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Abstract

Anticoagulant overdose is associated with major bleeding complications. Rapid coagulation

sensing may ensure safe and accurate anticoagulant dosing and reduce bleeding risk.

Here, we report the novel use of Laser Speckle Rheology (LSR) for measuring anticoagula-

tion and haemodilution status in whole blood. In the LSR approach, blood from 12 patients

and 4 swine was placed in disposable cartridges and time-varying intensity fluctuations of

laser speckle patterns were measured to quantify the viscoelastic modulus during clotting.

Coagulation parameters, mainly clotting time, clot progression rate (α-angle) and maximum

clot stiffness (MA) were derived from the clot viscoelasticity trace and compared with stan-

dard Thromboelastography (TEG). To demonstrate the capability for anticoagulation sens-

ing in patients, blood samples from 12 patients treated with warfarin anticoagulant were

analyzed. LSR clotting time correlated with prothrombin and activated partial thromboplastin

time (r = 0.57–0.77, p<0.04) and all LSR parameters demonstrated good correlation with

TEG (r = 0.61–0.87, p<0.04). To further evaluate the dose-dependent sensitivity of LSR

parameters, swine blood was spiked with varying concentrations of heparin, argatroban and

rivaroxaban or serially diluted with saline. We observed that anticoagulant treatments pro-

longed LSR clotting time in a dose-dependent manner that correlated closely with TEG (r =

0.99, p<0.01). LSR angle was unaltered by anticoagulation whereas TEG angle presented

dose-dependent diminution likely linked to the mechanical manipulation of the clot. In both

LSR and TEG, MA was largely unaffected by anticoagulation, and LSR presented a higher

sensitivity to increased haemodilution in comparison to TEG (p<0.01). Our results establish

that LSR rapidly and accurately measures the response of various anticoagulants, opening

the opportunity for routine anticoagulation monitoring at the point-of-care or for patient self-

testing.

Introduction

Thrombotic and thromboembolic events are the most common causes of morbidity and mor-

tality [1]. In many cases, thromboembolic disorders may be preventable and treatable with

PLOS ONE | https://doi.org/10.1371/journal.pone.0182491 August 3, 2017 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Tshikudi DM, Tripathi MM, Hajjarian Z,

Van Cott EM, Nadkarni SK (2017) Optical sensing

of anticoagulation status: Towards point-of-care

coagulation testing. PLoS ONE 12(8): e0182491.

https://doi.org/10.1371/journal.pone.0182491

Editor: Thomas Abraham, Pennsylvania State

Hershey College of Medicine, UNITED STATES

Received: December 19, 2016

Accepted: July 19, 2017

Published: August 3, 2017

Copyright: © 2017 Tshikudi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the research

grant, A hand-held blood coagulation sensor,

FA9550-13-1-0068, Seemantini K Nadkarni from

the Air Force Office of Scientific Research and

Blood coagulation monitoring at the point of care,

5RO1HL119867, Seemantini K Nadkarni from the

National Institute of Health. The funders had no

role in study design, data collection and analysis,

https://doi.org/10.1371/journal.pone.0182491
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182491&domain=pdf&date_stamp=2017-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182491&domain=pdf&date_stamp=2017-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182491&domain=pdf&date_stamp=2017-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182491&domain=pdf&date_stamp=2017-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182491&domain=pdf&date_stamp=2017-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182491&domain=pdf&date_stamp=2017-08-03
https://doi.org/10.1371/journal.pone.0182491
http://creativecommons.org/licenses/by/4.0/


effective anticoagulant therapy [2,3]. Parenteral and oral anticoagulants such as heparin,

argatroban, warfarin, rivaroxaban, and several other drugs are widely prescribed during peri-

operative procedures and for acute or long-term treatment in tens of millions of patients

worldwide [2]. Despite their effectiveness in preventing and treating thromboembolic events,

anticoagulant therapies, even when maintained within therapeutic ranges, are often associated

with major bleeding complications including haemorrhagic shock [1,4]. Acute bleeding events

may require fluid resuscitation leading to extensive haemodilution, complex coagulopathy and

significant morbidity and mortality [4–6].

Anticoagulation-associated bleeding can arise due to long-term use, overdose, urgent sur-

geries, during transition between anticoagulants and in cases of recurrent thrombosis [4,7].

Anticoagulation management in these patients is challenging because a narrow therapeutic

window often exists between bleeding and coagulation. Anticoagulation is further influenced

by numerous food and drug interactions, hepatic or renal impairment and the variability in

dose response [4,8,9]. As a result, clinicians routinely walk a thin line to maintain a delicate

balance between bleeding and thrombosis. Consequently, most patients require frequent labo-

ratory testing of blood coagulation status to ensure accurate and safe anticoagulant dosing

[3,7]. Traditionally, laboratory-based coagulation assays such as activated partial thromboplas-

tin time (aPTT), prothrombin time (PT), activated clotting time (ACT) and chromogenic anti-

Xa assays are commonly used to monitor anticoagulants therapies [10]. Laboratory testing

however has long turn-around times and can be expensive over time, placing a large burden

on health care resources [1,8]. Recently, to meet the need for comprehensive point-of-care

(PoC) testing, viscoelastic assays such as rotational thromboelastometry (ROTEM) and throm-

boelastography (TEG) have provided rapid alternatives to routine laboratory testing by allow-

ing assessment of global haemostasis in real-time [11,12]. Yet, several concerns including the

need for daily calibration and specialised operators, mechanical manipulation of the clot, the

long data reporting time, large instrument size, high cost and the lack of standardised proce-

dures have limited the widespread adoption of TEG and ROTEM for routine anticoagulation

assessment at the PoC [13].

