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ABSTRACT
China’s climate has been warming since the 1950s, with surface air temperature increasing at a rate higher
than the global average. Changes in climate have exerted substantial impacts on water resources,
agriculture, ecosystems and human health. Attributing past changes to causes provides a scientific
foundation for national and international climate policies. Here, we review recent progress in attributing the
observed climate changes over past decades in China. Anthropogenic forcings, dominated by greenhouse
gas emissions, are the main drivers for observed increases in mean and extreme temperatures. Evidence of
the effect of anthropogenic forcings on precipitation is emerging. Human influence has increased the
probability of extreme heat events, and has likely changed the occurrence probabilities for some heavy
precipitation events.The way a specific attribution question is posed and the conditions under which the
question is addressed present persistent challenges for appropriately communicating attribution results to
non-specialists.
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INTRODUCTION
Human activity, dominated by the emission of
greenhouse gases, has resulted in an increase of
about 1.0◦C in the average Earth surface air tem-
perature since pre-industrial times [1]. The warm-
ing has affected all parts of the climate system, in-
cluding the atmosphere, ocean, land, cryosphere and
biosphere. On a regional scale, surface air tempera-
ture over China has warmed at a rate much higher
than the global average (Fig. 1) [2]. As the warm-
ing continues, its impacts on human and natural
systems increase; and global warming becomes the
most challenging problem for the world. Central to
climate change policy is an understanding of the
causes of past climate change, at both global and
regional scales.

Since the late 1980s, the successive assessments
of the Intergovernmental Panel on Climate Change
(IPCC) have established that human influence has
resulted in global warming, mainly through the
emission of greenhouse gases. When each assess-
ment report was released, it prompted a new set of
international climate treaties and/or policies. The

first IPCC report, published in 1990, identified that
human use of fossil fuels had substantially increased
the concentration of atmospheric greenhouse gases,
leading to an enhanced warming effect and result-
ing in a warming of the Earth’s surface [3]. This re-
port brought climate change to the attention of in-
ternational politics for the first time, serving as the
basis for the founding of the United Nations Frame-
work Convention on Climate Change (UNFCCC)
in 1992.The release of the second IPCC assessment
report in 1996 [4] confirmed that global warming
was ‘unlikely to be entirely caused by nature’ and
that human activities have had a ‘discernable’ impact
on the global climate system, resulting in the adop-
tion of the ‘Kyoto Protocol’. The third IPCC assess-
ment report [5], published in2001, provided a scien-
tific consensus that ‘most of the warming observed
over the last 50 years is attributable to human ac-
tivities’. This led to the inclusion of both adaptation
and mitigation in the UNFCCC negotiations. The
fourth IPCC assessment report, released in 2007,
concluded that the ‘warming of the climate system is
unequivocal’ and thatmost of thewarming observed
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Figure 1. China’s surface air temperature has increased at a
greater rate than the global mean surface temperature. Clear
trends can be seen in the time series for the global (black)
and regional (over China) mean (blue) surface temperature
in the HadCRUT4 datasets for the period 1901–2018, and
also in the regional average (red) calculated from homog-
enized data at 2419 Chinese observing stations for 1951–
2018. Temperature is expressed as the anomaly (◦C) relative
to respective 1961–1990 averages.

since the mid-20th century ‘is very likely due to the
observed increase in anthropogenic greenhouse gas
concentrations’ [6]. The conclusions of this report
were the scientific basis for the UNFCCC’s ‘Bali
Road Map’. The fifth IPCC Assessment was com-
pleted in 2014, stating that ‘human influence on
the climate system is clear’ [7], providing the sci-
ence foundation for the ‘Paris Agreement’.This Paris
Agreement aims at holding the increase in the global
average temperature to well below 2◦C above pre-
industrial levels and to pursue efforts to limit the
temperature increase to 1.5◦C above pre-industrial
levels. Our understanding of the causes of climate
change alongwith the confidence in this understand-
ing was key in each of these assessments and the in-
ternational climate policies that they informed.

While international climate policies have signifi-
cant implications for national policy, understanding
regional climate changes is also highly relevant for
national climate policymaking as policymakers can
relatemoredirectly to climate change atnational and
regional scales. For this reason, there has been a con-
certed effort to systematically assess climate change
inChina since the late 1990s.This effort has resulted
in the production of three national climate change
assessments [8] and three national science assess-
ment reports on climate and environment changes
[9]. Literature on attributing the observed changes
in the climate in China to specific causes available
to these assessments is limited because research in
this fieldbegan relatively late inChina.However, sig-
nificant advances have been made in recent years,
thanks to the increasing interest of Chinese climate
scientists in this subject, and the increasing lev-
els of support from various funding agencies. We

review these recent advances here, focusing on
the human influences on China’s climate includ-
ing detection and attribution of long-term changes,
and the attribution of changes in the frequency
and/or magnitude of high impact climate events.
Our review is built on earlier general review pa-
pers [10–13], focusing on China to inform ongo-
ing and future national assessments. We also cover
new development since those earlier reviews. The
paper is organized as follows: we first describe cli-
mate change detection and attribution methods to
provide a general context for the interpretation of
attribution results; we then review the attribution
for long-term changes in various variables and re-
cent developments in the field of event attribu-
tion; finally, we provide conclusions and suggested
directions for future research.

METHODS OF ATTRIBUTION
‘Attribution’ implies determining the relative im-
portance of different drivers behind a change. The
drivers can be both internal to the climate system or
external forcing. Internal factors include decadal and
multi-decadal natural climate variability. External
forcings can be anthropogenic such as greenhouse
gas and aerosol emissions or land-use change [6,7],
or natural such as volcanic activity. An attribution
usually involves collection and quality control of ob-
servation data, identification of possible drivers and
causality inferencing.There are two types of attribu-
tion studies in the climate literature. One deals with
the attribution of long-term changes in themean cli-
mate and in climate extremes; the other focuses on
the changes in the magnitude or frequency of spe-
cific extreme weather and climate events. Methods
for both types of study have evolved but the length
constraint of this paper prohibits a detailed and com-
prehensive review of the methodologies. Here, we
aim at providing a conceptual framework for meth-
ods that are popular in the recent literature and high-
lighting issues that are relevant to the proper inter-
pretation of the attribution studies.

