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Multiple system atrophy: emerging targets for interventional therapies

Multiple system atrophy (MSA) is a fatal orphan neu-

rodegenerative disorder that manifests with rapidly

progressive autonomic and motor dysfunction. The

disease is characterized by the accumulation of a-
synuclein fibrils in oligodendrocytes that form glial

cytoplasmic inclusions, a neuropathological hallmark

and central player in the pathogenesis of MSA. Here,

we summarize the current knowledge on the

etiopathogenesis and neuropathology of MSA. We dis-

cuss the role of a-synuclein pathology, microglial acti-

vation, oligodendroglial dysfunction and putative cell

death mechanisms as candidate therapeutic targets in

MSA.
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Introduction

Multiple system atrophy (MSA) is a rare neurodegener-

ative disorder that presents with a variable combina-

tion of autonomic, cerebellar, parkinsonian and

pyramidal features [1]. Depending on the predominant

motor phenotype the disease is clinically sub-classified

in parkinsonian (MSA-P) or cerebellar (MSA-C) variant.

MSA is an orphan disease with an incidence of up to

2.4 cases per 100 000 persons per year [2], while the

prevalence may reach up to 7.8 patients per 100 000

population over the age of 40 [3]. The MSA-P variant

seems to be more common in the western hemi-

sphere [4,5], whereas MSA-C appears to be more fre-

quent in Asia [6]. The motor symptom onset is

usually in the fifth or sixth decade of life [5,7]. How-

ever, non-motor features including cardiovascular

autonomic failure, urogenital dysfunction, or respira-

tory and sleep disorders may precede the motor

presentation by some years [7–9]. Cognitive impair-

ment with frontal lobe dysfunction and depression

seem to be more common than originally considered

[10,11]. The disease duration after clinical diagnosis

is usually up to 9 years and disability milestones are

reached much earlier as compared to Parkinson’s dis-

ease (PD) [8].

Aetiology

Multiple system atrophy is a predominantly sporadic dis-

order. Genetic studies provide controversial data possibly

related to geographical and intra-group heterogeneity.

A recent genome-wide estimate in 907 MSA pooled

cases and 3866 controls defined MSA heritability at

2.09–6.65% which was explained by the presence of

misdiagnosed cases in the analysed subgroups [12].

Genetic mutations of the COQ2 gene have been linked to

MSA as identified in Japanese families [13], but the link

between the COQ2 gene and MSA risk was not con-

firmed in other patient populations [14–16]. Recently,

Gaucher disease-causing GBA variants were associated

with MSA [17]. Similarly, SNCA polymorphism was pro-

posed to be associated with increased risk for MSA
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[18,19], but not confirmed in different patient cohorts

[20–22]. Growing, but as yet sparse, evidence sup-

ports the notion that epigenetic factors may play a

role in MSA [23]. Dysregulation of miR-202 and

miR-96 was associated with MSA [24,25]. Circulat-

ing miRNAs were identified to be differentially

expressed in MSA patients [26]. Finally, environ-

mental toxins were associated with the risk of devel-

oping MSA in a few limited epidemiological studies

[27,28]. An occupational history of farming was sig-

nificantly related to higher MSA risk, whereas history of

smoking was less common in MSA patients [28].

In summary, all studies on the aetiology of MSA suf-

fer from the limited number of cases as the disease is

rare and underdiagnosed. Application of the revised

consensus criteria [7] increases diagnostic accuracy but

sensitivity remains limited, particularly at first neuro-

logical visit. In addition, pathologically proven PD,

dementia with Lewy bodies (DLB) and progressive

supranuclear palsy may mimick the presentation of

MSA, reducing diagnostic accuracy [29]. The definite

diagnosis of MSA can currently be only made at post

mortem examination. However, that is missing in the

majority of the cases involved in genetic or epidemio-

logical studies, which may contribute to their major

limitations and inconclusive results.