We have recently developed a new optical sensor that utilizes Laser Speckle Rheology (LSR)

approaches to rapidly quantify a patient’s coagulation status using a few drops of whole blood

by measuring changes in blood viscoelasticity during coagulation from a time series of laser

speckle patterns [14–17]. Laser speckle that occurs by the interference of scattered laser light,

is exquisitely sensitive to the Brownian motion of endogenous light scattering particles in turn

influenced by the viscoelastic susceptibility of the medium [14–18]. The increasing stiffness of

blood during coagulation therefore elicits a slower rate of speckle fluctuations in a clot com-

pared with un-clotted blood [14,15]. In a recent study we have shown that clotting time and

clot stiffness measured by LSR are closely correlated with plasma-based laboratory tests of

aPTT, PT and fibrinogen levels in patients with a range of coagulation abnormalities [14]. The

goal of the current study is to investigate the capability of using LSR as a tool to quantify antic-

oagulation status in response to treatment via four common classes of anticoagulants. We first

conducted a pilot clinical study to demonstrate the capability for monitoring anticoagulation

in patients treated with warfarin anticoagulant, a common Vitamin K antagonist (VKA). Next,

using swine blood, we assess the accuracy and sensitivity of LSR in measuring the dose-depen-

dent response of several common anticoagulants including an indirect thrombin inhibitor

(heparin), a factor Xa inhibitor (rivaroxaban) and a direct thrombin inhibitor (argatroban) via

comparison with standard reference TEG measurements. Finally we also evaluate the sensitiv-

ity and accuracy of LSR to identify coagulation changes due to haemodilution often associated

with fluid resuscitation in patients.

Towards point-of-care coagulation testing
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Materials and methods

Blood sample collection and preparation

Patient blood samples: The use of patient blood samples was approved by the Institutional

Review Board of the Massachusetts General Hospital. De-identified whole blood samples from

12 patients receiving oral warfarin therapy (Coumadin) and undergoing conventional coagula-

tion testing were collected in 0.105M sodium citrate Vacutainer system from the MGH special

coagulation laboratory. In these patients laboratory tests of aPTT, PT, and INR were con-

ducted as per clinical standard-of-care.

Swine blood samples: The study was approved by the Institutional Animal Care and Use

Committee of Massachusetts General Hospital (MGH). Fresh blood samples from 4 female

Yorkshire swine were drawn from a central venous catheter line using a Vacutainer system

containing 0.105M sodium citrate (Becton Dickinson, Franklin Lakes, NJ, USA). Due to the

short stability period of whole blood (~7 hours) for coagulation assessment and the long mea-

surement time required for each TEG analysis (up to 60 min), it was difficult to evaluate more

than one anticoagulant or hemodilution treatment from the same blood draw. Therefore, in

this study, each of the 4 treatments (heparin, rivaroxaban, argatroban or hemodilution) with

the corresponding dose response was conducted per swine, which required 4 swine for use in

the study. To evaluate dose-dependent anticoagulation using LSR, swine whole blood samples

were spiked with 5 μL of heparin (0.1, 0.2, 0.25, 0.3 USP/ml) [19,20], argatroban (3.8, 5.7, 7.6,

15.2 μM) [21] or rivaroxaban (0.46, 1.15, 1.73 and 2.29 μM) prepared as described below. The

anticoagulant doses investigated in the current study were selected based on clinical target

ranges generally recommended for prophylaxis for preventing thromboembolic events in

patients [7,21–24]. Life-threatening bleeding events may require fluid resuscitation that can

further result in extensive hemodilution, leading to complex coagulopathy and significant

morbidity and mortality [6]. Therefore, we further assessed the influence of haemodilution on

LSR results. To this end, citrated swine whole blood samples were serially diluted at varying

concentrations (0–70%) of 0.9% saline solution (Hospira. Inc., Lake Forrest, IL, USA).

Both LSR and TEG testing was performed on all the patient and swine whole blood samples.

In all cases whole blood samples were citrated, maintained at room temperature (25˚C) and

evaluated within less than 4 hours [25].

Anticoagulants

To test the dose-dependent anticoagulation response using LSR in swine blood, anticoagulant

agents were prepared as follows. One rivaroxaban (a common factor X inhibitor) pill of 10 mg

(Xarelto (R), Bayer HealthCare AG, Leverkusen, Germany) was ground to a fine powder and

mixed with distilled water to obtain a final concentration of 100 μg/ml. The stock rivaroxaban

solution was ultrasonicated for 10 minutes in a water bath at room temperature and was fur-

ther incubated in a 50˚C water bath for 3 minutes [21]. Argatroban (a common direct throm-

bin inhibitor) solution of 1898.8 μM (The Pharmaceuticals, Inc., Woodcliff Lake, NJ, USA)

and heparin at 1000 USP/ml (unfractionated porcine heparin, Sagent Pharmaceuticals,

Schaumburg, IL, USA) were also used in this study.

TEG and LSR coagulation assays

In this study, TEG was used as the standard-reference technique for comparison with LSR

because it quantifies coagulation parameters based on a clot viscoelasticity profile similar to

LSR. TEG measurements were performed following the manufacturer’s instructions (Haemo-

netics Inc., Braintree, MA, USA). Briefly, 1 mL of citrated whole blood (non-treated or treated)

Towards point-of-care coagulation testing
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was mixed with kaolin to activate the intrinsic or contact coagulation pathway (Haemoscope

Corporation, Chicago, IL, USA) and 340 μL of the activated blood sample loaded into a TEG

measurement cup containing 20 μL of 0.2M calcium chloride (CaCl2). The coagulation process

was recorded by the TEG analyzer (TEG 5000; Haemoscope Corporation, Chicago, IL, USA)

for 30–60 minutes. Subsequently, the remainder of the kaolin-activated blood (660 μl) was

recalcified with 38.8 μl of 0.2M CaCl2, and 127 μl of recalcified blood was placed in a disposable

imaging cartridge (Grace Biolabs, Bend, OR, USA) (dimensions: 9 mm diameter, 2 mm depth)

for LSR analysis (detailed below). All experiments were conducted in triplicate using both LSR

and TEG.

LSR instrument

LSR measurements were performed using an optical set up detailed in our previous studies

(Fig 1A) [14,15]. The recalcified sample loaded in the disposable cartridge was maintained at

37˚C with a customized heat plate. The sample was illuminated with a diode laser (690 nm, 11

mW) and focused to a 100 μm (diameter) spot on the transparent optical window of the loaded

blood cartridge. The diameter of the laser spot was calculated using the beam propagation of

the Gaussian beam model when the laser wavelength is 690 nm, the focal length of the focusing

lens is 23 cm and the beam size diameter from the laser output is 2 mm.