Long-term climate changes
Theobjective ofmost detection andattribution stud-
ies for long-term changes in the climate is to de-
termine whether changes have occurred, and if so,
to attribute them to specific causes. Regression-
based methods, also known as fingerprinting meth-
ods, have been widely used. Most of the detections
and attribution studies reviewed in this paper use
the optimal fingerprinting method [14–17]; for this
reason, we will provide a conceptual introduction
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and discuss its limitations here. This method re-
gresses observations onto an expected climate re-
sponse simulated by climate models under different
external forcings. The method can be traced back to
Hasselmann [18], who coined the term ‘optimal fin-
gerprints’. The link between ‘optimal fingerprints’
and linear regression was made explicit by Allen
and Tett [19]. In a nutshell, this method assumes
that climate models can correctly simulate the pat-
terns of the climate response to external forcings,
even though the magnitudes of the response pat-
terns may differ from the observations. With this as-
sumption, it is possible to regress observations onto
model-simulated responses, and detection and at-
tribution analysis is reduced to statistical inferenc-
ing about the regression coefficients or scaling fac-
tors. The analysis requires three main ingredients:
(a) observation data with sufficient spatial and tem-
poral coverage and high quality; (b) climate-model-
simulated responses to one or more external forc-
ings, typically estimated as the ensemble averages
from multi-model simulations; and (c) estimates
of internal variability of the climate which are re-
quired for solving the regression problem, and for
estimating the uncertainty in the scaling factors and
thus making statistical inferences. Internal variabil-
ity is typically estimated from a large number of pre-
industrial climate simulations. Detection of the cli-
mate response to a particular external forcing can be
claimed if the corresponding scaling factor is signif-
icantly above zero, and attribution can be claimed if
the confidence interval also includes one and if influ-
ences from other external forcings can be excluded.

Regression models with various levels of com-
plexity have been used, depending on how uncer-
tainty is treated for the observations, and the re-
sponses simulated by the models.The simplest form
of regression, termed ordinary least squares [19],
does not consider uncertainty in the observation
or in the model-simulated responses. The uncer-
tainty in the estimated responses because of inter-
nal variability tends to bias the best estimates for the
scaling factors towards smaller values, and under-
estimates the uncertainty associated with the scal-
ing factors. Consequently, most detection and attri-
bution analyses use the total least squares method
(TLS, [14]), which is a more complex model that
explicitly accounts for the uncertainty in the esti-
mated responses. Although climate modelling cen-
ters have produced large volumes of pre-industrial
climate simulations, the availability of these control-
run data is still too small for robust estimation of
the covariance if the detection and attribution anal-
ysis is implemented at high spatial and/or temporal
resolution. Additionally, when the amount of simu-
lation data is too small, the covariance matrix may

not be full rank, and may therefore not be invert-
ible. Dimension reduction and the use of regularized
covariance [15] have been used to circumvent this
problem. While methods exist that consider multi-
ple sources of uncertainty for estimated model re-
sponses, imperfectmeasurement of the observations
and internal variability [20–22] mean that their ap-
plications have been limited.

Generalizedmultivariate regression assumes that
the regression residuals follow a multivariate Gaus-
sian distribution. This assumption is often justified
for means of climate variables. Direct implementa-
tionof the optimal fingerprintingmethod for climate
extremes may be problematic because extreme val-
ues, such as the annual maximum daily precipitation
at a location, would be skewed, and would generally
follow extreme value distributions. Two approaches
have been used to take into account the distribu-
tional property of extreme values, or of indices
for climate extremes, in detection and attribution
analyses for long-term changes in climate extremes.
One approach is to convert the extreme values, such
that the new quantities are not skewed, and the
distributional assumption of optimal fingerprinting
method is satisfied. Two methods have been used
for this. One method converts the original obser-
vation data into a probability-based index [23–28].
This probability transfer makes it possible to use the
optimal fingerprinting method, and makes it easier
to compare extreme values at different locations, but
the results canbedifficult to interpret physically.The
second method averages the extreme values over
a large region, so that the averages asymptotically
approach a Gaussian distribution [29]. A caveat
to this method is that it is not always meaningful
to average extreme values, for example, extreme
precipitation over a large region that encompasses
diverse climate conditions and within which ob-
servations are unevenly distributed. An alternative
approach is to explicitly fit the observations to
extreme value distributions that are constructed
from the model-simulated responses, as covariates
of the distribution parameters [30–32]. A potential
problem with this method is that it is difficult to
account for the uncertainty in a single estimate.

Specific regional conditions complicate the at-
tribution of regional-scale climate change. For ex-
ample, urbanization or other land-use changes can
enhance or counteract greenhouse gas effects, and
local aerosol forcings can play a significant role on
the regional scale. Yet these forcings are often not
considered in climate simulations, or are poorly rep-
resented, making it difficult, and sometimes impos-
sible, to estimate the pattern of the climate response
to the applied external forcing. Climate variability
is also greater at smaller spatial scales, making it
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more difficult to identify regional climate change
than global climate change.

Extreme events
Most damage from natural disasters is related to ex-
treme weather and climate. With increased aware-
ness of global warming and an increase in loss
and damage, the media and the public often ask
whether the human influence on the climate system
has caused specific high-impact weather and climate
events, such as the 2003 European heatwave and the
2013 hot summer in eastern China during or after
the event. Newmethods have been developed to ad-
dress such questions, albeit often indirectly. Since
the pioneering work of Stott et al. [33], event at-
tribution has emerged as a distinct field of science
[12,34,35]. It is now possible to estimate the human
contribution to changes in the probability for the oc-
currence of, or magnitude of, such events.

