDA), and a support vector machine (SVM) based on the Gaussian kernel function to
classify the lower limb motion accuracy higher than 95% [34]. In recent years, the neural network has
been widely used in human complex motion classification because of its powerful nonlinear fitting
function [35–39]. Chen Yang et al. extracted RMS, WC, and PE features of sEMG signals using the
backpropagation neural network, generalized regression neural network, and least square support
vector regression (LS-SVR) to predict the knee angle; the root mean square error was less than 7.7◦,
which can be used in a rehabilitation robot [40]. Lina Tong et al. used the Butterworth filtering method
to extract sEMG features, and proposed a joint angle estimation method for real-time sEMG signals
based on the backpropagation (BP) neural network and autoregressive (AR) model; the delay of this
algorithm was 10 ~ 15 ms (PC), and the average angle RMS error was 4.27◦ [41].

Thanks to the surface electromyography, the surface of human skeletal muscle is recorded through
surface electromyography electrodes and contains many feature information related to limb motion.
By analyzing these features, we can distinguish daily human activities of the lower limb. Meanwhile,
for the system with good performance, when selecting sEMG signal features, the features with
maximum class separability, high recognition accuracy, and minimum computational complexity
should be selected to ensure the high stability of auxiliary equipment. As far as the authors knew,
there was almost no quantitative performance comparison of the feature extraction and classification
methods for lower limb sEMG in daily human activities. Therefore, the purpose of this study was to
determine the optimal sEMG features and classification methods.
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The rest of this paper’s structure is as follows: Section 2 outlines the daily activities and data
acquisition of human lower limbs. Section 3 analyzes the feature extraction method and classification
method of the sEMG signal and proposed a feature evaluation method. The experimental results are
given in Section 4. The discussion and conclusions are given in Sections 5 and 6.

2. Data Acquisition

We chose the five most common activities of lower limbs in our daily life: horizontal walking
(HW), crossing obstacles (CO), standing up (SU), going down the stairs (DS), and going up the stairs
(GU). By analyzing the kinematics and biological characteristics of human lower limb muscles, the inner
side of the gastrocnemius muscle (MG) is helpful for walking and running; the lateral femoral muscle
(VL) and semitendinosus (ST) have the function of flexing the knee joint and stretching the hip joint.
Therefore, we selected the above three muscles as the source of myoelectric signal acquisition, as shown
in Figure 1.
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Figure 1. Surface electromyography (sEMG) signal sensor location. Channel A was located in the
thigh semitendinosus, Channel B was located in the lateral thigh muscle, Channel C was located in the
calf gastrocnemius.

We used an sEMG acquisition system developed and manufactured by Biometrics UK, as shown
in Figure 2. The sampling frequency was 2000 Hz, and the amplifier’s input impedance was higher
than 10,000,000 M Ohms. The skin did not require the conductive gel for processing to obtain better
signal quality. The experimental computing platform processor was Intel (R) Core (TM) i7-9750H
CPU@ 2.60GHz, the memory was 16 G, and the data analysis software was MATLAB2015b.
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3. Algorithm Description

3.1. Feature Extraction

For each motion, we collected sEMG signals of 2 s (4000 sample points) and analyzed 11 common
sEMG feature extraction methods, as shown in Table 1.



Entropy 2020, 22, 852 4 of 17

(1) Root mean square (RMS)
The root mean squared value (RMS) revealed the amount of strength yielded by a muscle.

RMS =

√√√
1
N

N∑
n=1

xn2 (1)

where xn was the sample data, N was the sample length, which was 4000.
(2) Variance (VAR)
The VAR measured the power of the myoelectric signal.

VAR =
1

N − 1

N∑
i=1

xi
2 (2)

where xi was the sample data and N was sample length, which was 4000.
(3) Wilson Amplitude (WAMP)
Through the Willison amplitude, the number of times that two adjacent samples overcame a

threshold was counted, reducing artifacts produced by noise.

WAMP =
1
N

N∑
n=1

f (|xn|), f (x) =
{

1, x ≥ th
0, otherwise

(3)

where xn was the sample data and N was the sample length, which was 4000.
(4) Zero-Crossing (ZC)
The zero-crossing feature was to count the events produced by muscular activity.