Neuropathology

The pathological diagnostic hallmark of MSA is the

ectopic aggregation of a-synuclein in the cytoplasm of

oligodendrocytes, forming wide-spread glial cytoplasmic

inclusions (GCIs) [30–32]. GCIs are typical for MSA

and do not seem to commonly occur in the brains of

patients with other synucleinopathies like PD or DLB

[33]. However, neuronal cytoplasmic inclusions of a-
synuclein may be also identified in MSA, but have dif-

ferent characteristics from the classical LBs seen in PD

and DLB [34]. Furthermore, a-synuclein aggregation

may be found intranuclearly in oligodendrocytes and

neurons of MSA brains, but these inclusions seem to be

less common than GCIs. [35] The structure of GCIs

consists primarily of loosely packed a-synuclein fibrils

[36], but multiple other components can be detected as

well [37].

Parallel to the inclusion pathology, distinctive pat-

terns of neuronal loss can be observed in MSA brains.

Striatonigral degeneration (SND) underlies MSA-P and

is characterized by loss of dopaminergic neurons in the

substantia nigra pars compacta (SNc) as well as projec-

tion medium-spiny neurons GABAergic neurons in the

caudate-putamen. The symptomatology of MSA-C is

linked to olivopontocerebellar atrophy (OPCA) which is

characterized by loss of Purkinje neurons in the cere-

bellar cortex (along with preservation of the neurons in

the deep cerebellar nuclei), as well as loss of neurons in

the pontine nuclei and the inferior olivary complex

[35,38,39]. Recent stereological analysis indicated neo-

cortical neuronal loss that might underlie cognitive

impairment in MSA cases [40]. Non-motor symptoms

are strongly associated with neurodegeneration in the

brainstem and spinal cord. Typically affected regions

are the locus ceruleus, the ventrolateral tegmental

nucleus, the pedunculopontine tegmental area [41–43],

catecholaminergic neurons of the rostral ventrolateral

medulla (C1 group) and noradrenergic neurons of the

caudal ventrolateral medulla (A1 group) [44], neurons

in the pontine micturition area [45], serotonergic neu-

rons in the nucleus raphe magnus, raphe obscurus,

raphe pallidus and ventrolateral medulla [46], as well as

neuronal loss in the dorsal vagal nucleus, the ventrolat-

eral nucleus ambiguus [47] and the periaqueductal grey

[43,48]. Spinal cord pathology is characterized by neu-

ronal loss in the intermediolateral columns and the

Onuf’s nucleus in the lumbosacral region [49,50].

Recent high-definition optical coherence tomography

analysis suggested progressive retinal changes in MSA

patients with reduction in the thickness of the retinal

nerve fibre layer and in the macular ganglion cell

complex [51].

Demyelination with variable severity is observed in

MSA white matter, but severe myelin lesions seem to

be present in only 50% of cases, predominantly in the

MSA-C variant [52]. Myelin proteins including sphin-

gomyelin, sulfatide and galactosylceramide were

reported decreased by about 50% in degenerating MSA

white matter [53].

Gliosis is invariably described in the degenerating

areas of the MSA brain [54]. Region specific astroglial

activation was reported to positively correlate with the

a-synuclein pathology in MSA cases in contrast to PD

[55]. Microglial activation is prominent in the degener-

ating regions of MSA brains and accompanies GCI

pathology [52,56]. Upregulation of TLR4 [57] and

myeloperoxidase [58] has been shown in activated

MSA microglia.
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The peripheral nervous system and the autonomic

nervous system in MSA have been the focus of studies

recently, but the outcomes are still controversial and

under debate. In skin biopsies phosphorylated a-synu-
clein accumulation was shown in unmyelinated

somatosensory fibres of 67% of MSA patients, whereas

in a PD cohort phosphorylated a-synuclein seemed to

accumulate in autonomic fibres [59]. However, other

studies indicate lack of phosphorylated a-synuclein
immunoreactivity in dermal nerve fibres in MSA in

contrast to PD patients [60,61]. Importantly, recent

work showed a-synuclein pathology affecting Sch-

wann cells of cranial, spinal and autonomic nerves in

MSA cases [62]. Furthermore, a-synuclein pathology

in the enteric nervous system of MSA patients may

occur [63].

