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Frontotemporal dementia (FTD) and Alzheimer’s disease (AD) have overlapping
symptoms, and accurate differential diagnosis is important for targeted intervention and
treatment. Previous studies suggest that the deep learning (DL) techniques have the
potential to solve the differential diagnosis problem of FTD, AD and normal controls
(NCs), but its performance is still unclear. In addition, existing DL-assisted diagnostic
studies still rely on hypothesis-based expert-level preprocessing. On the one hand, it
imposes high requirements on clinicians and data themselves; On the other hand, it
hinders the backtracking of classification results to the original image data, resulting
in the classification results cannot be interpreted intuitively. In the current study, a
large cohort of 3D T1-weighted structural magnetic resonance imaging (MRI) volumes
(n = 4,099) was collected from two publicly available databases, i.e., the ADNI and
the NIFD. We trained a DL-based network directly based on raw T1 images to classify
FTD, AD and corresponding NCs. And we evaluated the convergence speed, differential
diagnosis ability, robustness and generalizability under nine scenarios. The proposed
network yielded an accuracy of 91.83% based on the most common T1-weighted
sequence [magnetization-prepared rapid acquisition with gradient echo (MPRAGE)]. The
knowledge learned by the DL network through multiple classification tasks can also be
used to solve subproblems, and the knowledge is generalizable and not limited to a
specified dataset. Furthermore, we applied a gradient visualization algorithm based on
guided backpropagation to calculate the contribution graph, which tells us intuitively why
the DL-based networks make each decision. The regions making valuable contributions
to FTD were more widespread in the right frontal white matter regions, while the left
temporal, bilateral inferior frontal and parahippocampal regions were contributors to the
classification of AD. Our results demonstrated that DL-based networks have the ability
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to solve the enigma of differential diagnosis of diseases without any hypothesis-based
preprocessing. Moreover, they may mine the potential patterns that may be different
from human clinicians, which may provide new insight into the understanding of FTD
and AD.

Keywords: deep learning, convolutional neural network, frontotemporal dementia, Alzheimer’s disease, MRI,
visulization

INTRODUCTION

Although the separation between the dementia group and the NC
group was clear, it does not mean that an individual admitted
can be accurately diagnosed. In clinical practice, after noticing
dementia symptoms that cannot be explained by age factor,
doctors must determine which specific dementia the patient
belongs to, so as to provide targeted treatment and patient care.
With the increasing incidence of dementia (Zissimopoulos et al.,
2018), precise identification of FTD and AD, which are the
two most common types of dementia in the younger-elderly
population (Bang et al., 2015; Association, 2019), is of vital
clinical significance in the diagnosis of dementias. Nevertheless,
the clinicopathological correlation between FTD patients is low
(Ikeda et al., 2019), and the behavioral, psychological, and
medical imaging manifestations of FTD and AD patients highly
overlap (Pawlowski et al., 2019). These bring great challenges to
the differential diagnosis of FTD and AD. Researchers have tried
to solve the above problems from various perspectives of protein
(Jang et al., 2018), gene (Luukkainen et al., 2019), behavior,
imaging (Tosun et al., 2016; Schiller et al., 2019), etc. Among
them, the atrophy of specific brain regions shown by structural
MRI is an important part of the diagnostic criteria for FTD and
AD (McKhann et al., 2011; Rascovsky et al., 2011), and magnetic
resonance scanning has become a standard procedure in the
clinical workflow.

However, MRI-based diagnosis mainly relies on the
professional knowledge and clinical experience of doctors,
leading to unsatisfactory diagnostic accuracy, especially in small
cities and small community medical centers. Machine learning
(ML) has made amazing achievements in many scientific fields,
especially in computer vision, natural language processing
and advertising recommendation fields, which have attracted
many researchers to apply it recently to medical problems. By

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease
Neuroimaging Initiative; ADRDA, Alzheimer’s Disease and Related Disorders
Association; AD_NC, normal control of ADNI database; bvFTD, behavioral
variant FTD; CDR, clinical dementia rating; CNNs, convolutional neural
networks; DL, deep learning; FSPGR, fast spoiled gradient-recalled echo;
FTD, frontotemporal dementia; FTLDNI, Frontotemporal Lobar Degeneration
Neuroimaging Initiative; FTD_NC, normal control of NIFD database; GM,
gray matter; ICA, independent component analysis; LDA, linear discriminant
analysis; MCI, mild cognitive impairment; ML, machine learning; MMSE,
mini-mental state examination; MNI, Montreal Neurological Institute; MPRAGE,
magnetization-prepared rapid acquisition with gradient echo; MRI, magnetic
resonance imaging; NC, normal control; NIFD, nickname of FTLDNI; NINCDS,
National Institute of Neurological and Communicative Disorders and Stroke;
PCA, principal component analysis; PET, positron emission tomography;
ROC, receiver operating characteristic; ROI, region of interest; SPGR, spoiled
gradient-recalled echo; SVM, support vector machine; WM, white matter.

reviewing the research on ML in FTD and AD (Klöppel et al.,
2008; Bron et al., 2017; Bouts et al., 2018; Kim et al., 2019),
we can lightly find that the existing ML-aided FTD and AD
differential diagnosis algorithms rely on rigorous and manual
data preprocessing, feature extraction and feature selection,
which are skillfully designed by experts (Figure 1). This reliance
not only makes it difficult to reproduce the experimental results
but also hinders the integration of the model into the actual
clinical diagnosis workflow, which further leads to substantial
reduction in clinical significance.