ZC =
N−1∑
i=1

u(−xixi+1) (4)

where xi was the sample data and N was the sample length, which was 4000.
(5) Mean of absolute value (MAV)
The mean of absolute value was a reflection of muscle contraction levels:

MAV =
1
N

N∑
i=1

|xi| (5)

where xi was the sample data and N was the sample length, which was 4000.
(6) Waveform length (WL)
The WL represented the amplitude, duration, and frequency of the signal.

WL =
N∑

i=1

|xi − xi−1| (6)

where xi was the sample data and N was the sample length, which was 4000.
(7) Integrated sEMG (IsEMG)
The IsEMG was related to the signal sequence firing point.

IsEMG =
N∑

i=1

|xi| (7)

where xi was the sample data and N was the sample length, which was 4000.
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(8) Simple squared integration (SSI)
The simple square integration function described the energy of the sEMG.

SSI =
N∑

i=1

|xi|
2 (8)

where xi was the sample data and N was the sample length, which was 4000.
(9) The Energy of Wavelet Packet Coefficient (EWP)
The EWP calculated the energy of the wavelet packet transform signal. It can process both

high-frequency components and low-frequency components.
(10) The Energy of Wavelet Coefficient (EWC)
This feature computed the energy of the wavelet-transformed signal.

EWC j =

√√√
1
K

K∑
k=1

W2
j,k (9)

where EWC j was the coefficient of wavelet energy. The K was the number of the j−th layer decomposed
coefficient. The W j,k was the k−th coefficient of the j−th layer decomposed coefficient.

(11) Fuzzy entropy (FE)
The FE can describe the complexity of the sEMG signal and reflect the possibility of the new

information in the signal.
FuzzyEn = ln Φm(r) − ln Φm+1(r) (10)

Table 1. Feature extraction method list.

ID Extraction Feature Abbreviation

1 Root mean square RMS
2 Variance VAR
3 Wilson Amplitude WAMP
4 Zero-Crossing ZC
5 Mean of absolute value MAV
6 Waveform length WL
7 Integrated sEMG IsEMG
8 Simple squared integration SSI
9 Energy of Wavelet Packet Coefficient EWP
10 Energy of Wavelet Coefficient EWC
11 Fuzzy entropy FE

3.2. Feature Separability

The Euclidean distance (ED) was used to measure the distance for sample features. The longer
the distance, the greater the difference between sample features. The standard deviation (SD) was used
to measure the dispersion for sample features. The smaller the standard deviation, the more stable the
sample features.

We used the ratio between ED and SD that we called the RES index as a feature statistic measured
metrics. The ED(m, n) was defined as

ED(m, n) =
√
(m1 − n1)

2 + (m2 − n2)
2 (11)
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where m and n represented two of the three feature sets. The SD was defined as

SD =

√∑NW
w=1 (rw − σ)

2

NW
(12)

where rw represented the eigenvalue and NW represented the feature set size. The RES index was
defined as

RES(m, n) =
ED(m, n)

SD
. (13)

Additionally, we standardized the features then calculated the RES index. The normalization for
features Fnorm was performed, and it was defined as

Fnorm =
F + min(F)

max(F + min(F))
. (14)

Obviously, as the RES index value increased, we could extract the best feature value.

3.3. Classification

We considered and listed the following five representative classification algorithms, as shown
in Table 2.

Table 2. Classification method list.

Classification Algorithm Abbreviation

Multiple Kernel Relevance Vector Machine MKRVM
Random Forest RF

Back Propagation Neural Network BPNN
Gaussian Kernel Linear Discriminant Analysis Linear Discriminate Analysis GK-LDA

Wavelet Neural Network WNN

(1) Multiple Kernel Relevance Vector Machine (MKRVM)
Different kernel functions correspond to feature spaces of different sEMG signals. The multi-kernel

function is more capable of describing complex lower limb motion. Therefore, using the multiple kernel
relevance vector machines (MKRVM) can improve the accuracy of lower limb motion classification.

(2) Random Forest (RF)
The random forest algorithm measures each feature’s contribution to the classification and ranks

them according to the random forest algorithm’s evaluation criteria. In this way, we can understand
important features in the feature set, which is very helpful for how to improve the feature classification.