Pathogenesis

The pathogenesis of MSA remains largely unknown. It

is currently accepted that the oligodendroglial a-synu-
clein accumulation plays a central role in the disease

process. A correlation between the GCI load and the

degree of neuronal loss was reported in both the stria-

tonigral and the olivopontocerebellar regions [39]. In

the white matter, both GCI burden as well as microglial

activation were shown to be greater in tissue with mild

to moderate demyelination, and to decrease when

demyelination became severe [52]. The leading role of

GCI pathology in MSA was further supported by cases

of so-called minimal change MSA. In such cases severe

GCI burden associated with less severe neuronal loss

triggered rapidly progressive clinical MSA profile at a

younger age, with significantly shorter duration as

compared to ‘classical’ MSA cases [64].

Neuronal a-synuclein-positive cytoplasmic inclusions

(NCIs) seem to be much more widespread than previ-

ously assumed [34]. However, NCIs can be composed

of non-fibrillar a-synuclein and show hierarchical pat-

tern of neuronal involvement related with the duration

of the disease, but rather independent of the pattern of

neuronal destruction suggesting that other factors play

a leading role in the subtype-dependent neuronal loss

[34]. Although it is tempting to speculate that primary

neuronal pathology leads to secondary oligodendroglial

a-synuclein accumulation as suggested by the finding

that NCIs may exist in areas that lack GCIs [34], the

robust observation that distribution and severity of

neurodegeneration reflect subregional GCI densities

supports the hypothesis of a primary oligoden-

drogliopathy.

The causative role of GCI-like pathology for the

induction of neuronal loss was confirmed experimen-

tally in transgenic mice overexpressing human

a-synuclein in oligodendrocytes under various oligo-

dendroglia-specific promoters [65–69]. The selectivity

of neurodegeneration in these models as well as in the

human disease is still unresolved. In the 2,030-cyclic
nucleotide 30-phosphodiesterase (CNP)-a-synuclein
mouse the neuronal loss related to the GCI pathology

mostly affected cortical and spinal cord regions linked

to secondary axonal degeneration [65]. When overex-

pressed under the myelin basic protein (MBP) promoter,

a-synuclein in oligodendrocytes triggered dose-depen-

dent neuronal loss in the neocortex, and fibre degener-

ation in the basal ganglia without loss of nigral

neurons as well as demyelination and astrogliosis in

the white matter tracts [66]. The proteolipid (PLP)-a-
synuclein transgenic mouse [67] modelled to a great

extent [70] the specific neuropathology of MSA, includ-

ing progressive nigrostriatal neuronal loss [68,71] as

well as loss of neurons in autonomic centres relevant

to the human disease [69,72,73]. The PLP-a-synuclein
transgenic mouse is the only one that replicates micro-

glial activation accompanying the neurodegeneration

of MSA type [57]. Whether the specificity of distribu-

tion of the promoters used (CNP vs. MBP vs. PLP) or

the triggering of different disease cascades, that is (i)

GCIs and secondary axonal degeneration in the CNP-a-
synuclein model resulting in spinal cord and cortical

degeneration; (ii) GCIs and secondary demyelination

and astrogliosis in the MBP-a-synuclein model resulting

in neocortical degeneration or (iii) GCIs and microglial

activation resulting in nigral neuronal loss and degen-

eration in autonomic centres of PLP-a-synuclein mice

is under debate. Intriguingly the presence of GCIs and

microglial activation in PLP-a-synuclein mice makes

them more susceptible to exogenous oxidative or prote-

olytic stress and moreover triggers MSA-like selective

SND and OPCA not observed in wild-type mice exposed

to the same stress factors [68,74]. In conclusion, it

seems that the selectivity of neurodegeneration in MSA

is determined by the concerted interaction of multiple

factors, among them the ectopic a-synuclein accumula-

tion in oligodendrocytes, microglial activation, oxida-

tive stress and proteolytic dysbalance.
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The source of a-synuclein in GCIs is debatable. Ear-

lier studies suggested that a-synuclein is an exclusively

neuronal protein that is not expressed in healthy adult

oligodendroglia [75–77]. These data suggested that the

source of a-synuclein that accumulated in MSA oligo-

dendroglia was the diseased neurons (Figure 1). In

light of the recent findings on a-synuclein cell-to-cell

transmission, this hypothesis became more plausible

[78]. Prusiner and co-workers suggested that MSA-

and not PD-derived a-synuclein may induce a-synu-
clein-positive inclusion propagation in a transgenic