As an end-to-end network algorithm, DL no longer relies
on feature engineering, which lowers the barrier to entry and
promotes the sharing of cross-domain knowledge. Moreover,
the designs of deep learning network in terms of the depth,
width and interlayer connection enable it to explore the potential
characteristics of data as much as possible. DL methods have
recently shown promising results in detecting cartilage damage
(Liu et al., 2018), predicting mild cognitive impairment (MCI)
prognosis (Basaia et al., 2019), and identifying AD patients via
conventional MRI scans (Liu et al., 2020). All these findings
suggest that the differential diagnosis of FTD and AD can
be solved by feeding a DL network with raw 3D MRI data
without any neuroanatomist level preprocessing, which, to our
knowledge, has not yet been done.

Furthermore, there is still a wide gap between the application
of DL in scientific research and its application in clinical
practice. One reason is that although the input data are not
expert-level preprocessed, they are still carefully selected (Burgos
and Colliot, 2020), which results in a small sample size and
poor generalizability of the model. In addition, existing DL-
assisted diagnostic studies still rely on hypothesis-based expert-
level preprocessing, which, on the one hand, imposes high
requirements on clinicians and data themselves, and on the other
hand hinders the backtracking of classification results to the
original image data, resulting in the classification results cannot
be interpreted intuitively.

We solve the above puzzles from two aspects: training DL-
based networks without any hypothesis-based preprocessing
(Figure 2) and testing their differential diagnosis ability for FTD
and AD; visualizing the contribution graph of each sample and
explaining the basis of network decision-making. In the first
step, a large number of samples were collected according to
a loose constraint, among which 1,314 AD patients and 938
NCs were obtained from the ADNI database, while 1,250 FTD
patients and 597 NCs were obtained from the NIFD database.
Second, we initialized the networks with a pretrained model
(Chen et al., 2019) and trained the classifier (Figure 3) on
the loose dataset. Third, we tested the classification capability
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FIGURE 1 | Motion of the workflow of the computer-aided diagnosis system. The green box represents the input and output data of the system, while the red box
indicates that the step is fragile and requires human supervision or design. Unstable data augmentation refers to data preprocessing operations that rely heavily on
specific software, specific hyperparameter settings, and even specific versions. Depending on studies, some normalization algorithms are stable and some are
unstable. Similarly, some studies align volumes to MNI spaces, while others align volumes to custom templates. Most studies remove the skulls before extracting
features, either by masking them or manually sketching them.

in the independent datasets and calculated the corresponding
contribution graph for each sample. In the last step, affine
matrixes mapping the original 3D MRI volumes into the standard
Montreal Neurological Institute (MNI) space were used to
visualize the overall contribution graph of each category. To
facilitate the community to reproduce our experimental results
based on the same data and methodology or apply our network
to other applications, we have released our source code, relative
pre-trained models and logs1.

MATERIALS AND METHODS

Data Collection
In contrast to previous studies, the 3D T1-weighted structural
MRI data used in this study were collected from two open
accessible databases with looser inclusion criteria, which is
conducive to driving DL networks to obtain better classification
performance, guaranteeing the diversity of data and the
generalization ability of the model. Under the guidance of the
same inclusion criteria, we collected FTD patient data from the
NIFD database, AD patient data from the ADNI database, and
normal control group data from both databases (abbreviated
FTD_NC and AD_NC, respectively).

Based on the most common T1-weighted sequence
(MPRAGE), the sample sizes of AD, AD_NC, FTD, and
FTD_NC were 422, 469, 552, and 354, respectively. It should be
noted that even if the AD patients in the ADNI database and the
FTD patients in the NIFD can be distinguished, it is difficult to
explain whether the classification ability of DL is based on the
diseases themselves or on the different databases.

FTLDNI was funded through the National Institute of Aging,
and started in 2010. The primary goals of FTLDNI were to
identify neuroimaging modalities and methods of analysis for
tracking FTD and to assess the value of imaging vs. other
biomarkers in diagnostic roles. The Principal Investigator of
NIFD was Dr. Howard Rosen, MD at the University of California,
San Francisco. The data are the result of collaborative efforts

1https://github.com/BigBug-NJU/FTD_AD_transfer

at three sites in North America. For up-to-date information on
participation and protocol, please visit http://memory.ucsf.edu/
research/studies/nifd.

The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether
serial magnetic MRI, positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
MCI and early AD. For up-to-date information, see www.adni-
info.org.

The collected MRI volumes must meet all the following
criteria: the scanning plane is the sagittal plane, the field strength
is equal to 3 tesla, the slice thickness is between 0.8 and 1.5 mm,
and the number of slices is between 150 and 250. It should
be noted that we do not limit the patient’s age, gender, weight
and other personal information, nor restrict the manufacturer,
coil and other scanning parameters. We also do not perform
any selection or quality control of the volumes, such as having
medical experts check the image quality.