Very few studies attribute a particular event [36],
and few studies attempt to conduct ‘end-to-end’
attribution, which is attribution for the impacts of
an extreme event [37]. Some recent developments
in event attributions rely on process understanding,
following what is called ‘a story-line approach’ [38].
However, most event attribution studies focus on a
specific class of events and ask whether human influ-
ence has affected the probability and/or magnitude
of events in that class. For example, while the 2013
summer heatwaves in eastern China may have moti-
vated an event attribution study, the question that is
often asked relates to events that are similar, in other
words, to the class of events that are similar to the
2013 summer heatwaves. These studies almost al-
ways involve a comparison between the magnitudes
or probabilities for the event in the factualworld (the
world thathasbeen), and in the counterfactualworld
(the world that might have been, had we not emit-
tedgreenhouse gases sincepre-industrial times).Ap-
proaches to these comparisons differ depending on
how the factual and counterfactual worlds are con-
structed, and how the questions are asked [12]. For
example, probabilities for an event occurring in both
worlds are often estimated to construct the so-called
fractional attributable risk (FAR), or risk ratio (RR),
which then determines the level of human influence
on the event. Estimates of FAR or RR can be quite
different if the problem is framed differently, for ex-
ample, if different metrics are used to describe a par-
ticular variable, and/or for the definition,magnitude
and rarity of an extreme event, and/or for its spatial
and temporal extent [39].The observation data and
climatemodels, and themethodused to estimate the
probability, all affect the attribution results.

The conditioning used to simulate the factual and
counterfactual worlds is important. When coupled-
climate-model simulations are used in event attri-
bution analysis, the only required condition is the
external forcing. It is therefore possible to esti-
mate changes that are the result of specific external
forcing, for example the emission of carbon diox-
ide. When simulations from atmosphere-only mod-
els are used, the simulations are conditional to the
observed patterns of sea surface temperature, and
sometimes a particular configuration of circulation
patterns, in addition to the specific external forcing.
Thus, attribution of a model response to the specific
external forcing is conditional on the particular sea
surface temperature or circulation patterns thatwere
used as conditioning for the simulations. As it is not
possible to estimate the probability for any particu-
lar circulation configuration, it is also not possible
to absolutely determine the effect of human influ-
ences. Event attribution results should therefore al-
ways be interpreted in the context of how the prob-
lemwas framed, and of the conditioning used for the
simulation. This makes it difficult to synthesize re-
sults from different studies and to communicate
findings to non-specialists. However, conditional es-
timates do provide means for a story-line approach
to explain attribution.

Lack of verification is an important caveat to
event attributionmethodologies.The counterfactual
world, the world that ‘would have been’, had hu-
man influence not existed, is not observable. Thus,
it is not possible to know to what extent the model
has faithfully simulated that counterfactual world.
More importantly, the events that are under inves-
tigation typically have a very small probability of oc-
currence in the factual world, and perhaps an even
smaller probability of occurrence in the counterfac-
tual world. This makes it difficult to evaluate the ac-
curacy of the model-simulated probability, or mag-
nitude, for the event in the counterfactual world.

DETECTION AND ATTRIBUTION OF
LONG-TERM CLIMATE CHANGE
The annual mean near-surface air temperature over
China has increased rapidly since the mid-20th
century (Fig. 1). The rate of warming was about
0.24◦C/decade during 1951–2019 [2], which is
greater than the global average (∼0.12◦C/decade),
and the global land average (∼0.18◦C/decade) dur-
ing 1951–2012 [7]. The strongest warming was ob-
served in northern China in the winter. The rapid
increase in the mean temperature was accompa-
nied by changes in climate extremes, in moisture
levels and in the wet bulb globe temperature in
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Figure 2. The observed change in mean temperature (OBS,
based on Chinese 2419 station data) is consistent with the
CMIP5 model-simulated change when the combined effects
of all external forcings are included (ALL), but is not consis-
tent with model simulations when only natural external forc-
ings (NAT) are considered. The figure shows the mean tem-
perature anomaly (◦C, relative to the 1961–1990 average)
during 1958–2012. Shading indicates the 5–95% ranges for
the simulated responses under the ALL (red) and NAT (blue)
forcings, with the overlap in the range shown as dark pur-
ple. Adapted with permission from Ref. [46]. Copyright 2016
Nature Publishing Group.

summer [2,40]. A large body of literature has
emerged with the aim of understanding the causes
of these observed changes.

Surface air temperature
Attribution for long-term temperature changes has
been based mainly on the optimal fingerprinting
method [15,19], using homogenized station data
from China and climate simulations from the Cou-
pled Model Intercomparison Project, Phases 3 and
5 and more recently Phase 6 (CMIP3, CMIP5 and
CMIP6 [41–43]). These studies consistently find
that anthropogenic influence made an important
contribution to the rapid warming.