model of PD [79,80]. However, the same studies failed

to provide evidence for propagation of MSA-derived a-
synuclein inclusions in wild-type/healthy mouse brain

and furthermore no oligodendroglial a-synuclein aggre-

gation was reported, therefore failing to reproduce the

core pathology of MSA. Experimental studies showed

that oligodendrocytes may take up a-synuclein from

the extracellular space [81], but in none of these cases

was typical GCI-like aggregation reported. It seems that

healthy oligodendrocytes are normally able to cope

with the uptaken a-synuclein and successfully ‘digest’

it without forming GCIs. Primary oligodendroglial

dysfunction may be therefore result in ectopic accumu-

lation of a-synuclein in oligodendrocytes [82]. Alterna-

tively, specific a-synuclein conformational strains were

proposed to be responsible for the generation of

PD- and MSA-like a-synuclein seeding traits [83]. How-

ever, this hypothesis needs further clarification and

support, as inoculation of MSA-derived a-synuclein into

the brains of healthy non-transgenic mice did not

induce GCI-like pathology, nor did. PD-derived

a-synuclein show prion-like behaviour in any of the

models (transgenic or non-transgenic) used [80]. In

summary, the existing data indicate that neuron-

derived a-synuclein with certain conformational

changes may contribute to the formation of GCIs, and

that primary oligodendroglial dysfunction of as yet

unknown origin is permissive and may be obligatory

for a-synuclein fibrils to accumulate in the cytoplasm

of oligodendrocytes in MSA. In support of the notion

of a primary oligodendrogliopathy p25a/TPPP disloca-

tion and accumulation in MSA oligodendroglial soma

were shown to precede the accumulation of a-synu-
clein [84] (Figure 1).

Recent studies based on modern technologies like

laser dissection and iPSCs technology have cast doubt

upon the classical dogma that a-synuclein or SNCA

mRNA are not expressed by oligodendrocytes. Asi et al.

[85] showed that laser-dissected oligodendrocytes from

healthy or MSA brains do show a-synuclein expression,

and even identified a tendency to increase in the

signals in MSA oligodendrocytes. Djelloul et al. [86]

proposed that oligodendrocytes differentiated from

MSA-derived iPSCs express a-synuclein in contrast to

those derived from healthy controls or PD patients.

Although having some methodological limitations,

these studies raise the possibility that an endogenous

intra-oligodendroglial a-synuclein source may con-

tribute to the GCI formation in MSA, and thus play a

primary role in triggering MSA neurodegeneration.

As already mentioned, microglial activation is a

prominent finding in the degenerating brain areas in

MSA, and can be visualized both neuropathologically

[56] as well as by in vivo PET imaging [87]. The associ-

ation of activated microglial cells and GCI burden [56]

suggests that pathological a-synuclein triggers neuroin-

flammatory responses in the MSA brain. This hypothe-

sis was corroborated by a number of experimental

studies both in vitro and in vivo [54,88,89]. Further-

more, observations in PLP-a-synuclein transgenic mice

suggested that microglial activation occurred parallel to

the dopaminergic neuronal loss in SNc between the

age of 2 and 4 months. These changes could be

reversed by suppression of microglial activation using

minocycline [57]. TLR4 dysfunction in microglia of

PLP-a-synuclein transgenic mice led to accumulation of

a-synuclein in the brains and resulted in aggravated

functional phenotype and increased nigral neuronal

loss, suggesting that a subpopulation of microglia

might play an important role in the clearance of a-
synuclein and neuroprotection [88]. In summary, com-

pelling evidence supports the notion that microglial

activation may contribute to the progression of the

degenerative process in MSA, like in other neurodegen-

erative diseases [90,91], and although non-specific this

mechanism may be exploited for therapeutic interven-

tions.

Oligodendroglial dysfunction may also be a primary

event in MSA pathogenesis [82], but it is plausible that

the accumulation of a-synuclein in oligodendrocytes

may deepen and broaden this dysfunction resulting in

reduced trophic support and demyelination, as sug-

gested by findings in the MBP-a-synuclein transgenic

mouse model of MSA [66,92]. Furthermore, changes

in sphingomyelin, sulfatide and galactosamide levels
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in MSA brains suggested myelin lipid dysfunction

and instability [53,93]. The oligodendroglial precur-

sor cells are responsible for remyelination and show

increased density in MSA white matter suggesting

disease-associated repair efforts. [94]. Taken together

the data on oligodendroglial dysfunction in MSA

support the possible scenario that neurodegeneration

may occur secondarily to the demyelination and

lack of trophic support by oligodendrocytes bearing

GCIs.