Although we filtered the databases using loose inclusion
criteria, the collected data were still very diverse: volumes
were scanned by scanners from 3 manufacturers (Philips
Medical Systems, SIEMENS and GE Medical Systems) with
different slice thickness (1.0 and 1.2 mm), resulting in
heterogeneous dimensions. Considering that we did not
perform any manual preprocessing (such as non-brain tissue
removal, substantial tissue segmentation, standard MNI
space transformation, non-uniformity correction, quality
control, etc.), it is extremely challenging to classify such a
complex dataset.

Based on these two databases, we firstly designed 4
experimental scenarios to evaluate the convergence speed,
differential diagnosis ability, generalizability and robustness of
our network, as shown in Table 1. Considering that the same
subject may be scanned multiple times at multiple time points,
once the test data participates in the training process in any
form, it will cause data leakage and result in unreasonable model
evaluation. Therefore, the loose datasets were randomly divided
into training datasets and testing datasets at the subject level
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FIGURE 2 | Flowchart of the whole data augmentation module. The stereo block at the bottom represents a 3D T1-weighted structural MRI volume. The red line in
the block indicates that a slice is taken from the corresponding position and displayed on the top. The white stripe area in the block indicates that these positions will
be clipped directly, and the blue stripe area indicates that the offset starting position is selected randomly at these positions. (A) The original image in the datasets
can be in any format and any size. (B) The multi-center 3D T1-weighted structural MRI volumes are all converted to DHW format. (C) The size of spatial normalized
image is 240 × 256 × 160 pixels. (D) The size of coarse cropped image is 232 × 200 × 160 pixels. (E) The size of cropped image is 224 × 192 × 160 pixels. (F)
The image obtained by intensity normalization is feed to the network for training.

FIGURE 3 | Flowchart of the proposed DL-based framework. (A) First, we learned universal feature representations by training a segmentation network composed
of data augmentation, encoder and decoder modules. Second, we transferred the backbone network part from the segmentation task as the feature extraction part
and then learned and trained the classifier. (B) Flowchart of the data augmentation module. (C) Flowchart of the bottleneck submodule. Layers 1–4 in the encoder
are cascaded by several bottleneck submodules, and the first bottleneck of each layer has a downsampling module before the elementwise addition operator to
ensure that the two matrix dimensions to be added are consistent, as shown in the black dotted box, while the other bottleneck submodules directly add x and y.
(D) Flowchart of the decoder.
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TABLE 1 | Experimental scenarios.

Train objectives Test objectives Scenario Test accuracy
(%)

Details

FTD vs. FTD_NC FTD vs. FTD_NC 1 93.45 Figure 5

AD vs. AD_NC AD vs. AD_NC 2 89.86 Figure 5

FTD vs. AD vs. NC FTD vs. AD vs. NC 3 91.83 Figure 5

FTD vs. AD 4 93.05 Figure 8C

The train datasets of scenario 3 and scenario 4 overlap to further evaluate the
generalizability of the network.

according to a ratio of 4:1. The test results based on these
independent data can objectively quantify the generalization
ability of the model.

Data Augmentation
The contradiction lies in that the diversity of the data is helpful
for improving the accuracy and robustness of the network, while
the inconsistency of the data makes it more difficult for the
network to fit the pattern and prevents network convergence.
To solve this dilemma, we first fed all the images into the data
augmentation module (Figure 2), where the image spatial scale
and pixel intensity were normalized, and then the enhanced data
were sent to the baseline network.

For the convenience of the following description, D denotes
the depth from the anterior to the posterior head, H denotes the
height, and W denotes the width. In the first step, the multicenter
3D T1-weighted structural MRI volumes were all converted to
DHW format, followed by resampling all the images to a fixed
size of 240 × 256 × 160 pixels in DHW format to complete the
spatial normalization step. To avoid over interpolation, zoom was
going to fill in for the missing values with spline interpolation
algorithm of order 0.

In the field of DL, random cropping of images can
further expand the sample space, weaken data noise, and
improve the robustness of the network. Nevertheless, common
random cropping and random center cropping tend to miss
important brain structures, which is attributed to the fact
that cranial MRI volumes have little redundancy in the left,
right, anterior and posterior sides, while the upper and bottom
(cervical) sides usually have large redundancy. In this work,
the resampled images were coarsely cropped by 8, 16, and
40 pixels at the anterior, upper, and bottom boundaries,
respectively, and then randomly offset by 0–8 pixels in the
horizontal and vertical directions to obtain a fixed size of
224× 192× 160 pixels.

In addition, collection from different devices, different
protocols, and different scanning parameters resulted in our
multicenter data not meeting the assumption of a statistically
identical distribution in terms of the numerical intensity. Thus,
we normalized the intensity value vi,j,k based on the mean vm and
the standard deviation vstd of nonzero region in the individual
volume at the end of our data augmentation module as:

v′i,j,k =
vi,j,k − vm

vstd
(1)

Network Architecture and Transfer
Learning
One of the research purposes of this paper is to verify whether
DL is sufficiently competent for the FTD and AD classification
tasks without manual intervention by medical experts. Therefore,
we chose a common baseline network (Chen et al., 2019)
that has been proven to be effective in multiple tasks, and
concentrated on the classification problem itself and the visual
interpretation of the network.