A time-series of cross-polarized, laser speckle patterns reflected from the blood sample were

acquired using a high speed CMOS camera (Ace 2000–340 km, Basler, Ahrensburg, Germany)

and pattern acquisition was conducted at a frame rate of 753 frames/s for 1s at a time, with a 30s

time lapse over a duration of 20 minutes. However, due to significant multiple scattering within

the illuminated sample, the scattered and returning light interferes at the surface, forming a laser

speckle pattern diameter that covered a field of ~8mm. Therefore, the imaging region of interest

(ROI) was 500 X 500 pixels covering an area of 8 X 8 mm on the sample. The captured speckle

Fig 1. Laser speckle rheology (LSR) instrument and coagulation parameters. (A) The schematic

diagram of the LSR instrument used for blood coagulation assessment. Polarized light (690 nm, 9 mW) from a

diode laser (Newport Corp., LPM690-30C) was focused (spot size 100 μm) on the imaging chamber

containing 127 μl of kaolin-activated blood. Cross-polarized laser speckle patterns were acquired at 180˚

back-scattering geometry via a beam-splitter using a high speed CMOS camera (Basler AG, acA2000-

340km) equipped with a focusing lens (Edmund Optics, NT59-872)[14]. The captured speckle patterns were

transferred to a computer for further processing. (B) Representative clot viscoelasticity profile derived using

LSR. The relative change in clot viscoelasticity (G) is measured during coagulation and plotted as a function of

time to retrieve the LSR coagulation parameters, R, K, α-angle and MA. Reprinted from [Tripathi MM,

Hajjarian Z, Van Cott ME, and Nadkarni KS. Assessing blood coagulation status with laser speckle rheology.

Biomed. Opt. Express. 2014. 5: 817–831] under a CC BY license, with permission from [The Optical Society],

original copyright [2014].

https://doi.org/10.1371/journal.pone.0182491.g001
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patterns were transmitted to a desktop computer and processed to retrieve the LSR clot viscoelas-

ticity profile and quantify coagulation parameters as summarized below (Fig 1B).

LSR data analysis

To retrieve the clot viscoelasticity profile, the complex viscoelastic modulus, G�(ω), of blood as

a function of frequency, ω, was first quantified from time-varying laser speckle intensity fluctu-

ations using algorithms that have been previously described in detail [15,17,18]. Briefly, to cal-

culate G�(ω), of blood, the speckle intensity autocorrelation curve, g2(t), was first calculated by

performing a 2-dimensional cross-correlation analysis between first speckle frames with subse-

quent frames of the speckle image time series as [15]

g
2
ðtÞ ¼

hIðt0ÞIðt0 þ tÞipixels
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hIðt0Þ
2
ipixelshIðt0 þ tÞ2ipixels

q

* +

t0

ð1Þ

Here I(t0) and I(t0+t) defines the speckle intensities at times t0 and t0+t, and<>pixels and<>t0

indicates spatial and temporal averaging over all the pixels (500 x 500) and for the duration of

speckle time series (1s) respectively. Next, the extent of Brownian displacements of light scatter-

ing particles (RBC’s, platelets etc.) defined by the mean square displacement (MSD) was calcu-

lated from the measured g2(t) as follows[26,27]:

g
2
ðtÞ ¼ e� 2g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2hDr2ðtÞi
p

ð2Þ

where<Δr2(t)> represents MSD, k is the wave vector in the scattering medium which can be

further expressed as k = 2πn/λ, n (= 1.36) is the refractive index of the blood, λ (= 690nm) is the

wavelength of the incident laser light and γ (= 5/3) is an experimental parameter related to the

source-detector distance and polarization state of light [15,18,28,29].

As previously described, the MSD calculated above quantifies the random Brownian diffu-

sion of scattering particles in response to thermal forces and is therefore directly linked to the

viscoelastic modulus of blood, denoted by G�(ω). The MSD values measured at short, interme-

diate and long durations correspond to the high, intermediate and low frequency response of

the viscoelastic material [26]. It has been previously established that the viscoelastic modulus

and the MSD of particles undergoing Brownian motion are related through the Generalized

Stokes-Einstein Relation (GSER) as follows [15]:

G�ðoÞ ¼
KbT

aphDr2ð1=oÞiG½1 þ aðoÞ�
ð3Þ

where Kb is the Boltzmann constant (= 1.38 x 10−23 m2 kg s-2 K-1), and T is the temperature in

Kelvin (= 310˚K), ω = 2πυ = 1/t represents the angular frequency, υ represents frequency, t is

time in sec, Γ denotes the gamma function and α(ω) =
dlnhDr2ðtÞi

dlnt

�
�
�

�
�
�

t¼1=o
denotes the MSD slope in

a log-log plot. To compute the absolute value of the viscoelastic modulus, G�(ω), via the GSER,

knowledge of the particle radius, a, of light scattering particles is required. During coagulation,

however, the effective radius of light scatterers is consistently altered with the formation of

fibrin monomers and due to platelet aggregation. As a result, an accurate estimate of ‘a’ is diffi-

cult to obtain. Instead, we measured the quantity G at a frequency of ω = 5Hz to indicate clot

viscoelasticity, where G = a×|G�(ω)|, was equal to the product of the viscoelastic modulus and

the particle radius, a. Using this approach, we have previously established that LSR can accu-

rately quantify the time course evolution of the viscoelastic modulus during the process of

blood coagulation [15].