(3) Backpropagation neural network (BPNN)
The BPNN is a network trained according to the error backpropagation algorithm. Because of its

strong nonlinear fitting ability, it is widely used in human motion classification based on sEMG signals.
(4) Gaussian Kernel Linear Discriminant Analysis (GK-LDA)
The basic idea of the GK-LDA is to use Gaussian kernel functions to project high-dimensional

vectors into low-dimensional vector spaces, causing the sample to have the largest inter-class
distance and the smallest intra-class distance in the new subspace to improve the accuracy of
the classification effect.

(5) Wavelet neural network (WNN)
The WNN is a local basis function network. The basis function has an adjustable resolution scale,

causing the network to have a stronger nonlinear learning ability. The wavelet basis function has tight
support, so the interaction between neurons is small, and the learning speed is faster.
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4. Results

We used three sEMG sensors to classify five lower limb motion. The five motions were HW, CO,
SU, DS, and GU, as shown in Figure 3.
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Five healthy subjects, aged 23, 23, 25, 26, and 24, were selected to participate. The body fat rate
was 17% ± 3%, and the height was 170 ± 5 cm. During the experiment, the subjects completed each
action cycle in about 2 s. Therefore, no matter how long the action time was, we only needed to select
the first 2 s of the sEMG data as the raw data for classification, which could recognize activities for a
longer period of time. We collected sEMG signals from five movements of lower limbs per subject.

We recorded the changing trend in the three muscles’ sEMG signals in five movements, as shown
in Figure 4.
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There were significant signal changes in the three selected muscles during the lower limb
movement. The sEMG signal will fluctuate only when the movement changes. Among the three
myoelectric signals, the crossing obstacle was the most obvious. There were also similar sEMG signal
maps for GU, HW, and CO, as DS and SU were hard to distinguish from the raw signal. The trend of
each movement in the three channels was different, which helped to distinguish different movement,
and verified the correctness of our muscle selection.

4.1. Feature Separability Results

To evaluate the performance of the feature extraction method, Figure 5 shows the scatterplot of 11
methods. Each feature extraction algorithm had three features after reduction. The scatter plots of the
two features were extracted from five movements using 11 methods. Each movement used a specific
color and ten sampling points. From Figure 5, we could see the feature separability of 11 feature
extraction algorithms. Figure 5b,j,k had better performance.
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The performance of 11 feature extraction algorithms was evaluated by the RES index defined by
Formula (13). The results are shown in Table 3. The RES indexes of EWP were 15.1, 12.9, and 12.5,
respectively. The RES indexes of WAMP were 12.0, 11.2, and 8.0, respectively. The RES indexes of
FE were 13.4, 14.5, and 6.5, respectively. The EWP, WAMP, and FE had good separability. The RES
indexes of EWC were 13.6, 12.9, and 4.2, respectively. The RES indexes of IsEMG were 12.3, 9.2, and 8.4,
respectively. The EWC and IsEMG had poor performance.

Table 3. Statistical metrics of eleven feature extraction algorithms.

Algorithm
Feature Algorithm Metrics

Average Standard Deviation
(SD) Euclidean Distance (ED) The Ratio between ED and

SD (RES)

Feature
1

Feature
2

Feature
3

Feature
1

Feature
2

Feature
3

Feature
1

Feature
2

Feature
1

EWC 20.1 11.5 12.5 211.9 155.5 67.2 13.6 12.9 4.2
EWP 8.6 5.7 6.7 105.1 80.1 95.1 15.1 12.9 12.5

IsEMG 28,929.3 23,548.8 23,281.4 322,538.2 214,969.8 218,668.0 12.3 9.2 8.4
MAV 7.2 5.9 5.9 82.6 53.1 58.0 12.6 9.0 8.9
RMS 20.4 11.8 12.7 223.0 106.3 168.2 13.9 8.7 10.2
SSI 6,338,695 2,144,388 2,767,773 62,093,129.1 22,888,219.8 54,247,541.0 14.7 9.3 11.9

VAR 1582.6 536.4 689.7 15,481.3 5726.1 13,461.7 14.6 9.3 11.8
WL 2.7 1.6 1.6 29.2 14.2 20.8 13.4 8.9 9.7
ZC 81.9 59.2 32.1 702.8 617.6 480.7 10.1 13.7 8.6
FE 0.5 0.5 0.3 6.7 5.8 2.6 13.4 14.5 6.5

WAMP 6.1 10.9 5.8 102.6 93.7 47.7 12.0 11.2 8.0
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4.2. Movements Classification Results

The feature data sets of five movements were input into five classifiers (Table 2). We collected
1500 sets of data from five subjects. All classifiers used 5-fold cross-validation. The data set was
divided into five subsets. Among these subsets, one of the subsets was selected as the test data, and the
remaining four subsets were used as the training data. Figure 6 shows the average classification accuracy
of the five classifiers with 11 feature algorithms. Figure 6 shows that RF and GK-LDA classification
results were excellent for all feature algorithm, and the variance of GK-LDA was the smallest.
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Figure 6. Average classification accuracy rates.