The data augmentation methods used in this paper is stable
and require few knowledges of clinical medicine. All operations
of the whole data augmentation module were written in Python
and released in the source code. Users can download the raw
data from the public database (ADNI, NIFD or other customized
database) and feed it to the network directly without additional
manual modification.

In practice, we do not need to train an entire network
from scratch because initializing the network with a
pretrained model that has been trained with relatively large
datasets can significantly accelerate the training convergence,
reduce overfitting, and improve the accuracy to some extent
(Tajbakhsh et al., 2016).

The original study (Chen et al., 2019) selects data from
segmentation datasets to train the network, but our task is
solving the classification problem. Therefore, we modified the
baseline network by the following four points: (1) replacing
the data augmentation module; (2) transferring the encoder;
(3) discarding the decoder; and (4) adding a classifier
(Figure 3).

The detailed design and parameters of the data augmentation
module have been discussed in section “Data Augmentation.”
When the batch size (denoted by N) for one training was
set to 12, the output data dimension of the module was
12 × 1 × 224 × 192 × 160 in NCDHW format (where
C represents the number of channels). The prototype of
the reused encoder was actually 3D-ResNet50, whose detailed
parameters and source code have been released, and the output
data dimension was 12 × 2,048 × 28 × 24 × 20. The
AdaptiveAvgPool3d operator in the classifier pooled the DHW
data to scalar. Considering that the problem discussed in this
paper is the multiclassification of AD, FTD and NC, the output
data dimension of the designed classifier was 12 × 3, indicating
the probability of the 12 samples selected in the current training
batch belonging to the three categories.

All the network models were trained on a DGX-1 hardware
platform, and the software frameworks were PyTorch 1.2.0,
Python 3.6.9, and CUDA 10.0. The whole network optimizer
was the stochastic gradient descent algorithm, for which the
momentum factor was 0.9 and the weight delay factor was 0.001.
The loss function of the whole network was:

loss (Ii, t) = −log

(
exp

(
outti

)∑K−1
t=0 exp

(
outti

)) (2)

where Ii denoted the input image, K represented the total number
of categories, and outti was the score of Ii belonging to label t.
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The ground truth of the sample was marked by the public
database, and the diagnostic criteria were specified by ADNI
and NIFD. For example, the inclusion criteria of AD in ADNI
are2: MMSE (Mini-mental State Examination) scores between 20
and 26 (inclusive), CDR (Clinical Dementia Rating) of 0.5 or
1.0, and meets NINCDS (National Institute of Neurological and
Communicative Disorders and Stroke)/ADRDA (Alzheimer’s
Disease and Related Disorders Association) criteria for probable
AD. The predicted label of the sample was finally calculated by the
classifier in the model. For a particular sample, the model output
the probability that the image belongs to each category, and the
category corresponding to the maximum probability was the final
predicted value.

The initial learning rate of the whole network was 0.001, and
the learning rate scheduler was a cosine annealing algorithm, so
the learning rate of each training batch was:

ηt = ηmin +
1
2

(ηmax − ηmin)

(
1+ cos

(
Tcur

Tmax
π

))
(3)

where ηmax was set to the initial learning rate 0.001, and ηmin
was 0. Tcur was the number of epochs since the last restart, and
Tmax was 5.

Contribution Calculation
Even though DL networks can be well qualified for the
classification task, it is difficult for people to understand how
network makes the right decision. With the deepening of the
network and the cascading of various operators, the high-level
feature map becomes increasingly abstract. To understand the
decision strategy of the DL network, a magic black box, and
to verify the rationality and physiological mechanism of the
classification network, this paper applied a gradient visualization
algorithm based on guided backpropagation (Springenberg et al.,
2014) to calculate the contribution graph.

The core theory of this algorithm as follows: given an input
image Ii and a target label t, the contribution graph Ct

i is
obtained by guided backpropagating the gradient from the top
layer to the bottom layer. The difference between the guided
backpropagation in this algorithm and ordinary backpropagation
lies in the gradient of the activation function Rli being replaced by
the contribution Cl

i:

f l+1
i = ReLU

(
f li
)
= max

(
f li , 0

)
(4)

Rli =
(
f li > 0

)
· Rl+1

i , where Rl+1
i =

∂f out

∂f l+1
i

(5)

Cl
i =

(
f li > 0

)
·

(
Rl+1
i > 0

)
· Rl+1

i (6)

where l denotes the l-th layer, i indicates the i-th sample and f
represents the feature map.

As shown in the equations, Cl
i adds a constraint to Rli,

which inhibits the backpropagation of the negative gradient
item and prevents the participation of neurons that reduce the
activation value.
2http://adni.loni.usc.edu/methods/documents/

Model Visualization
In conclusion, given an input image Ii and a target label t, we will
get a one-to-one correspondence contribution graph Ct

i :

Ct
i = G (Ii, t) (7)

The dimensions of the samples in our loose dataset are
different, resulting in different dimensions of the contribution
graph (Figure 4). Therefore, a reliable transformation method is
needed to integrate all the contribution graphs of each category
to observe and explain its statistical laws. Every image Ii was
first transformed into the standard MNI space using Statistical
Parametric Mapping (Penny et al., 2011) to obtain the mapping
matrix Mi, which was then used to map contribution graph
Ct
i to Sti .