Towards point-of-care coagulation testing
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Next, the time course of the modulus, G, was plotted as a function of coagulation time, t,
and normalized to the baseline value to obtain the LSR amplitude curve, from which the fol-

lowing coagulation parameters were extracted: reaction time (R), kinetic time (K), clotting

time (R+K), angle (α), and maximum clot stiffness or maximum amplitude (MA) (Fig 1B and

Table 1). The R-time was defined as the time at which the tangent drawn to the rising slope of

the LSR amplitude curve intersected with the time axis. The K-time was time between the R-

time and the time at which slope of the LSR amplitude curve attained a maximum value. The

α-angle was defined as the angle between the tangent and the time axis and the MA was equal

to the maximum value of the LSR amplitude curve. The maximum amplitude (MA) represents

a measure of clot viscoelastic modulus or clot strength and is related to the interaction between

the fibrin network and the activated platelets and fibrin polymerization as discussed further

below [30]. All coagulation parameters measured by LSR were then compared with standard

TEG results.

Statistical analysis

Linear regression analysis using the parametric Pearson correlation coefficient was used to

evaluate the correlation between LSR and TEG coagulation parameters, and between LSR clot-

ting time and aPTT and PT. The strength of the correlation for absolute values of r between

0.40 and 0.59 was considerated ‘moderate’ whereas r between 0.6 and 0.79 was defined as hav-

ing a ‘strong’ or ‘good’ correlation [31]. One-way and two-way analysis of variance (ANOVA)

followed by the Tukey’s method for multiple test comparisons (Prism software, GraphPad, San

Diego, CA, USA) were performed to measure sensitivity to dose-dependent anticoagulation.

In all cases P<0.05 was considered statistically significant.

Results

Clinical testing using LSR in warfarin-treated patients: Comparison with

TEG and conventional coagulation tests

Fig 2 shows the results of the clinical study conducted to test the capability of LSR in detecting

anticoagulation effects of warfarin in patients undergoing conventional coagulation testing

(CCT) per standard-of-care. As observed in Fig 2A and 2B, treatment with warfarin affected

the LSR coagulation profile similar to TEG via an increase in the clotting time reported for the

patient with abnormally high CCT clotting times compared with the normal patient. The nor-

mal ranges for CCT clotting times are: aPTT: 22–35 second, PT: 11.5–14.5 second and INR:

0.9–1.1. The pooled data for all patients is shown in Fig 2C–2H. A high correlation was

observed between LSR clotting time and aPTT (r = 0.77 p<0.01), which, similar to LSR (and

TEG), relies on a kaolin based buffer to activate coagulation via the intrinsic coagulation path-

way (Fig 2C). Furthermore, the correlation between LSR and PT was r = 0.57 (p = 0.05) and

with INR was r = 0.59 (p = 0.04) (Fig 2D and 2E). Since the PT/INR assay utilizes tissue factor

Table 1. LSR coagulation parameters: Descriptions and definition.

LSR parameters Definitions

Reaction time (R) Activation of clotting proteins and initial fibrin formation.

Kinetic time (K) Platelet activation and amplification of thrombin formation.

Clotting time (R+K) Time to maximum fibrin formation.

Angle (α) Clot progression rate.

Maximum Amplitude (MA) Maximum clot stiffness.

https://doi.org/10.1371/journal.pone.0182491.t001
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to activate the extrinsic coagulation pathway as opposed to the intrinsic pathway coagulation

(measured by aPTT and LSR), only a moderate correlation with LSR was observed. In com-

parison with TEG coagulation parameters measured from patient samples (Fig 2F–2H), LSR

clotting time presented an excellent correlation with the corresponding TEG clotting time

(r = 0.87, p<0.001) (Fig 2F). Moreover, a good correlation was observed between LSR and

TEG measurements of α–angle (r = 0.61 p = 0.04) (Fig 2G) and MA (r = 0.63 p = 0.03) (Fig

2H). These results demonstrate the capability of LSR in quantifying anticoagulation response

in patients similar to standard TEG and CCTs. For the pilot clinical study in patients, the sam-

ple size was confirmed by conducting a power analysis. The sample size calculation showed

that 12 participants were sufficient to obtain a statistical power of 80% with a β-risk of 20%,

confidence level of 95% and a precision (α-risk) of 5% to detect a correlation of r = 0.57 (which

corresponded to the lowest detectable correlation between LSR clotting time and lab values of

PT). Therefore, a cohort of 12 participants in this study was sufficient to detect a statistically

significant correlation for all parameters as observed in the paper.

Fig 2. Effect of warfarin treatment on correlations between LSR and aPTT, PT, INR and TEG parameters. Coagulation profiles of

12 patients on warfarin therapy were evaluated using LSR and TEG, and with aPTT and PT/INR assays. LSR clotting time (R+K)

parameter was compared to aPTT (A), PT (B), INR (C), and TEG R+K time (D). Furthermore LSR and TEG parameters angle (E) and

MA (F) were compared. In Figs (B-F) data from all 12 patients is reported. For Fig (A), N = 11 patients are reported as aPTT was not

obtained for one patient.

https://doi.org/10.1371/journal.pone.0182491.g002
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Swine testing: Assessment of dose-dependent anticoagulation using

LSR and comparison with TEG

Figs3–6 show the results of studies conducted to evaluate the accuracy and sensitivity of LSR

to dose-dependent anticoagulation in swine blood samples. In each case, LSR amplitude curves

Fig 3. Dose-dependent clot viscoelasticity profiles measured by LSR and TEG. Clot formation of

recalcified and kaolin-activated citrated whole blood was measured in the presence of heparin (0.3 USP/ml),

argatroban (15.2μM) or rivaroxaban (2.29 μM) and compared with control samples (samples without

anticoagulants). In all cases, dose-dependent changes in clot viscoelasticity profiles are noted by both LSR

(solid curves) and TEG (dashed curves). The LSR profile trends closely mirror those measured by standard

TEG.

https://doi.org/10.1371/journal.pone.0182491.g003

Fig 4. Effect of heparin on LSR and TEG coagulation parameters. Blood coagulation parameters

including the clotting time (R+K), the clot progression (angle) and the maximum amplitude (MA) were

measured using LSR and TEG for 20–60 minutes following kaolin-activation of swine whole blood samples

spiked with heparin at concentration 0 (control), 0.1, 0.2, 0.25, 0.3 USP/ml (A-C). Linear regression analysis

between TEG and LSR coagulation parameters at each concentration was performed (D-F). Each data point

represents the mean of three replications ± standard deviation (SD) (histograms) or standard error of the

mean, SEM (linear regression). Values were compared between control samples (without treatment) and

heparin treated samples using ANOVA followed by the Tukey’s method for multiple comparisons post-tests. *
p<0.05,** p<0.01, *** p<0.001, **** p<0.0001.