Finally, the cell death mechanisms in MSA are to a

great extent unresolved. Early studies suggested

increased iron levels in the degenerating areas [95],

supporting the notion that oxidative stress might play

a significant role in the selective neuronal loss in MSA.

This idea was strongly supported by the report on

COQ2 mutations linked to mitochondrial dysfunction in

MSA cases [13]. Microglial activation might contribute

to the increased levels of reactive oxygen species in the

degenerating areas [58]. In addition to oxidative stress

a-synuclein oligomers and fibrils might directly exert

neurotoxicity. Experimental studies demonstrated that

a-synuclein oligomers might disintegrate the cellular

membranes by forming pores [96], however, this

hypothesis was never proven in MSA. Alternatively a-
synuclein fibril accumulation in cells might induce

metabolic imbalance which might in turn promote cell

death. Intriguingly, exclusive oligodendroglial apoptosis

was reported in MSA brains [97,98]. Phosphoinositide

3-kinase upregulation was found in neurons and oligo-

dendrocytes in MSA, suggesting a possible response to

apoptotic signals in these cells [99]. Furthermore, the

X-linked inhibitor of apoptosis protein, which selec-

tively binds to caspases-3, -7 and -9, and inhibits their

activities, was found to be upregulated in GCI- and

NCI-bearing oligodendrocytes and neurons respectively

[100]. The expression of the calcium binding proteins

calbindin and parvalbumin in Purkinje cells was found

to be significantly reduced in MSA, whereas the apop-

tosis modulating proteins Bax, and Bcl-x were

increased, suggesting that a diminished calcium bind-

ing capacity might lead to the pathological initiation of

apoptosis in the affected areas [98]. Other mecha-

nisms that have been discussed to relate to the cell

death in MSA include proteasomal [101] or

autophagosomal dysfunction [102] and excitotoxicity

[103]. While experimental studies support the

involvement of the proteasome and autophagosome

dysfunction in oligodendroglial a-synucleinpathy
[74,104], excitotoxic cell death was not aggravated

by GCI pathology [105].

Target validation – where are we now?

Although the exact sequence of events in the patho-

genesis of MSA is still hypothetical, there are several

main players that definitely contribute to the disease

process and its progression and may serve as promi-

nent targets for disease therapy. These include

(i) pathological a-synuclein species accumulation,

(ii) microglial activation and neuroinflammatory

responses, (iii) oligodendroglial dysfunction and (iv) cell

death (Table 1). Most of the preclinical screening stud-

ies in a-synuclein transgenic models confirm the feasi-

bility of the above-mentioned targets for the treatment

of MSA. However, in a clinical setting the same thera-

peutic approaches appeared insufficient to provide

disease modification and reduce the progression of

symptoms. A major difference between the preclinical

studies and the clinical trials relates to the disease stage

when the therapies are initiated. The clinical diagnosis

of MSA is possible only after the motor symptoms

Figure 1. Possible pathological a-synuclein-spreading and accumulation mechanism leading to neurodegeneration. (A) Healthy neuron,

oligodendrocyte, microglia and astrocyte, p25a mainly located in the myelinating oligodendroglial processes, monomeric a-synuclein
present in presynaptic nerve terminals. (B) Relocalization of p25a from the processes to the soma, inclusion formation and swelling of the

oligodendroglial soma. (C) Oligomeric a-synuclein accumulation in the oligodendroglial cytoplasm-(the exact source of a-synuclein
remains to be determined). Possible hypotheses include exocytosed a-synuclein from neurons and uptake into oligodendrocytes by cell-to-

cell propagation or upregulation of a-synuclein expression in oligodendrocytes themselves. In addition, axonal a-synuclein may be taken

up by the dysfunctional oligodendroglial myelin compartment. (D) a-synuclein aggregates form insoluble half-moon shaped glial