The unique contribution graph of each classification label St is
calculated by:

St =
1
N

N−1∑
i=0

Sti (8)

where N denotes the total number of samples labeled t. Results
were represented by AFNI (Cox, 1996).

The final visualized maps showed Zt values which defined as
the raw average contribution score St minus the mean of the
whole brain and then divided by the standard deviation. This
Z transformation is to enhance the contrast given the average
contribution score is basically uniformed across the whole brain.
Moreover, to investigate how the scores were difference between
AD and FTD, we performed a two-sample t-test, and significance
threshold was set to 0.0001.

RESULTS

Convergence Speed
The loss curves of the training process (Figure 5) reflect the
convergence speed of the corresponding scenario. Referring
to the dataset composition of each scenario, the curves help
us understand the learning law of training the DL network.
In scenarios 1 and 2, the training sample sizes were 725
and 712, respectively (the training sample size accounted for
approximately 80% of the total sample size), which were roughly
equivalent. Comparing the solid blue line of scenario 1 and the
solid orange line in scenario 2, it can be seen that the loss
value of AD during training still fluctuated after approximately
100 epochs, while the loss value of FTD was basically stable
below 0.001. In scenario 3, the training sample size was 1,437,
which was the sum of scenarios 1 and 2. The DL network
tended to converge after training with about 1,80,000 images
(130 epochs) in scenario 3 and 1,00,000 images (150 epochs)
in scenario 1.

Diagnostic Accuracy
The accuracy curves of each scenario in the independent test
datasets (Figure 5) reflect the classification performance of the
corresponding scenario, which is conducive to understanding
the capacity of the proposed network. The accuracy of scenario
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FIGURE 4 | Schematic of model visualization. (A) Difference methods of propagation forward and backward through a ReLU nonlinearity layer. (B) The 3D
contribution graph was transformed into the standard MNI space according to the corresponding raw structural MRI image. (C) The difference between the guided
backpropagation (information flow in purple) in this algorithm and ordinary backpropagation (information flow in yellow).

3 (91.83%) was lower than the weighted average accuracy of
scenarios 1 and 2 (93.45 and 89.86%, respectively). Note that
the training samples from scenario 3 came from two open
datasets, and the NC images were also a collection of the
corresponding NC images from the two open datasets, making
the multiclassification task more difficult than recognizing
the disease itself.

Results on Visualization
The voxel-based contribution map helps clinical radiologist
understand the abstract DL network and more confidently
evaluate the justifiability and reference value of objective decision
making given by the DL network.

Figure 6 shows the visualization results of the classification.
First, we found that the contribution scores were quite uniformed
across the whole brain, and the histography showed a very
narrow spike around 0.3 for both AD and FTD (Figures 6B1,B2).
However, there were still some specific regions showing higher
contribution compared to other regions. For the AD group,

the high-contribution regions were focused on the corpus
callosum, cingulate cortex, subcortical regions, left hippocampus
and white matter around it. For the FTD group, the high-
contribution regions located in subcortical regions, the corpus
callosum and the white matter under the right frontal lobe
(Figures 6A1,A2). Two sample t-test showed that widespread
regions including inferior left temporal lobe, bilateral inferior
frontal lobe, hippocampus, thalamus and medial frontal cortex
may contribute more to classifying of AD subjects compare to
FTD. In contrast, the widespread white matter regions in the
right hemisphere contributed in FTD significantly more than
AD (Figure 6A3).

Generalizability
For retrospective studies, the multicenter dataset accessed by
researchers are often diverse due to historical factors such
as device replacement, technology development and operation
inconsistency. For example, under the premise of meeting the
inclusion criteria described in section “Data Collection,” the
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FIGURE 5 | The training process of the proposed network under scenarios 1, 2, and 3. The losses curves in train datasets are represented by solid lines in the
figure, while the accuracy curves in test datasets are represented by dashed lines.

FIGURE 6 | The calculated unique contribution graphs of each disease. (A1) the mean contribution in each voxel of all AD subjects. (A2) the mean contribution in
each voxel of all FTD subjects. Both (A1,A2) showed Z-value. (A3) the AD-FTD difference of the contribution maps, here showing T-value of two sample t-test and
regions have p < 0.0001. (B1) the histography of the mean contribution of AD group. (B2) the histography of the mean contribution of FTD group. (C) the location of
the axial slices shown in (A1–A3).

ADNI images still scanned from more than 30 kinds of protocols
[MPRAGE, spoiled gradient-recalled echo (SPGR), fast SPGR
(FSPGR), etc.]. To further assess the generalizability of DL
networks in extremely harsh environments, we removed the
restriction of scanning from MPRAGE sequence and collected
some looser datasets (Table 2).

Based on these looser databases, we further designed 5
experimental scenarios (Table 3) and compared them with
performance under scenarios 1–4 (Figure 7).