Earlier studies have detected the effect of com-
bined greenhouse gases and sulfate aerosols on the
observed warming [44,45]. Sun et al. [46] expanded
on the earlier studies, and were the first to consider,
simultaneously, all known drivers for surface tem-
perature change, including both external natural
and anthropogenic forcings (ALL forcing) to the
climate system, and the local and regional effects
of urbanization. Figure 2 shows that the CMIP5
model forced with the ALL forcing reproduced
the observed temperature increase in China, with
a slight underestimation mostly related to urban
heat island effects. Using the optimal fingerprint-
ing method, the contributions from four drivers
were quantified and separated: greenhouse gases
(GHG), other anthropogenic factors (OANT)
including anthropogenic aerosols and changes to
land cover and land use, natural external forcings

(NAT) including solar and volcanic forcings, and
urbanization (URB). Figure 3 shows that the mean
temperature increased by 1.44◦C (90% confidence
interval: 1.22–1.66◦C) during 1961–2013. Two-
thirds of the warming, 0.93◦C (0.61–1.24◦C), can
be explained by the combined influence from the
ALL forcing on the global climate system, which
is similar to the observed warming in global land
mean temperature during 1951–2010. GHG alone
may have contributed 1.24◦C (0.75–1.76◦C) to the
warming, 35% of which may have been offset by
the cooling effects of OANT (OANT is dominated
by aerosols). The contribution of the cooling effect
is also similar to that of global land temperatures.
The NAT forcings have contributed 0.21◦C (0.10–
0.31◦C) to the warming, although the reliability of
this estimate may be affected by underestimation
of the volcanic forcings for the CMIP5 simulations
[47]. The remaining one-third of the observed
warming, 0.49◦C (0.12–0.86◦C), was explained
by urbanization effects. Two different analyses
were used to estimate URB contribution and both
produced similar results, indicating the robustness
of the estimations. The best estimate shows a large
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Figure 3. The signals including ALL, GHG, OANT and ur-
banization effects (URB) can be detected in the observed
mean temperature changes in China since the late 1950s. (a)
The best estimates of the scaling factors that scale the sig-
nals to match the observed temperature anomalies and their
5–95% uncertainty ranges, for the ALL and URB signal pat-
terns in the two-signal analysis shown on the left and the
URB, GHG, OANT and NAT signal patterns in the four-signal
analysis shown on the right. (b) Best estimates of the ob-
served annual mean temperature trend and its attribution
to ALL and URB from the two-signal analysis, and to GHG,
OANT and NAT from the four-signal analysis, along with
their 5–95% uncertainty ranges. Adapted with permission
from Ref. [46]. Copyright 2016 Nature Publishing Group.

Page 5 of 16



Natl Sci Rev, 2022, Vol. 9, nwab113

contribution from urbanization, but there is a large
uncertainty associated with this estimate, which
is consistent with observation-based estimates
[48,49]. In another study, Zhao et al. [50] showed
that GHG-induced warming was three times that
of the observed warming, offset by a large aerosol
cooling of a magnitude about 1.5 times that of
the observed warming. The qualitative conclusion
that GHG forcing is the main contributor to the
observed warming, offset by the aerosol cooling
effect, is consistent with results from other studies.
But the quantitative results are unlikely to be
realistic and are possibly an artifact of regression
degeneracy because of dependency between GHG
and aerosol signals that violates the independence
assumption of the regression method used in the
study. Anthropogenic influences on temperature
also can be detected at seasonal and/or sub-country
scales. For example, they contributed more than
90% of the summer warming in eastern China
during 1955–2013 [51] and are the dominant factor
for the increases in annual mean temperatures in
western China [52].

In addition to attribution for the mean tempera-
ture, a recent study attributed changes in an impact-
relevant heat stress indicator, the wet bulb globe
temperature (WBGT). WBGT takes into account
both dry air temperature and humidity, and is widely
used to reflect heat stress, which affects the ability of
the human body to dissipate excess metabolic heat.
Li et al. [40] examined possible human influences
on the observed changes in WBGT and their con-
tribution to China’s record-high summer WBGT.
They showed that the observed changes in summer
mean WBGT in China since 1961 were consistent
with the model-simulated response when ALL forc-
ings were used. WBGT increased 1.17◦C in western
China and 0.70◦C in eastern China during 1961–
2010, and there was less than 1% chance that such
an increase could occur without human influence.
The occurrence of the highest summer WBGT dur-
ing 1961–2015 has becomemore than 1000 times as
likely in western China, and more than 140 times as
likely in easternChina during 2011–2020 than itwas
during the 1961–1990 baseline period.

Precipitation and atmospheric moisture
Precipitation response to anthropogenic forcing is
projected to be spatially variable, with a large per-
centage increase in high latitudes and a decrease in
dry mid-latitude regions, and an increase in moist
mid-latitude regions by the end of the 21st century
under the RCP8.5 scenario [53]. This implies that
anthropogenically induced changes in total precipi-
tation over China could have been small so far and

would be difficult to detect because China is geo-
graphically located in the transition zones between
the region with a projected increase and the region
with a projected decrease in precipitation.There has
not been a clear precipitation trend over China as
a whole since systematic observation began in the
1960s. At a sub-country scale, observations show
an increase in southern China and a decrease in
northern China over recent decades [54,55]. These
opposing trends are the opposite of the expected
precipitation response simulated by climate mod-
els [56]. There is a range of explanations for the
observed changes, including the effects of aerosols,
changes in the monsoon circulation system and in
sea surface temperature in thePacific, the Indian and
the Atlantic Oceans [57,58].

In a warmer world, the specific humidity of the
atmosphere increases but the relative humidity over
land remains unchanged, or decreases slightly [7].
Zhang et al. [59] found that this was the case for
China: the total column moisture, or precipitable
water, increased during 1973–2012 and the increase
was mainly a result of anthropogenic influence. The
increase in precipitable water is consistent with
warming but it is unclear how the changes in mois-
ture affect precipitation as atmospheric circulation
plays an important role and the circulation response
to external forcings is still largely unknown for this
region.

Extreme temperature
Various indicators of temperature extremes have
shown warming over China since the late 1950s [8],
consistent with warming in mean temperature. In
most regions, warm extremes have becomemore in-
tense and more frequent, and have lasted longer;
while cold extremes have become less intense and
less frequent, and are more short-lived than pre-
viously. The length of the growing season has in-
creased, and the numbers of frost days and ice days
have decreased. Hot extremes, such as the number
of summer days and tropical nights, have increased.
There are a few exceptions, such as the cooling fea-
tures seen in southwestern China [8,60]. Recent
studies have consistently shown that human activi-
ties contributed to these changes.