cytoplasmic inclusions (GCIs) characteristic for the disease. (E) Disruption of trophic support (e.g. GDNF), mitochondrial failure, increased

production of reactive oxygen species (ROS) and proteasomal dysfunction. (F) Oligodendrocytes suffer from severe distress and will

eventually degrade. (G) Activation of micro/astroglial cells by cytokines released from the damaged oligodendrocytes, and proposed

secondary neuronal loss potentially due to lack of trophic support, ROS production, proteasomal failure and pro-inflammatory

environment. Reproduced from Kuzdas-Wood et al. [106], doi:10.1016/j.pneurobio.2014.02.007, available under the terms of the

Creative Commons Attribution License (CC BY).

© 2016 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd

on behalf of British Neuropathological Society.

NAN 2016; 42: 20–32

Multiple system atrophy: emerging targets 25

info:doi/10.1016/j.pneurobio.2014.02.007


Table 1. Experimental therapies for MSA

Therapy Target(s) a-Synuclein MSA model

Efficacy in a-Synuclein
MSA model(s) Clinical trial

Recombinant human

growth hormone

Neuronal and

glial proliferation

n.a. n.a. Design: Randomized, double-

blind, placebo-controlled;

Primary end-point: UPDRS

(Unified Parkinson’s

Disease Rating Scale)-

total, autonomic testing;

Result: Ineffective [107]

Minocycline Microglial

activation

PLP-a-synuclein
[57]

Suppression of microglial

activation, neuroprotection

in early disease stage

Design: Randomized, double-

blind, placebo-controlled;

phase III study

Primary end-point: Change of

UMSARS (Unified Multiple

System Atrophy Rating Scale)-II

Result: Suppression of microglial

activation, but no change of

symptom severity [108]

Riluzole Cell death n.a. n.a. Design: Randomized, double-

blind, placebo-controlled;

phase III study

Primary end-point: survival

Result: No effect on survival

and motor decline [109]

Autologous MSCs

(intravenous and

intraarterial)

Unclear PLP-a-synuclein
[110]

Modulation of

neuroinflammatory

responses; mild nigral

neuroprotection

Design: Randomized, double-

blind, placebo-controlled;

phase II study

Primary end-point: Change

of UMSARS-total

Result: Slowed disease

progression [111],

safety concerns

Lithium a-synuclein n.a. n.a. Design: Randomized, double-

blind, placebo-controlled;

phase II study

Primary end-point: frequency

of severe AE

Result: Discontinued due to

safety concerns [112]

Rifampicin a-synuclein MBP-a-synuclein
[113]

Reduced a-synuclein load,

reduced astrogliosis,

neuroprotection

Design: Randomized, double-

blind, placebo-controlled;

phase III study

Primary end-point: UMSARS, MR

parameters, BDI-II, EQ-5D scale

Result: Study terminated,

ineffective [114]

Rasagiline Cell death PLP-a-synuclein
+ 3NP [115]

Neuroprotection and

functional improvement

in early disease stage

Design: Randomized,

double-blind, placebo-

controlled; phase II study

Primary end-point: Change

of UMSARS-total

Result: No change in

outcome measures [116]

Fluoxetine Neuroinflammation,

Oligodendroglial

dysfunction

MBP-a-synuclein
[117]

Modulation of trophic factor

support, improved

neurogenesis, reduced

astrogliosis, ameliorated

demyelination, reduced

Design: Randomized, double-

blind, placebo-controlled;

phase II study

Primary end-point: Change
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become overt [7]. This disease stage may represent a

rather late stage of the pathogenic process in MSA with

a significant degree of neuronal loss that is hardly

reversible. As it is likely that the disease onset precedes

the motor presentation by many years, identification of

early biomarkers to determine at risk individuals in

selected cohorts of patients with neurogenic orthostatic

hypotension, urogenital dysfunction or REM sleep

behaviour disorder may significantly improve the out-

comes in the treatment of MSA.

In summary, future studies on MSA will need to

focus on better understanding of the triggers of the dis-

ease process, as well as on improved diagnosis, with

identification of early biomarkers that may allow the

timely initiation of disease modifying therapies with

beneficial effects on disease progression.
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