We drew a box graph to describe 11 feature algorithms’ classification accuracy, as shown in
Figure 7a. According to Figure 7a, the EWP, WL, FE, and WAMP accuracy was higher than other
feature algorithms, and the dispersion degree of the EWP was the lowest. Additionally, we drew a
box graph to describe the classification accuracy of 5 classification algorithms, as shown in Figure 7b.
According to Figure 7b, the GK-LDA classification accuracy was higher than other algorithms, and the
dispersion was the lowest. It was proved that the GK-LDA classifier with EWP, WL, FE, and WAMP
features has better classification performance.

The hyperparameter adjustment had an important influence on the classifier results. In the
MKRVM and GK-LDA classification process, the parameter value was −10 to 10, the step size was
0.5, and the best result was selected in all experiments. In the WNN and BPNN classification process,
the enumeration method was used to determine the training times which were set to 5000, the learning
rate was 0.01, the training error was 0.001, the number of hidden neurons was 6, and the best
classification result was selected. In the RF classification process, the enumeration method was used
to determine that the number of trees was 10, and the number of features was 2 to obtain the best
classification results.

The calculation time and classification accuracy are shown in Table 4. The GK-LDA using the
WAMP feature ranked first at 96%. The GK-LDA classifier’s accuracy rate with the features of EWC,
EWP, IsEMG, WL, FE, and WAMP reached more than 90%, which were satisfied for the accuracy of the
lower limb classification. The calculation time of the GK-LDA was below 80 ms. Except for BPNN,
the average accuracy of classifiers with EWP, FE, and WAMP features was more than 90%. It was
proved that the EWP, FE, WAMP, and GK-LDA have excellent performance.
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Figure 7. Box plot of the classification accuracy. (a) Box plot of 11 feature extraction algorithms. (b) Box
plot of 5 classifier accuracies.

Table 4. Classification rates and calculation time (ms, %). The double underscores represent the feature
with the shortest computation time for each classifier. The underline represent the classifier with the
shortest computation time for each feature. The shadow represents the most accurate feature of each
classifier. The background shading represent the classifier with the highest accuracy for each feature.

Feature
Extraction
Method

Classification Algorithm

MKRVM RF BPNN GK-LDA WNN

Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy

EWC 890 87 143 88 1027 84 69.8 92 255 80
EWP 969 92 146 94 1034 89 75.3 95 267 88

IsEMG 922 85 153 89 1044 90 59.4 90 246 80
MAV 934 83 146 88 856 80 59.8 89 254 80
RMS 998 90 149 88 1047 75 60.1 89 261 80
SSI 1058 82 149 89 1054 60 59.8 89 247 70

VAR 972 85 150 88 876 70 59.4 86 264 80
WL 1032 90 144 90 939 88 59.8 94 261 70
ZC 932 80 142 89 889 60 59.7 88 252 70
FE 895 92 188 94 1038 83 69.4 95 258 90

WAMP 863 93 145 92 764 81 59.9 96 253 90
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Figure 8 is a comparison chart of the average classification accuracy rate and average calculation
time of 11 features in five classifiers. The WAMP, combined with five classifiers, had a better
classification effect in real-time and accuracy.
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Figure 8. The average classification accuracy rate and the average calculation time across the classifiers.