Wen et al. [29] were the first to provide clear
evidence of human influence on the intensity of
extreme temperatures, including the annual maxi-
mum and minimum temperatures during the day
and night, in China. Based on simulations by one
climate model, they detected a human contribution
to changes in extreme temperatures, and were able
to separate the anthropogenic forcing signal from
the natural forcing signal. Yin et al. [61] significantly
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Refs. [61] and [62]. Copyright 2017 JohnWiley & Sons publications and 2016 American
Geophysical Union.

improved upon Wen et al. [29], using a newer and
moreup-to-datedetectionandattribution technique
with a multi-model ensemble of climate simulations
and a longer time series of observational data. This
study confirmed that the earlier findingswere robust,
and showed that the anthropogenic signal could be
clearly and robustly detected in the intensity of ex-
treme temperature events (Fig. 4a).

There is also clear and robust evidence of human
influence on the frequency of extreme temperatures
represented by the number of cold and warm days
and nights (Fig. 4b, from Ref. [62]), the duration of
warm and cold spells [63], or the number of frost
days, tropical nights, ice days and summer days [64].
A more recent study [65] used simulations from the
newest CMIP6 models and updated observations
(HadEX3 data [66]), and confirmed the contribu-
tion of human influence to the frequency of temper-
ature extremes in Asia, including China. This newer
study successfully separated the influence of green-
house gases from that of aerosols, enhancing confi-
dence in the attribution. In addition to global warm-
ing influences, the effect of local urbanization on
extreme temperature indices for eastern China was
also detectable [67].

Human influence can be detected in the fre-
quency and intensity indicators of temperature
extremes at the sub-country scale. This includes
detection in eastern and western China [61,62].
Additionally, Yin et al. [68] identified the effects of
human influence in a set of 12 extreme temperature
indices for the Tibetan Plateau during 1958–2017,
with greenhouse gas emissions playing the domi-
nant role. Compared with changes to temperature
extremes overChina as awhole, changes to tempera-
ture extremes on the Tibetan Plateau have occurred
at a higher rate, which is consistent with the rela-
tively stronger warming experienced in this region.

Extreme precipitation
A decrease in light precipitation and an increase in
heavy precipitation have been detected in parts of
China, especially in eastern China [69–71].There is
some consistency between these observed changes
in eastern China and other regions of similar lati-
tudes, leading to the speculation that globalwarming
may have played a role [70]. However, there is also
evidence suggesting that anthropogenic aerosols
may be closely linked to such changes [70,72]. The
urbanization effect on the heavy precipitation in
cities has also been suggested [73]. No formal at-
tribution study for light precipitation has been con-
ducted so far. Thus, in what follows the focus is
placed on heavy precipitation.

Observed changes in heavy precipitation in the
second half of the 20th century over China are
spatially non-uniform. Heavy precipitation has in-
creased in eastern China and light precipitation has
decreased [8,74]. Yin and Sun [75] studied precip-
itation data ending in 2017, and found increasing
trends in several indices for precipitation extremes,
particularly in those used to indicate heavy precipita-
tion. Several studies have examined possible human
influences on extreme precipitation, using different
metrics and different methods of analysis [76–81].
Some have identified the effects of human influence
on extreme precipitation, with various levels of ro-
bustness, and some have not. In general, these stud-
ies point to the emergence of the detectable effects
of human influence on extreme precipitation, al-
though the attribution is not as robust as for extreme
temperature.

One set of metrics is the annual maximum pre-
cipitation amounts that fall in a single day (Rx1day),
and over five consecutive days (Rx5day). These
quantities are used in a wide range of applications,
including engineering design, so understanding how
they may change is important. At present, the
most robust evidence of human influence on these
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Figure 5. The observed increase in annual maximum daily precipitation is not significantly different from what could be expected by chance, but
an increase can be robustly detectable by the mid-2030s. (a) and (b) Number of bootstrap samples showing the percentages of stations in China
with a significant increase (a) or decrease (b) trend in extreme precipitation during the period 1961–2012 in the 500 bootstrap samples. The dashed
lines mark the percentage corresponding to the 95th percentile of the probability distribution from the bootstrap samples. The solid circles on the
horizontal axis show percentage of stations with significant trends in the original non-permuted station data, both are below the 95th percentile of the
bootstrap samples. (c) Fraction of CMIP5 model grid boxes over China that have significant association between annual maximum daily precipitation
and the global mean near-surface temperature anomalies at the 5% level. Blue shows model spread for the simulations forced with the RCP 8.5
(Representative Concentration Pathway 8.5) scenario, while gray shows expectations by chance based on 200 bootstrap samples at the 95% level. The
red vertical dashed line indicates the time when an anthropogenic influence on extreme precipitation is detectable in simulations of models. Adapted
with permission from Ref. [77]. Copyright 2018 American Geophysical Union.

quantities is at a hemispheric scale, for land regions
where observation data are more abundant [23,25].
Li et al. [76] applied themethod fromMin et al. [23]
and Zhang et al. [25] to study changes in the Rx1day
and Rx5day in China, by transforming the data to
probability-based indices, and then comparing the
observationsbasedongriddedprecipitationdatasets
withCMIP5simulations.Theywere able todetect an
anthropogenic signal, but the signal from ALL forc-
ings, which includes both anthropogenic and natural
forcings, was surprisingly not detected. The lack of
detection of an ALL forcing signal suggests that the
detection of the anthropogenic signalmay not be ro-
bust as a response to ALL forcing should be closer
to observations than that to anthropogenic forcing
alone. Li et al. [77] also examined changes in Rx1day
inChina, but used adifferentmethod.Theyfitted the
observedRx1day data to a generalized extreme value
distribution with global mean temperature as a co-
variate.The detection of the global warming signal is
based on a field significance test: a signal is consid-
ered to have been detected if the proportion of sta-
tions with Rx1day significantly correlated to global
mean temperature is larger than would be expected
by chance (Fig. 5).They found that the global warm-
ing signal was not detectable in the observedRx1day
data by the year 2012, but the signal could have been
robustly detected by the 2030s in a perfect model
setting based onCMIP5 simulations.While the con-
clusions from these two studies appear to be incon-
sistent, they both indicate that an anthropogenic sig-
nal is emerging in Rx1day, although detection may
not be very robust at this time. This finding seems
to be supported by Ma et al. [78], who showed
that anthropogenic influence may have shifted
the probability distribution for daily precipitation

towards more heavy precipitation in eastern China.
This is also supported by Chen et al. [79], who
showed that daily and hourly extreme precipitation
intensified in eastern China during 1970–2017, and
that the intensification can be explained by an in-
crease in the global mean temperature.