https://doi.org/10.1371/journal.pone.0182491.g004
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Fig 6. Effect of rivaroxaban on coagulation parameters extracted from LSR and TEG. Kaolin-activated

swine blood spiked with 0 (control), 0.46, 1.15, 1.73, 2.29 μM rivaroxaban was measured for 30–45 minutes

and blood coagulation parameters including the clotting time (R+K), the clot progression (angle) and the

maximum amplitude (MA) were extracted at these concentrations (A-C). Linear regression analysis was

performed to analyze correlation between TEG and LSR (B-F). Each data point represents the mean of three

replications ± SD (histograms) or standard error of the mean, standard error of the mean, SEM (linear

regression). Values were compared between control samples (without treatment) and rivaroxaban treated

samples using ANOVA followed by the Tukey’s method for multiple comparisons post-tests. * p<0.05, **
p<0.01, *** p <0.001, **** p<0.0001.

https://doi.org/10.1371/journal.pone.0182491.g006

Fig 5. Effect of argatroban on LSR and TEG coagulation parameters. Kaolin-activated swine blood spiked

with 0 (control), 3.8, 5.7, 7.6, 15.2 μM argatroban was measured for 20–50 minutes and blood coagulation

parameters including the clotting time (R+K), the clot progression (angle) and the maximum amplitude (MA) were

extracted for each concentration (A-C). Correlation between LSR and TEG was evaluated using linear regression

analysis (D-F). Each data point represents the mean of three replications ±SD (histograms) or standard error of

the mean, SEM (linear regression). Values were compared between control samples (without treatment) and

argatroban treated samples using ANOVA followed by the Tukey’s method for multiple comparisons post-tests.

* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

https://doi.org/10.1371/journal.pone.0182491.g005
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and coagulation parameters were compared with corresponding coagulation profiles and pa-

rameters obtained from TEG (Figs 3–6). Fig 3 shows representative LSR and TEG coagulation

profiles in swine blood obtained following treatment with heparin, argatroban and rivaroxa-

ban at various doses. As shown, in all cases coagulation profiles measured using LSR closely

matched the corresponding trends measured by TEG. The anticoagulant agents affected the

LSR and TEG coagulation profiles in a dose-dependent manner by prolonging the clotting

time, in particular. The results obtained for each anticoagulant are detailed below.

Heparin. Treatment with heparin at concentrations varying from 0–0.3 USP/ml caused

an exponential increase of the clotting time with values ranging from 1.87 ± 0.45 min to 18.41 ±
4.23 min (p<0.0001) for LSR, and from 3.37 ± 0.32 min to 15.88 ± 1.65 min (p<0.0001) for

TEG (Figs 3 and 4A). Furthermore, increasing heparin concentration decreased the α-angle in

both LSR and TEG profiles from 88.3±0.30˚ to 84.53 ± 1.24˚ (p<0.0001) and from 81.53 ± 0.75

to 57.95 ± 3.26 (p<0.0001), respectively (Fig 4B). LSR measurements of clotting times and

angles demonstrated excellent correlation with the corresponding TEG measurements with a

correlation coefficient r = 0.99, p<0.001 for clotting times (Fig 4D) and r = 0.95, p<0.01 for α-

angles (Fig 4E). Changes in MA were observed in LSR and TEG related with heparin dose (Fig

4C). Particularly, with increasing heparin concentration, a trend towards reduction in the MA

from 66.56 ± 4.65% at 0 USP/ml to 45.18 ± 6.27% at 0.3 USP/ml was observed using LSR; these

differences however were not statistically significant (p = 0.1). In contrast, TEG displayed a sig-

nificant reduction in MA from 77.63 ± 1.23mm at 0 USP/ml to 67.65 ± 1.78mm at 0.3 USP/ml

(p<0.0001), thereby explaining the lower MA correlation of r = 0.43 between both devices

(p = 0.5) (Fig 4C and 4F). This discrepancy between LSR and TEG measurements of MA could

be due to differences in the properties of the clot formed under quiescent (in LSR) and under

high strain conditions (in TEG) as detailed below in the Discussion section.

Argatroban. Similar to heparin, treatment with argatroban significantly prolonged clot-

ting times in both LSR and TEG with values ranging from 2.48 ± 0.37 min to 10.9±3.4 min for

LSR (p<0.01) and 3.93±0.32 min to 18.85±4.45 min for TEG (p<0.0001) (Figs 3 and 5A).

While the α-angle was largely maintained with argatroban concentration, at a concentration

above 7.6 μM a slight reduction from 88.31˚±0.25˚ to 84.83˚±3.67˚ (p = 0.2) was observed in

LSR and a significant decrease from 80.33±0.70˚ to 50±5.82˚ (p<0.0001) was measured by

TEG (Fig 5B). Clot MA values were largely preserved in both LSR and TEG measurements

with no significant differences observed between doses (p = 0.1) (Fig 5C). A strong correlation

was observed between LSR measurements of clotting time (r = 0.99; p<0.001) and α-angles

(r = 0.95, p<0.01) versus the corresponding TEG measurements; however, the absence of a

dose-dependent modulation in MA using both methods led to a low correlation of r = 0.49

(p = 0.6) for this parameter versus TEG (Fig 5D–5F).

Rivaroxaban. Rivaroxaban, an oral direct factor Xa inhibitor, significantly prolonged the

clotting time from 3.78 ± 0.68 min to 12.96 ± 1.50 min in LSR and 4.53 ± 0.30 min to 17.53 ±
1.29 min in TEG in a dose-dependent manner (p<0.0001 for both technologies) (Figs 3 and

6A). Similar to heparin and argatroban, LSR and TEG measurements of clotting time showed

a strong correlation of r = 0.99 (p<0.01). No dose-dependent differences were detected in the

α-angle values measured by LSR (p = 0.3), whereas, an increase in rivaroxaban concentration

caused a small, reduction in TEG α-angle from 81.43˚±0.67˚ to 71.8˚±1.1˚ (p = 0.02) (Fig 6B).