The dataset of scenario 5 consisted of 1,250 FTD images
and 597 NC images from the same age group. The number
of positive samples was approximately two times the number
of negative samples. This kind of data imbalance problem
increases the training difficulty of the DL network and makes
the classification performance poor. The samples in scenario
6 came from 3 manufacturers and 30 different scan protocols,
and the slice thickness and dimensions between images were
also greatly different, which brought enormous challenges
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TABLE 2 | The demographic and scan parameters of the looser datasets.

Class Database Num (train/test) Age (mean ± std) Male/female Flip angel (degrees) Slice thickness (mm)

AD ADNI 334/88 75.5 ± 7.79 230/192 9.00 ± 0 1.20 ± 0

FTD NIFD 440/112 65.1 ± 7.48 332/220 9.00 ± 0 1.20 ± 0

NC ADNI 381/88 75.3 ± 6.19 224/245 9.00 ± 0 1.20 ± 0

NIFD 282/72 64.9 ± 7.85 151/203 9.00 ± 0 1.20 ± 0

ADl ADNI 1,051/263 75.4 ± 8.02 729/585 9.16 ± 1.20 1.18 ± 0.05

FTDl NIFD 1,001/249 64.9 ± 7.63 744/506 8.93 ± 0.26 1.20 ± 0

NCl ADNI 749/189 75.7 ± 6.64 458/480 9.08 ± 1.08 1.16 ± 0.08

NIFD 475/122 64.4 ± 8.17 240/357 9.00 ± 0 1.20 ± 0

The superscript “l” indicates that we removed the restriction of scanning from MPRAGE sequence and distinguish from scenarios 1–4.

TABLE 3 | Experimental scenarios in looser datasets.

Scenario Train objectives Test objectives Test accuracy (%)

Data component Data amount Data component Data amount

1 FTD, FTD_NC 440, 282 FTD, FTD_NC 112, 72 93.45

2 AD, AD_NC 334, 381 AD, AD_NC 88, 88 89.86

3 FTD, AD, NC 440, 334, 282+382 FTD, AD, NC 112, 88, 72+88 91.83

4 FTD, AD, NC 440, 334, 282+382 FTD, AD 112, 88 93.05

5 FTDl , FTD_NCl 1,001, 475 FTDl , FTD_NCl 249, 122 68.02

6 ADl , AD_NCl 1,051, 749 ADl , AD_NCl 263, 189 77.18

7 FTDl , ADl , NCl 1,001, 1,051, 475+749 FTDl , ADl , NCl 249, 263, 122+189 66.79

8 FTDl , ADl , NCl 1,001, 1,051, 475+749 FTDl , ADl 249, 263 81.25

9 FTDl , ADl , NCl 1,001, 1,051, 475+749 FTD, AD 112, 88 98.61

Among them, the train dataset of scenario 7 was the same as that of scenarios 8 and 9. This design was intended to evaluate the generalizability of the network. The
test datasets of scenario 9 and scenario 4 overlapped to further measure the robustness of the network. See Table 2 for the sample size of each data component. For
example, in scenario 6 of Table 3, the training sample size and the test sample size corresponding to ADl are shown in the first row in the main body of Table 2, i.e.,
1,051 and 253, respectively. The superscript “l” indicates that we removed the restriction of scanning from MPRAGE sequence and distinguish from scenarios 1–4.

to the classification task. Whereas, experiments showed that
the DL network can still achieve 77.18% accuracy without
any medical expert level preprocessing. With exactly the
same network structure, training strategy and initialization
parameters, the accuracy of DL network in scenarios 5, 6,
and 7 was 12.7∼25.43% lower than that of the control
group (scenario 1, 2, and 3 respectively). In scenario 7, the
training sample size was 3,279, and the DL network tended
to converge after training with about 2,60,000 images (80
epochs), compared with about 1,80,000 images (130 epochs)
in scenario 3.

The knowledge learned by the network through
multiclassification tasks should also be able to solve subproblems,
which should be generalizable rather than limited to a specified
dataset. We further fixed the encoders learned in scenarios 3
and 7, and replaced the classifier with the binary classifier of the
subproblem (scenarios 4, 8, and 9) to evaluate the generalizability
of the previously learned patterns.

Interestingly, compared with identifying FTD patients from
NC, the network has a stronger ability to differentiate FTD
from AD (Figure 8A). This finding implies two points: (1) the
difference between FTD and AD is more obvious and easier to
learn than that between FTD and NC; (2) the task of clinical
radiologist is more arduous when patients do not realize they
have the diseases.

The dataset for the Figure 8B task was a subset of the dataset
for the Figure 8A task, with better classification performance
(98.61%). The test dataset for the Figure 8B task and Figure 8C
task were identical, but the encoders were different. As shown in
the figures, the knowledge acquired from scenario 7 with a larger
sample size and more diverse data was more universal and had
the potential to be applied to new tasks.

The accuracy, sensitivity and specificity of scenario 5 were
all lower than those of scenario 1 (Figure 9), and it was
especially easy to misjudge the NC samples as FTD. Similarly,
the performance of scenario 7 was inferior to that of scenario 3.
In scenario 6, about one third of AD patients were classified as
normal controls, resulting in lower sensitivity and accuracy than
in scenario 2. Although the specificity of both scenarios 8 and
9 were high, the negative samples of these two scenarios were
AD rather than NC. The specificity of FTD was equivalent to
the sensitivity of AD, and the classification efficiency must be
considered comprehensively.