The sensitivity analysis of the algorithm could determine the error of the motion classification,
which was helpful in enhancing the practicability and safety of the system. Hence, we selected
800 testing sets to verify the sensitivity of 55 models. Tables 5–9 show the sensitivity metrics of 11
combined algorithms. Except for the BPNN algorithm, other algorithms had high accuracy in CO. GU
classification, the average classification rate of GK-LDA, and RF algorithms were higher than other
classification algorithms. The accuracy of the GU classification in the GK-LDA classifier was higher
than 90%. All classifiers had the lowest HW classification accuracy, but the GK-LDA classifier accuracy
was higher than other classifiers, reaching more than 80%. The classification accuracy of each action
with WAMP, FE, and EWP feature classifiers was higher than other combined algorithms, reaching
more than 88%. It was proved that the GK-LDA classifier with EWP, FE, and WAMP has high reliability.

Table 5. Sensitivity metrics of the MKRVM algorithm. The shadows represent the most accurate actions
of each classifier. The bold numbers represent the classifier with the highest accuracy for each action.

Algorithm Sensitivity (%)

HW CO SU GU DS

EWC_ MKRVM 85 89 86 91 84
EWP_ MKRVM 89 94 91 96 90

IsEMG_ MKRVM 83 87 84 89 82
MAV_ MKRVM 81 85 82 87 80
RMS_ MKRVM 88 92 89 94 87
SSI_ MKRVM 80 84 81 86 79

VAR_ MKRVM 80 89 85 88 83
WL_ MKRVM 85 94 90 93 88
ZC_ MKRVM 75 84 80 83 78
FE_ MKRVM 87 96 92 95 90

WAMP_ MKRVM 88 98 93 94 92
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Table 6. Sensitivity metrics of the RF algorithm. The shadows represent the most accurate actions of
each classifier. The bold numbers represent the classifier with the highest accuracy for each action.

Algorithm Sensitivity (%)

HW CO SU GU DS

EWC_ RF 81 92 89 90 88
EWP_ RF 87 98 95 96 94

IsEMG_ RF 82 93 90 91 89
MAV_ RF 82 91 87 89 91
RMS_ RF 80 92 88 93 87
SSI_ RF 81 93 89 94 88

VAR_ RF 78 94 84 95 89
WL_ RF 80 96 86 97 91
ZC_ RF 83 91 89 92 90
FE_ RF 90 97 96 99 88

WAMP_ RF 88 98 92 99 83

Table 7. Sensitivity metrics of the BPNN algorithm. The shadows represent the most accurate actions
of each classifier. The bold numbers represent the classifier with the highest accuracy for each action.

Algorithm Sensitivity (%)

HW CO SU GU DS

EWC_ BPNN 82 85 84 86 83
EWP_ BPNN 88 91 90 92 89

IsEMG_ BPNN 87 90 89 91 88
MAV_ BPNN 78 81 80 82 79
RMS_ BPNN 73 76 75 77 74
SSI_ BPNN 58 61 60 62 59

VAR_ BPNN 68 71 70 72 69
WL_ BPNN 86 89 88 90 87
ZC_ BPNN 59 60 65 58 58
FE_ BPNN 81 84 83 85 82

WAMP_ BPNN 79 82 81 83 80

Table 8. Sensitivity metrics of the GK-LDA algorithm. The shadows represent the most accurate actions
of each classifier. The bold numbers represent the classifier with the highest accuracy for each action.

Algorithm Sensitivity (%)

HW CO SU GU DS

EWC_ GK-LDA 86 95 92 94 93
EWP_ GK-LDA 88 99 96 97 95

IsEMG_ GK-LDA 83 94 91 92 90
MAV_ GK-LDA 82 93 90 91 89
RMS_ GK-LDA 81 92 87 94 91
SSI_ GK-LDA 84 89 86 94 92

VAR_ GK-LDA 81 86 83 91 89
WL_ GK-LDA 89 94 91 99 97
ZC_ GK-LDA 83 88 85 93 91
FE_ GK-LDA 87 100 98 94 96

WAMP_ GK-LDA 85 100 100 97 93
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Table 9. Sensitivity metrics of the WNN algorithm. The shadows represent the most accurate actions
of each classifier. The bold numbers represent the classifier with the highest accuracy for each action.