As a result, the correlation between LSR and TEG measurements of α-angles was not statisti-

cally significant (r = 0.77, p = 0.1). As observed in Fig 6C, both LSR and TEG measurements of

MA remained unchanged by rivaroxaban concentration (p = 0.5). Thus, in the absence of

dose-dependent variation, a poor correlation in LSR and TEG measurements of MA was how-

ever observed (r = 0.49, p = 0.4) (Fig 6D–6F).
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Assessment of haemodilution in swine blood using LSR and TEG. Fluid resuscitation, a

primary approach of managing haemorrhage caused by excessive anticoagulation in patients,

can lead to further coagulation impairment via dilution of clotting factors. Therefore, we

assessed the capability of LSR for detecting coagulation impairments caused by serial haemodi-

lution via comparison with TEG. As observed in Fig 7A, haemodilution significantly affected

LSR coagulation profiles and parameters in a dose-dependent manner similar to TEG (Fig 7B).

For dilutions greater than 50%, a slight increase in clotting time was measured: from 1.38±0.25

min to 1.43±0.36 min for LSR and from 2.9±0.56 to 3.4±0.30 minutes for TEG (p = 0.09) (Fig

7C). However, both LSR and TEG measured steady decreases in clotting times (R+K) for serial

haemodilution of up to 50%; from 2.79±0.36 min to 1.35±0.25 min for LSR (p = 0.08) and

from 4.57±0.86 min to 2.47±0.38 min for TEG (p = 0.04). Furthermore, clotting time (R+K)

Fig 7. Effect of haemodilution on LSR and TEG clot viscoelasticity profiles and parameters. Recalcified and kaolin-activated swine whole

blood diluted at 0 (undiluted blood sample) 40, 50, 60 or 70% were measured using LSR (A) and TEG instruments (B) and blood coagulation

parameters such as the clotting time (R+K) (C), the clot progression (angle) (D) and the maximum amplitude (MA) (E) were extracted at various

haemodilution concentrations. Linear regression analysis comparing blood coagulation parameters R+K (F) angle (G), and MA (H) between LSR and

TEG are presented. Each data point represents the mean of three replications ± SD (histograms) or standard error of the mean, SEM (linear

regression). Comparisons were done using ANOVA followed by the Tukey’s method for multiple comparisons. (*, 0%-. . .); ($, 40%-. . .); (&, 50%-. . .);

(#, 60–70%). * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

https://doi.org/10.1371/journal.pone.0182491.g007
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measured by LSR for the diluted blood samples demonstrated strong correlation with the cor-

responding TEG measurements (r = 0.90; p = 0.03) (Fig 7F). Contrary to clotting time results,

below 50% haemodilution, both LSR and TEG presented no significant change in the α-angle.

For haemodilution levels beyond 50% however, a slight decrease in α-angle was noted from

82.83±0.84˚ to 72.33±2.74˚ (p<0.01) by LSR and from 74.60±2.12˚ to 70.87±0.46˚ (p<0.01)

by TEG (Fig 7D). LSR measurements of α-angle demonstrated a strong correlation (r = 0.90;

p = 0.03) versus TEG (Fig 7G). Interestingly, the clot stiffness parameter, MA, was most sus-

ceptible to haemodilution in a dose-dependent manner. While both devices presented a dimi-

nution in MA with increasing haemodilution, LSR detected a larger MA modulation in

comparison to TEG (Fig 7A and 7B). A steady decrease in MA from 52.09±5.92 to 6.54±0.22

(p<0.0001) was noted by LSR and MA varied from 79.77±1.75 to 50.97±0.92 (p<0.0001) in

TEG. This resulted in an excellent correlation measured between LSR and TEG values of MA

(r = 0.95, p = 0.01) (Fig 7E and 7H).

Discussion

The complexity of anticoagulant therapy affected by a narrow therapeutic window is responsi-

ble for a high number of adverse reactions such as haemorrhage and thrombotic events [1,32].

Frequent monitoring of coagulation status is therefore crucial to ensure appropriate anticoag-

ulant dosing and to maintain a critical balance between coagulation and bleeding [33]. Point-

of-care coagulation testing may offer a simplified, convenient, and inexpensive alternative to

traditional laboratory monitoring with rapid, comprehensive, and real-time reporting of coag-

ulation results [33,34]. Here, we have demonstrated for the first time, the capability of LSR, a

novel optical coagulation sensing technology, for assessing the treatment-response of common

anticoagulants such as warfarin, heparin, argatroban, and rivaroxaban in anticoagulated

patients and in swine. In addition, the influence of haemodilution on the LSR coagulation pro-

file was also evaluated to test the feasibility of potentially detecting coagulation impairments

caused by fluid resuscitation.

To assess the measurement accuracy for anticoagulation sensing, LSR parameters were

compared to those measured with its mechanical counterpart, TEG, a mechanical sensor

shown to be useful in evaluating the coagulation status of patients treated with heparin or

direct thrombin and FX inhibitors [11,22,35]. In the clinical testing studies reported in Fig 2,

LSR metrics were also compared to CCT results of aPTT, PT and INR that have been used as

the clinical standard of care to assess patients on warfarin therapy.

The objective of this study was to validate the capability of the LSR technology to assess the

four broad classes of anticoagulant drugs most frequently used in patients. In this study, we

chose one drug from each of the four broad classes of anticoagulants to demonstrate the capa-

bility of the technology in monitoring dose-dependent anticoagulation for each mechanism of

action. In our future work, additional studies will be performed to include additional anticoag-

ulant drugs from similar classes, such as dabigatran (direct thrombin inhibitor), apixaban

(Factor X inhibitor) and Lovenox (low molecular weight heparin). Given that the results of the

current study establish the capability for monitoring all of the four major anticoagulant classes,

we expect similar results for other anticoagulant drugs from these classes in future studies.