DISCUSSION

In summary, the foundational aim of this study is to investigate
and visualize the diagnostic value of the DL-based networks
in differentiating between patients with FTD, patients with AD
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FIGURE 7 | The training process of the proposed network under scenarios 5, 6, and 7. The losses curves in train datasets are represented by solid lines in the
figure, while the accuracy curves in test datasets are represented by dashed lines.

FIGURE 8 | Receiver operating characteristic (ROC) curves with pointwise confidence bounds. The sensitivity (true positive rate) here reflects the percentage of FTD
patients who were correctly classified having FTD against a background group of patients with AD, and the specificity (false positive rate) reflects the percentage of
AD patients correctly classified as having AD. (A) ROC curve for FTDl vs. ADl in scenario 8. (B) ROC curve for FTD vs. AD in scenario 9. (C) ROC curve for FTD vs.
AD in scenario 4.

and NCs, on an individual patient basis. The classification
results showed that the proposed approach achieved promising
performance without any manual intervention by medical
experts. The pattern knowledge learned by the DL network is
generalizable, and could be transferred to other datasets and
tasks. The voxel-based contribution map results in turn showed
that the networks mine the potential patterns that may be
different from human clinicians.

Inherent Drawback of Studies Based on
Traditional ML
Traditional ML techniques, including logistic regression, support
vector machine (SVM), principal component analysis (PCA),

linear discriminant analysis (LDA) and random forests, have
been used in the field of brain disorders for more than 10 years
(Table 4). Their common shortcoming is that each task to be
solved requires a specific, sophisticated, and time-consuming
manual design, which requires researchers to explore endless
problems strenuously.

The traditional ML algorithm is mainly used at Level
4 (Figure 1), playing an important role in dimensionality
reduction, voting or classification of the previously extracted
feature map. This kind of auxiliary algorithm merely scratches
the surface and cannot eliminate its dependence on professional
knowledge and human intervention. Therefore, there is an urgent
need for an algorithm that can automatically mine features from
massive data, and this property is the advantage of DL.
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FIGURE 9 | The sensitivity and specificity in addition to the accuracy for the different scenarios. The number before the underline in the abscissa label indicates the
scenario, and the category after the underline indicates which disease is the positive sample. Both scenario 3 and scenario 7 are multi-classification problems, so we
calculate them from the perspective of FTD as positive sample and AD as positive sample, respectively.

Shortcoming of Previous Studies Based
on DL
Many studies have applied DL networks to the fields of brain
region of interest (ROI) segmentation, dementia diagnosis, and
disease prediction and have made considerable progress. Recent
work has demonstrated that residual and plain convolutional
neural networks (CNNs) (Korolev et al., 2017) based on the
ADNI dataset achieve similar performance in AD classification
tasks. Another study proposed a multi-model DL framework
based on CNN for joint automatic hippocampal segmentation
and AD classification (Liu et al., 2020). Some studies sliced
natural 3D volumes into multiple slides of 2D images (Basheera
and Ram, 2020) and achieved acceptable performance. Compared
with this paper (Table 4), these existing studies have the following
shortcomings: (1) the consistent sample size is limited, which
does not conform to the actual clinical environment; (2) the
manual intervention in Level 1 and Level 2 is not completely
abandoned; and (3) the studies mainly concentrated on patients
with AD, patients with MCI, and NC, and these methods have not
been used in FTD-related research.

What Are the Features Used by the DL
Network?
Interpretability is one of the most common limitations of
DL studies on medical images. In the current study, we
utilized a gradient visualization algorithm based on guided
backpropagation and showed the contribution weight of the
classification in both the AD and FTD groups. Generally, both
AD and FTD showed a uniformly distribution across the whole
brain, indicating that DL may not only focused on the features
from some specific regions. However, there were still high
contribution region in both groups. The AD and FTD images

shared some high-contribution regions, such as the subcortical
regions, corpus callosum and cingulate cortex. We can speculate
that the features in these regions were used to classify them from
NC images given the weight were calculated from the 3-group
classification, which is consistent with previous studies indicating
that both AD and FTD may have ventricular expansion (Altmann
et al., 2019). The DL-based network may use the boundary of
the ventricles, namely, the regions next to them, such as the
subcortical regions, corpus callosum and nearby white matter
regions, to capture ventricular expansion.

The contribution maps of AD and FTD also showed some
differences. The DL-based network gave out a higher weight on
the right frontal white matter in FTD, but on the left temporal,
bilateral inferior frontal and hippocampal regions in AD. The
DL-based network may use the region around the hippocampus
to take atrophy information of the hippocampus as well as
inferior frontal and temporal regions. It is also worth to note
that we found a left-side dominance of the DL-based network
contribution in AD, which is consistent with previous studies
(Minkova et al., 2017). The white matter and subcortical regions
showed very high contribution, and the information may be used
to estimate the atrophy of the frontal cortex in FTD, which has
been frequently reported in previous studies (Weder et al., 2007).
Also, there is also a trend of asymmetry in FTD and this right
dominance was especially visualized when compared with AD.
This right lateralized pattern is also reported by previous studies
(Irwin et al., 2018).