Algorithm Sensitivity (%)

HW CO SU GU DS

EWC_ WNN 75 82 79 83 81
EWP_ WNN 83 90 87 91 89

IsEMG_ WNN 77 85 76 82 80
MAV_ WNN 73 89 79 80 79
RMS_ WNN 80 82 77 81 80
SSI_ WNN 70 72 67 71 70

VAR_ WNN 79 83 78 81 79
WL_ WNN 69 73 68 70 70
ZC_ WNN 68 74 65 72 71
FE_ WNN 89 93 88 91 89

WAMP_ WNN 85 92 89 93 91

Furthermore, we selected a female subject with a height of 155 cm and an age of 25 years. Then,
we collected 500 samples as the testing samples. Because of the difference between the new subjects and
the five subjects, the accuracy of the new subjects was lower than the five subjects. However, the accuracy
of the GK-LDA classifier with EWP, FE, and WAMP features was 93%. The average classification
accuracy of the GK-LDA was 90%, higher than BPNN, WNN, RF, and MKRVM. Additionally,
the variance of the GK-LDA was the smallest, as shown in Figure 9. The adaptability of the GK-LDA
was proved.
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5. Discussion

For systems with excellent performance, the sEMG signal feature should be selected with maximum
class separability, high recognition accuracy, and minimum computational complexity, ensuring a
misclassification rate in implementation. It is helpful for the wide application of the wearable system
based on the sEMG signal. Additionally, in many studies, the lower limb motion classification accuracy
was improved by increasing the number of electrodes. However, in the actual lower limb movement
process, the sEMG sensor will be disturbed by noise, the more sensors will lead to the instability for
classification accuracy, and the wearer will also feel uncomfortable. Furthermore, with the increase in
the number of electrodes, more data dimensions must be processed, and the calculation will increase.
Therefore, this paper collected three muscle sEMG signals in the lower limb, which was in accord
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with the typical application of the lower limb auxiliary equipment. We proposed a feature evaluation
method to analyze the effectiveness of feature extraction and compared the quantitative performance
of the sEMG feature extraction and classification methods in daily human activities. We aimed to
determine the optimal feature extraction and classification method, and provided guidance for the
design of the lower extremity motion classification system based on sEMG. The results showed that
the EWP, FE, and WAMP have better performance in the feature separability. The main reason is
that the above methods can accurately measure the complexity of the sEMG signal and extract its
features from multiple scales. Among them, the WAMP has the best performance in real-time. If the
computation time of the entropy and wavelet packet transform can be reduced, they will be the best
choice. The accuracy of the GK-LDA with EWC, EWP, IsEMG, WL, and FE features was more than
90%, and the response time was less than 80 ms. After the box plot analysis, the GK-LDA with EWP,
FE, WL, and WAMP features has good classification reliability. Through sensitivity analysis, the CO
and DS classification accuracies were the highest, reaching 100%. Although the accuracy of the HW
classification was the lowest, it was still over 80%. This could satisfy the needs of daily activities.
There were some limitations to this study. It was necessary to use a wearable sEMG system to collect
the lower limb sEMG data of the elderly or patients in the actual environment. It was unknown how
effective the algorithm was in the elderly or real patients’ lower extremity activities. Additionally,
sEMG is a bioelectrical signal recorded from the muscle surface by electrodes, but it is easily affected
by electrode aging, sweat, and external electromagnetic interference. Therefore, the interference
compensation of the sEMG signal will be considered in the next step. Furthermore, this paper only
considered the classification effect of discrete actions and did not consider the classification effect of
continuous action changes. Hence, in the next step, we need to determine the starting position of
different activities in the sEMG signal and obtain different active sEMG signal regions.

6. Conclusions

To improve the accuracy and real-time classification, we analyzed a series of feature extraction
and classification methods. Additionally, we proposed a feature evaluation method to analyze the
effectiveness of feature extraction. The conclusion was that the WAMP, FE, and EWP feature extraction
methods were highly separable, and the WAMP calculation time was shorter. The GK-LDA was
the best method in the lower limb classification. GK-LDA and WAMP was the best combination in
sEMG feature extraction and classification. The results were helpful to the development of a wearable
sEMG system. It has important implications for other sEMG signal-based devices, such as clinical
assistive devices, walking assist devices, and robotics or prosthetic devices. The next step is to apply
the algorithm to real situations and combine the existing sEMG sensor with the physical signal sensor,
such as an accelerometer or gyroscope sensor, to improve the classification accuracy. Meanwhile,
the classification effect of different movements in the lower limbs’ continuous activities for the elderly
or actual patients should be considered. In future applications, these algorithms can also be used to
predict the risk of falling, only needing to collect and analyze the sEMG signal when falling.
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