Warfarin and other coumarin derivatives exert anticoagulant effects by limiting hepatic

production of functional vitamin K-dependent coagulation factors including prothrombin,

FIX, FX and FVII, the latter being the first protein to be depleted [36]. Warfarin treatment

commonly assessed using aPTT and INR (normalised ratio of PT), requires frequent monitor-

ing to determine the proper anticoagulant effect. In this study, LSR clotting time presented a

strong correlation with aPTT and good correlation to PT and INR (Fig 2D and 2E). The
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relatively moderate correlation of LSR clotting time with PT/INR versus aPTT might be ex-

plained by differences in the modes of coagulation activation utilised by the different assays.

Similar to LSR and TEG, the aPTT assay uses kaolin or celite to activate clot formation via the

intrinsic and common pathway, whereas PT/INR employs tissue factor utilizing extrinsic and

common pathway catalysers for coagulation [36,37]. In other words, LSR, aPTT and TEG as-

says are more sensitive to coagulation cascades resulting from kaolin activation via the intrin-

sic and common pathways, explaining the high correlation between LSR clotting time and

aPTT compared to PT/INR (Fig 2C and 2F) [38]. Although kaolin activation was employed in

this study to evaluate warfarin therapy using LSR, the use of tissue factor as a clotting activator

could just as easily be employed in conjunction with LSR to allow for a more accurate evalua-

tion of PT/INR values.

We further observed that the anticoagulation effects of heparin, argatroban and rivaroxaban

varied markedly in a concentration-dependent manner (Figs 3–6) and in concordance with

prior studies using other devices [19,39]. In LSR, the elongation of clotting time was closely

associated with anticoagulant dose similar to TEG. Clotting time variations for heparin and

argatroban presented similar trends, with small increases at low doses followed by an exponen-

tial increase in clotting time at higher concentrations (Figs 4A and 5A). By enhancing anti-

thrombin activity heparin indirectly and irreversibly catalyses inactivation of FXa, thrombin,

and other coagulation factors, thus cumulatively modulating the intrinsic, extrinsic and com-

mon pathways of coagulation [40,41]. These factors may explain the larger effect of heparin on

the clotting time in comparison to argatroban and rivaroxaban at high concentration (Figs

4A–6A). Nevertheless, heparin also binds to plasma proteins, macrophages and platelet factor

4 (PF4) in a non-specific manner, reducing their availability and prompting a low detection

sensitivity in clotting time by both LSR and TEG at lower heparin concentration [40,42,43].

Conversely, argatroban and rivaroxaban are direct inhibitors, and mainly regulate the com-

mon pathway of the coagulation cascade by specifically inhibiting thrombin and FX respec-

tively [7,44,45]. In particular, with a dissociation rate constant (Koff) 1000-fold slower and an

inhibition constant 100-fold weaker than argatroban, rivaroxaban is a more potent anticoagu-

lant likely explaining the longer clotting time even for low molar concentrations (Figs 4A–6A)

[7,44,46].

Despite the importance of clotting time in assessing the therapeutic effect of anticoagulant

drugs, clinical evidence indicates that anticoagulation management may be further improved

via the comprehensive assessment of downstream processes such as clot progression and fibrin

polymerization characterized by the α-angle and MA respectively which cannot be easily

assessed by CCT [11,20,39]. For instance, studies have shown that increased clot stiffness may

yet be elevated in some patients undergoing vitamin K antagonist therapy raising the risk of

thrombosis. While, on the flip side, compromised clot strength and increased clot breakdown

(hyperfibrinolysis) may be associated with long-term anticoagulant use thus elevating the risk

of hemorrhage [21,47]. Since LSR provides the capability to quantitatively assess fibrin clot

progression (via α-angle), stabilisation (via MA) and clot lysis occurring after the initial clot-

ting time is reported, this new technology may likely improve clinical management of anticoa-

gulation therapy in patients.

Our results obtained from spiked swine blood showed that the anticoagulant type and dose

modulated the LSR α-angle, whereas MA measured using LSR remained largely unchanged

(Figs 4–6). Since the MA parameter is largely influenced by thrombin modulation, the normal

MA observed with LSR in the presence of all studied anticoagulants is consistent with the limi-

tation in their mode of action. Other studies have reported that the anticoagulation effect of

heparin may be reduced by its inability to inhibit thrombin already bound to the clot [48–50].

Similarly, argatroban only antagonizes pre-formed thrombin and is unable to regulate new
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formation of thrombin [32,50]. Moreover, argatroban’s antithrombotic effect involves a revers-

ible attachment to thrombin active sites therefore allowing thrombin function recovery, which

could create a loophole in which some thrombotic activity is maintained likely causing MA val-

ues to remain stable even with increased treatment dose consistent with our results [32,50,51].

Similarly, rivaroxaban may enable the recovery of FX activity over time allowing for normal clot

formation and therefore eliciting an MA clot stiffness value that is normal or largely unchanged

[19,50]. Other studies have similarly reported that stable clots in whole blood can be generated in

presence of less than 4% activated thrombin [52,53]. In contrast to these prior studies however,

TEG reports significant changes in α-angle by all anticoagulants and MA by heparin, which is

likely due to contact-based coagulation sensing mechanism in TEG. In other words, TEG modi-

fies the clot structure by physically manipulating the clot during measurement thereby likely

leading to a substantially weaker clot and subsequently lower α-angle and MA [54–56]. Since

LSR on the other hand is a non-contact method that measures clot viscoelasticity without physi-

cal manipulation of the clot, this new optical approach may likely more accurately recapitulate

the complex in vivo environment of whole blood coagulation.