The frequency of extreme precipitation is also
used as ametric.Chen andSun [80]defined extreme
precipitationevents asdailyprecipitation thatoccurs
once in three or ten years during 1960–2014. They
found that the nationally aggregated frequencies for
these two types of extreme precipitation events in-
creased between 1960–1979 and 1980–2014 based
on 542 long-term stations in China. A similar in-
crease was found in the CMIP5 simulations under
ALL forcing but not in those under natural forcings.
The similarity between the observed changes in ex-
treme precipitation frequency and that in the ALL
forcing simulations suggests a possible human influ-
ence on extreme precipitation. However, this find-
ing in itself is insufficient for attribution of the ob-
served changes to external forcings, as a direct causal
link cannot be established. Chen and Sun [80] also
used an optimal fingerprinting approach to compare
nationally averaged frequencies in the observations
and in the CMIP5 simulations.

The third set of metrics is the annual amount
of precipitation falling during days of heavy pre-
cipitation, expressed either as an absolute amount,
or as a proportion of the total annual precipita-
tion, as defined by the Expert Team on Climate
Change Detection and Indices (ETCCDI) [81].
Here, heavy precipitation days are defined as days
when the daily precipitation exceeds the 99th or
95th percentiles of wet-days, from a distribution
calculated for a base period. Dong et al. [82,83]
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compared these quantities over Asia, in the ob-
servations and in the CMIP5 and CMIP6 simula-
tions, using the optimal fingerprint method. They
found an anthropogenic signal in those quantities for
mid-latitude Asia. As most of the stations used in
the studies are located in China, this may indicate
a detectable human influence on this metric over
China.

ATTRIBUTION OF EXTREME EVENTS
High temperature
Warming in China over recent decades comes with
an increase in extreme high-temperature events.
In particular, all five of the hottest summers in
eastern China since the 1950s occurred in the
21st century [51]. The occurrence of such events,
which often broke historical records, has sparked a
significant effort in China to study possible human
influence on their magnitude and frequency. Since
the publication by Sun et al. [51] on the 2013
extreme hot summer in eastern China, many studies
have investigated the human influence on high-
temperature events in different regions of China.
These studies have used different analytical methods
including simulations from atmospheric-only or
coupled climate models, different metrics including
the number of warm spring days [84], the number
of summer heatwave days [85], the maxima for
daily maximum and minimum temperatures [86]
and the number of consecutive high-temperature
events [87]. These studies consistently show that
anthropogenic forcings have substantially increased
the probability of high-temperature events in China.
While different factors including atmospheric cir-
culation [88], sea surface temperature [89] and the
effect of urbanization [90] have been considered,
anthropogenic forcings appear to have played the
dominant role in the increase in the magnitude and
frequency of high-temperature events.

Coupled-model simulations have been widely
used in these studies. Sun et al. [51] were the first
to use the coupledmodel simulationwhen analyzing
human influence on the 2013 summer heatwaves in
easternChina.Rather thandirectly estimating the ef-
fects of human influence on heatwaves, which is dif-
ficult to do and is also sensitive to the definition of
heatwaves, Sun et al. [51] analyzed human influence
on 2013 summer mean temperatures. They first es-
tablished that summer mean temperature and heat
wave metrics are closely linked, and that summer
mean temperature canbeused as aproxy for summer
heatwaves. Then, they used an optimal fingerprint
approach to compare the observed and CMIP5-
model-simulated summer mean temperatures, and

found that the observed change in summer mean
temperature can be attributed to human influence.
They finally reconstructed the human influence on
summermean temperature to correct bias in climate
model simulations and to estimate the occurrence
probabilities for 2013-summer-like temperatures in
a model world, both with and without human influ-
ence. Because variability inmodel simulations is vali-
datedwith observations, and because themodel bias
is corrected, the probability ratio should be quite re-
liable when calculated this way. This approach was
later adopted in several other studies, includingSong
et al. [84] who looked at the warm spring in north-
ern China in 2014, Sun et al. [86] who studied high
temperatures in western China in 2015 and Li et al.
[40] who examined the effects of human influence
on hottest WBGT. Miao et al. [91] applied a simi-
lar but different method to study human contribu-
tion to the record-breaking temperature in north-
west China in July 2015, involving coupled model
simulations, and found that human influence had in-
creased the probability of the event three-fold. Zhou
et al. [90] considered the effects ofwarming-induced
thermodynamic and dynamic changes, as well as ur-
banization, and found that they all contributed to the
2018 record-breaking summer heat in northeastern
China.

Several studies have relied on atmosphere model
simulations to estimate the effects of human influ-
ence on extreme heat. Typically, these models have
been driven by observed sea surface temperature
(SST) and sea ice to simulate the world as it has
been, and by SST and sea ice conditions with the
effect of global warming removed to simulate the
world as it would have been without human influ-
ence. Some studies use large-ensemble simulations
conducted with the HadGEM3-A model because of
the availability of the simulations and their near real-
time updates [92]. For example, Chen et al. [85] an-
alyzed July 2017-like heatwaves over central-eastern
China.They found the event to be a one-in-five year
event, but this would have been rare in a world with-
out human influence.