The DL-based network tend to assign higher weight in
boundary voxels rather than those within the typical regions, like
hippocampus. One possible reason is that the boundary is more
important than the inner regions of the atrophied structures to
the DL-based network. However, this finding may also indicate
that the morphology of nearby white matter regions around the
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typical atrophied gray matter regions may have potential critical
features for AD and FTD, which are ignored previously and needs
further investigation.

LIMITATION AND CONCLUSION

In conclusion, DL-based classification models eliminate the
dependence on professional knowledge and clinical experience
and have the ability to solve the enigma of differential diagnosis
of diseases. Moreover, they may mine the potential patterns that
may be different from human clinicians, which may provide new
insight into the understanding of FTD and AD.

There are some limitations that need to be considered. First,
the performance on the multiclassification tasks in the looser
datasets are not satisfactory. We did not use clinical information
to analyze the misclassified samples and improve the model.
Second, since the experiment proved that the knowledge learned
by the DL network is generalizable, we can extend it to other
body parts, diseases and modes. However, considering that the
visual interpretation part needs the guidance of clinical experts,
we have not carried out that experiments at present. Third, FTD
has many subtypes (behavioral variant FTD, semantic variant
primary progressive aphasia and non-fluent variant primary
progressive aphasia), and generally labeled them as FTD is not
conducive to automatic pattern learning. Finally, as FTD and AD
are neurodegenerative diseases, the images of these diseases also
changed over time, but we did not use the tracking data in the
open databases for further study.

Effect of Spatial and Intensity
Normalization
The performance on the multiclassification tasks in the
looser datasets were not satisfactory. We supplemented three
normalization methods (Table 5) based on scenario 7 to
further discuss the effect of spatial and pixel normalization
on the resulting: (1). reduced the specified size in spatial
normalization; (2). changed the order of spline interpolation
in spatial normalization; (3). changed the mean and standard
deviation used in pixel normalization.

The accuracy, sensitivity and specificity of scenario 10 were all
better than that of scenario 7, but the performance of scenario
11 was worse than that of scenarios 7 and 10. It can be inferred
that appropriately reducing the size of the original image eased
the learning burden of the network, but too small space size led
to the loss of useful information. Comparing the performance
of scenarios 7 and 12, it can be seen that changing the order
of spline interpolation in spatial normalization didn’t improve
the performance significantly and was more computationally
intensive and time-consuming. Similarly, sharing the same mean
and standard deviation in scenario 13 did not simplify the
classification problem.

Early Stages of Disease
We have information which describes the participant’s change
in cognitive status from last visit to current visit in the
ADNI database. But No similar tracking data is available in
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TABLE 5 | The effect of spatial and intensity normalization on the classification performance.

Scenario Spatial normalization Intensity normalization Accuracy (%) Sensitivity (%) Specificity (%)

Specified size Order FTD AD FTD AD

7 240 × 256 × 160 0 Individual 66.79 49.29 79.77 58.68 58.35

10 180 × 192 × 120 0 Individual 70.47 56.00 64.47 89.87 83.03

11 120 × 128 × 80 0 Individual 63.36 50.80 59.16 89.40 87.00

12 240 × 256 × 160 1 Individual 68.75 54.80 67.94 65.89 63.91

13 180 × 192 × 120 0 Averaged 58.95 55.60 92.75 85.34 77.80

The only difference between scenarios 7, 10, 11, 12, and 13 lines in the normalization methods, whose training data composition and test data composition are identical.

the NIFD database. Diagnosis conversion information and the
data dictionary in the ADNI database are located on the
LONI Image Data Archive3 (IDA). Enter your username and
password, go to Download, then Study Data. When you click
on Assessments, you will see Diagnostic Summary [ADNI1,
GO, 2] (DXSUM_PDXCONV_ADNIALL.csv). When you click
on Study Info, you will see Data Dictionary [ADNI1, GO, 2]
(DATADIC.csv).

MCI is considered a prodromal phase to dementia
especially the AD type. The DXCHANGE item in the data
dictionary indicates the patient’s disease progression, where
DXCHANGE = 4 indicates the change from a normal control
to MCI. Filtering all ADNI patients based on this keyword
yielded a total of 91 eligible. However, some patients did not have
MRI examination before and after the disease transformation.
Therefore, the filtered data was not enough to study the early
stage classification problem of the same patient.

Nevertheless, we downloaded a standard data collection
(adni1: complete 2yr 3T) from ADNI for further analysis. The
training set and test set were divided in the same way as other
scenarios, please refer to section “Data Collection” for details. The
DL network tended to converge after training with about 5,800
images (20 epochs). The accuracy, sensitivity, and specificity
of the test set were 58.21, 33.33, and 92.87%, respectively.
Specifically, there were 28 NC cases in the test set, and only 2 cases
were incorrectly classified as MCI. However, 26 of the 39 MCIs in
the test set were missed as NC, which was a very acute failure.
MCI is difficult to diagnose due to its rather mild, perhaps using
multi-modal data, combining structural data with functional
data, and improving the sample size can help solve the problem.
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