In addition to anticoagulation testing, point of care coagulation testing using LSR may be

relevant in several clinical settings to guide fluid resuscitation treatment in order to maintain

patient normovolaemia in situations of severe haemorrhage caused by anticoagulant overdose

[54]. Excessive haemodilution has been linked to impairment in coagulation factors [6,54,57];

therefore, LSR testing to detect and monitor coagulation abnormalities caused by haemodilu-

tion may be invaluable in managing bleeding patients with anticoagulant overdose. In this

study, citrated swine blood was serially diluted with 0.9% NaCl isotonic to mimic the transfu-

sion of crystalloids solution and evaluate the effects of haemodilution using LSR compared

with TEG. LSR parameters were significantly affected by haemodilution and were closely

related with the corresponding TEG results in all cases. In particular, the LSR MA was signifi-

cantly reduced by dilution similar to TEG, suggesting the presence of weak fibrin clots with

excessive haemodilution. The clotting time, however, presented an initial decrease followed by

a rapid increase at higher levels of dilution with both LSR and TEG. The trend observed in the

clotting time could be due to the modulation of both pro-coagulant and anticoagulant factors

by excessive haemodilution [6,57,58]. The reduction of thrombin activity due to haemodilu-

tion can be partially compensated for by a reduction in the activity of antithrombin and other

pro-coagulant inhibitors. Antithrombin, one of the main anticoagulants in vivo, has a higher

sensitivity to haemodilution in comparison to thrombin and other pro-coagulants [6,57]. Con-

sequently, it has been suggested in other studies that the reduction of antithrombin activity

prolongs the half-life of thrombin and activated-FX, which may contribute to shortening of

clotting time and acceleration of clot progression at 50% dilution consistent with our obser-

vations in this study [6]. Furthermore, during the course of haemorrhage and massive resu-

scitation treatment, fibrinogen is the first coagulation factor to reach critically low levels (<100

mg/dl) [57,59]. Since clot stabilization is highly dependent on fibrinogen levels in blood

[14,60], dilution of fibrinogen levels significantly diminishes MA at all haemodilution levels.

We observed a strong correlation in LSR and TEG coagulation parameters in assessing antic-

oagulation or dilution treatments. The error bars observed in the measurements for both tech-

nologies are likely due to the inherent heterogeneity of the blood sample which can change

over the duration of the experiment. Furthermore, the relatively small number of repetitions

(N = 3) in each group may also contribute to the observed variability. By increasing the num-

ber of repetitions measured for each anticoagulant type and dose to account for blood hetero-

geneity in the future we will likely lower the standard deviations observed in both approaches.

Furthermore, LSR appears to be more sensitive to changes in clot MA during haemodilution

(Fig 7E), and could detect small changes in MA created even by low levels of dilution.
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While the strength of the fibrin network mainly depends on factor XIII and fibrinogen,

platelets participate in the overall clot strength by binding with the fibrin network. Several

studies, have shown that both high platelets count or fibrinogen concentrations influence the

MA, with changes in both components modulating blood clot stiffness [61,62]. In other words,

LSR measures clot viscoelasticity by quantifying minute, nanometer-scale Brownian displace-

ments (on the order of the light wavelength) of light scattering particles in clotting blood and

is therefore exquisitely sensitive to small changes in clot viscoelasticity and platelets aggrega-

tion. These factors may explain the higher measurement sensitivity to haemodilution observed

by LSR in contrast with TEG [15]. Thus, the ability of LSR to measure the viscoelastic modulus

and the changes in particles size during blood clot formation might provide a more accurate

and physiologically relevant view of the coagulation process than conventional coagulation

tests alone.

In the first part of the current study, the clinical testing results presented above established

the capability and utility of the LSR technology for future clinical use in patients. In the second

part of the study to evaluate anticoagulant dose-dependence, whole blood from swine was

used to evaluate LSR sensitivity. The use of fresh swine whole blood rather than human whole

blood was primarily motivated by the requirement for substantially large blood volumes

needed for testing the dose-dependency of multiple anticoagulants and hemodilution via trip-

licate measurements using both LSR and TEG. Since collection of large volumes of patient

blood samples for dose-dependent anticoagulation testing was impractical, swine blood was

spiked and tested with LSR and TEG. However, the dose-dependant response to anticoagula-

tion and haemodilution in swine whole blood may differ from human whole blood under sim-

ilar conditions, and therefore the direct extrapolation of these results to human subjects may

be slightly limited. It is important to note at the same time this limitation was addressed in this

paper by the comparison of LSR results obtained from patients on warfarin therapy with TEG

and with laboratory-based CCTs, which presented a good correlation of coagulation parame-

ters in these cases. In future work, blood samples will be conducted from normal human vol-

unteers to measure LSR sensitivity to anticoagulant and hemodilution dose.

In order to assess the individual contribution of fibrin polymerization and platelet aggrega-

tion to the clot strength, it is possible to utilize a fibrinogen functional assay that diminishes

the effects of platelet aggregation on the measured clot strength by inhibiting the conforma-

tional changes of platelets glycoprotein IIb/IIIa receptors [61,62]. Additionally, the effects of

platelet aggregation can be solely studies by conducting OTEG in citrated blood and activating

platelets using an agonist such as ADP. These assays could be readily used with the LSR tech-

nology to assess the influence of the fibrin network or platelet aggregation on the MA in isola-

tion [61,62].

Conclusion

LSR provides rapid assessment of anticoagulation status in whole blood in a non-contact man-

ner enabling measurements in near-physiological conditions. Furthermore, the pilot clinical

testing studies reported in this paper demonstrate the accuracy and utility for anticoagulation

sensing in patients using small blood volumes within minutes in real-time. Thus far, the clini-

cal PoC adoption of viscoelastic assay approaches such as TEG has been limited due to their

large size, high cost and complexity of use [11]. In contrast, LSR utilises an inexpensive diode

laser and CMOS camera with no moving mechanical parts offering the opportunity for fabri-

cating a low-cost, palm-sized tool for anticoagulation monitoring at the patient’s bedside, in

the physician’s office or for patient self-testing. LSR measurements were performed in this

study using inexpensive off-the-shelf disposable cartridges that utilized 127 μl of whole blood.
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We are currently developing methods to reduce the LSR blood volume to 40 μl or less, which

will open the powerful opportunity for self-testing of multiple coagulation parameters via a fin-

ger-stick blood draw in the patient’s home.
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