While simulations from both coupled and
atmosphere-only models have been used for event
attribution, and results can be quite similar, it is
important to stress again the differences between
the two for results to be interpreted appropriately.
Simulations from atmosphere-only models are con-
ditional on the observed spatial-temporal patterns
of sea surface temperature and sea ice, and thus
the occurrence probabilities are conditional on the
historical state of atmosphere-ocean variability. As
it is not possible to estimate the probability of the
particular path that atmosphere-ocean variability
has experienced, it is also not possible to estimate
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Figure 6.Warming has resulted in a decrease in the occurrence probability of a 2016-like cold surge. (a) The GEV distributions fitted to anomalies of
pentad mean daily minimum temperature (Tmin) (◦C) during midwinter 2016 averaged over eastern China of historical simulations forced with anthro-
pogenic and natural forcings and historicalNat simulations forced with natural forcings. A shift in the probability distribution because of warming is
clearly seen. The dashed line indicates regional average pentad Tmin anomaly for 21–25 Jan 2016 in the observations. (b) Uncertainty in the attributable
risk ratio with dashed lines marking one standard deviation. (c) Return period (years) for an extreme cold event with an intensity equal to, or greater
than the Jan 2016 event in historical, and in historicalNAT simulations. The black dashed line shows the anomaly of the event and the dashed blue
lines represent the return periods of the event in the world with (the line to the right) and without (the line to the left) human influence. Adapted with
permission from Ref. [95]. Copyright 2018 American Meteorological Society.

the relevant unconditional probabilities, and thus
not possible to determine the corresponding prob-
ability ratio. Coupled-model simulations are driven
by external forcings only, and are not constrained
by observed SST and sea ice. As such, there can
be a large bias in both the mean and the variability
for a particular region. Such a bias needs to be
carefully considered. The bias can be adjusted
if an optimal fingerprint approach is used, such
as in Sun et al. [51]. Confidence in probability
estimates is high if observed long-term changes can
be attributed to human influence. There may be a
large difference in event attribution statement based
on these two approaches. For example, Sun et al.
[93] demonstrated that the use of AMIP-type and
CMIP-type simulations can lead to large differences
in probability estimates.

Cold event
Warming has resulted in a reduction in extreme
cold events in China. Fewer events also mean less
attention directed at them, but the 21–25 January
2016 cold event caused widespread impacts includ-
ing snowfall in Guangzhou and provided an oppor-
tunity to closely investigate the human influence on
cold events. Three papers have studied this event so
far. Two concluded that human influence had made
such events less likely to occur [94,95], but the other
study suggested that probabilities of extreme circu-
lation anomalies underlying the extreme cold surge
have increased because of human-induced Arctic
warming [96].

Sun et al. [94] analyzed the event using an ap-
proach similar to that of Sun et al. [51], finding that
wintermean temperature had increased as a result of

human influence and that the occurrence probabil-
ity for the 2015/2016 winter-like extreme temper-
ature decreased by about 89% for northern China,
and by about 69% for southern China. Qian et al.
[95] took a quite different approach by estimating
occurrence probability for similar events in a world
with or without human influence. They fitted gener-
alized extreme value (GEV) distributions to pentad
mean daily temperature anomalies for the dates of
the event in the simulations conducted with an at-
mospheric model (HadGEM3-A) that were forced
with or without human influence. It is clear from
their analysis that the probability distributions of
such events shifted to the left in the world with hu-
man influence, indicating a reduction in the occur-
rence of probability for such events (Fig. 6). They
concluded that human influence may have reduced
the occurrence probability for the 2016 cold event
by about two-thirds. Ma and Zhu [96] compared
the circulation regime underlying the cold event in
the simulations conductedwith theMIROC5model
that mimicked the factual world and a counterfac-
tual world. They showed that the occurrence prob-
abilities of circulation anomalies underlying the cold
event have increased in response to anthropogenic
forcings. They further speculated that the January
2016 cold surge could be a result of global warm-
ing. However, it is difficult to validate such specula-
tion because changes in circulation do not necessar-
ily translate into a similar change in the occurrence
probability of the cold event. For example, while in-
ternally generated circulation anomalies alone could
have produced the 2010 Russian heatwave of the
magnitude as observed, therewas a large 80%proba-
bility for the heatwave to not have occurred without
human influence [97].
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Heavy precipitation
Event attribution studies of heavy precipitation have
used different metrics including amount, frequency,
intensity and duration. As different studies have fo-
cused on events that occurred in different regions
and at different times, and have produced wide-
ranging results from strongly attributing heavy pre-
cipitation events to human influence to natural vari-
ability, it has been difficult to synthesize results from
these studies.

Several studies have used simulations by cou-
pled models [98–100]. Sun et al. [100] focused on
the heaviest June precipitation in South China, and
showed that anthropogenic influence had doubled
the probability of 2017-like heavy precipitation in
southeastern China. Sun and Miao [98] and Yuan
et al. [99] found large contributions from El Niño
and from anthropogenic influences to the extreme
precipitation events they studied. Burke et al. [101]
used HadGEM3-A simulations to investigate the ef-
fects of human influence on the duration, amount
and intensity of consecutive wet events inMay 2015
in 12 sub-regions of southeast China.They found an
anthropogenic signal in three out of the 12 regions
and concluded that anthropogenically induced cli-
mate change has increased the probability of short-
duration, intense rainfall events in parts of south-
east China. However, Li et al. [102] concluded that
the strong El Niño in 2015 may have increased the
occurrence probability for the rainfall events rather
than these being driven by anthropogenic forcing,
despite analyzing the same set of model simulations.
Zhang et al. [103] used simulations conducted with
the same model and showed that anthropogenic
influence increased the occurrence probability for
highest daily precipitation but not for persistent
heavy rainfall for the 2018 heavy-precipitation event
in central-western China. Based on a set of CMIP5
model simulations including those of HadGEM3,
the July 2016 heavy precipitation event overWuhan
was attributed to human-induced warming and
El Niño [104].

Heavy snowfall as an important form of heavy
precipitationhas shownan increase inparts of north-
ernChina in the recent decade [105].These changes
seem to be linked to changes in atmospheric circula-
tion [106], but the causes of the circulation change
are unclear.

Drought
A drought is an event of prolonged conditions
with a well below-average water supply that results
in negative impacts on the natural systems and
economic sectors. Because of the complexity of
impacts, droughts are often not directly mea-

surable, but can be characterized using different
indicators. Different drought indices such as the
Standardized Precipitation Index, Standardized
Precipitation-Evapotranspiration Index and the
Palmer Drought Severity Index, have been used to
study past changes in droughts for different parts
of China, making it difficult to intercompare and
synthesize results across the studies. Attribution
studies are limited to attributing specific drought
events, finding an increase in the probability of
the drought events as a result of human influence,
including the autumn drought of 2009 in south-
western China [107] and the late spring drought of
2018 in South China [108]. Li et al. [109] found
detectable human contribution to the intensifica-
tion of summer hot drought events in northeastern
China where drought events were loosely defined
as high temperature and low precipitation through
a joint probability distribution of precipitation and
temperature. As drought events are defined based
on the joint probability distribution, it is difficult
to compare those events with droughts that are
defined based on traditional drought indicators.
Overall, while there is increased attention in at-
tributing droughts, there is still a lack of general
understanding of the human influence on droughts
in China.

CONCLUSION AND FUTURE
DEVELOPMENT
Despite entering the fields of climate change de-
tection and attribution and event attribution rel-
atively late, Chinese researchers have made sig-
nificant progress over recent years. These stud-
ies have established clear and robust evidence of
the effects of human influence on mean and ex-
treme temperatures, and emerging evidence for
the effects of human influence on extreme pre-
cipitation (Box 1). However, a significant gap re-
mains in our understanding of how human influ-
ence affects other aspects of climate change and
climate impacts in China.

Human influence on the temperature in China
has now been studied extensively. The impact of
human activities on temperature is clear, regardless
of differences in the metrics including long-term
changes in mean or extreme temperatures, and the
frequency and magnitude of events of temperature
extremes. The effects are also clear, irrespective of
differences in the methods used for the analyses.
Anthropogenic forcings, dominated by GHG
emissions, are the main driver for the increases in
mean and extreme temperatures that have occurred
since the 1960s. The cooling effects from other
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Box 1. Summary of attribution of human influence on changes in China’s climate since the mid-20th century.

Changes in long-termmean

Climate variables or phenomenon Attribution of human influence
Mean temperature Very likely the main driver for the observed increase
Total precipitation Lack of change in observations
Frequency and intensity of hot extremes Very likely the main driver for the observed increase
Frequency and intensity of cold extremes Very likely the main driver for the observed decrease
Frequency and intensity of heavy precipitation Human influence for an increase in heavy precipitation emerging
Drought Limited evidence for increase in droughts

Extreme events

Type of events Attribution of human influence
Extreme heat Very likely increase in occurrence probability
Extreme cold Very likely decrease in occurrence probability
Heavy precipitation Mixed signal (increase in probability for some events but decrease for other events)

anthropogenic forcings including aerosols partially
offset the GHG-induced warming. But precisely
separating the cooling effect of aerosol from the
GHG’s warming effect on China’s temperature is
difficult because these effects are highly colinear.
Urbanization also significantly contributed towarm-
ing, especially at a local level. Together, these have
led to an increase in hot extremes and a decrease
in cold extremes: hot extremes have become more
frequent, more intense and longer in duration, while
cold extremes have become less frequent and less
intense. For example, the 2013 summer heatwave in
eastern China would have been extremely unlikely
without the effects of human influence, and it has
now become a one-in-four to one-in-five year event.
This has clear implications for future changes in
extreme high-temperature events. The observation-
based future projection shows that the 2013-like
heatwave will become a once-a-year event around
the 2050s, even under a medium emission scenario
(Fig. 7). This conclusion is confirmed by another
independent study, which used large-ensemble runs
and a model-bias adjustment method [110].

There is not clear evidence of anthropogenic in-
fluence on total precipitation, although some nu-
merical experiments have shown the effects of
aerosols. The evidence of human influence on ex-
treme precipitation is emerging, however. This in-
cludes detection of an anthropogenic signal in long-
term changes to the magnitude and frequency of
heavy precipitation, although the detection is not
very robust because of variations in the methods
used for data processing and analysis.These findings
also project an increased magnitude or frequency
for some extreme precipitation events. The effects
of human influence on individual heavy precipita-
tion events are still uncertain.Conclusions vary from
study to study, which suggests that the effect of hu-
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man activities may either increase or decrease the
occurrence of heavy precipitation in different re-
gions or scenarios.

Human influence on other climate variables or
climate extremes has not been widely studied, such
as wind, extreme wind, typhoon and climate impact
relevant variables.Among these variables andevents,
change in mean wind speed has been fairly exten-
sively detected [59,111–113], and the wind variabil-
ity and change have started to be attributed to fac-
tors such as increased surface roughness [114] and
anthropogenic warming [115]. The changes in cir-
culation, such as the weakening and widening of the
Hadley circulation [116],would alsohave important

Page 12 of 16



Natl Sci Rev, 2022, Vol. 9, nwab113

influence on regional climate change in China. End-
to-end event attribution [37], which attributes the
impacts from climate events to human influence, is
still lacking. There is also a need to understand, and
to reduce the uncertainty for attribution, and event
attribution in particular. Significant work is required
to meet climate adaptation and mitigation policy-
making needs. Identification of the effects of climate
change mitigations will be another significant chal-
lenge.
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