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ABSTRACT Genomewide selection is hailed for its ability to facilitate greater genetic gains per unit time.
Over breeding cycles, the requisite linkage disequilibrium (LD) between quantitative trait loci and markers is
expected to change as a result of recombination, selection, and drift, leading to a decay in prediction
accuracy. Previous research has identified the need to update the training population using data that may
capture new LD generated over breeding cycles; however, optimal methods of updating have not been
explored. In a barley (Hordeum vulgare L.) breeding simulation experiment, we examined prediction accu-
racy and response to selection when updating the training population each cycle with the best predicted
lines, the worst predicted lines, both the best and worst predicted lines, random lines, criterion-selected
lines, or no lines. In the short term, we found that updating with the best predicted lines or the best and
worst predicted lines resulted in high prediction accuracy and genetic gain, but in the long term, all
methods (besides not updating) performed similarly. We also examined the impact of including all data
in the training population or only the most recent data. Though patterns among update methods were
similar, using a smaller but more recent training population provided a slight advantage in prediction
accuracy and genetic gain. In an actual breeding program, a breeder might desire to gather phenotypic
data on lines predicted to be the best, perhaps to evaluate possible cultivars. Therefore, our results suggest
that an optimal method of updating the training population is also very practical.
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The improvement of populations in plant breeding through recurrent
selection may benefit tremendously from genomewide selection. Of
particularworthare thehighaccuracies andshortenedbreeding cyclesof
genomewide selection, which allow for greater genetic gains per unit
time (Bernardo and Yu 2007; Heffner et al. 2009; Lorenz et al. 2011).
While genomewide selection has already been employed in established
breeding programs for major cultivated species (e.g., Asoro et al. 2013;
Beyene et al. 2015; Sallam et al. 2015), this tool also has broad appeal
across other species. For instance, breeding programs for tree or pe-
rennial crops with long generation times could find utility in making

selections before the plants aremature enough to phenotype. Addition-
ally, orphan, undomesticated, or unimproved crops may benefit from
rapid breeding progress. Indeed, researchers have already investigated
the use of genomewide selection in species such as apple (Malus x
domestica; Kumar et al. 2012), Eucalyptus (Resende et al. 2012), oil
palm (Elaeis guineensis Jacq.; Cros et al. 2015), and intermediate wheat-
grass [Thinopyrum intermedium (Host) Barkworth & D.R. Dewey;
Zhang et al. 2016]. The population improvement necessary in newly
established breeding programs, regardless of species, may be expedited
through genomewide selection.

Of course, the aforementioned advantages of genomewide selection
depend on maintaining sufficient genetic gain. This requires accurate
predictions of the genotypic value of selection candidates based on
markers located throughout the genome (Meuwissen et al. 2001). Ac-
curate predictions depend on reliable phenotypic measurements and
sufficient marker data on a training population. Genomewide marker
coverage that captures genomic relationships between individuals and
ensures linkage disequilibrium (LD) between markers and quantitative
trait loci (QTL) will lead to higher prediction accuracy, especially when
predictions are applied to selection candidates more distantly related to
the training population (Habier et al. 2007; Lorenz et al. 2011). The
predicted genotypic values under these conditions will more closely
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reflect the true genotypic values, and selection can then act to increase
the frequency of favorable QTL alleles in a population and shift the
mean of a population in a desirable direction.

Characteristics of long-term recurrent selection create impediments
to maintaining effective genomewide selection. Over generations, re-
combination between markers and QTL will cause LD to decay, while
selection and drift will potentially act to generate new LD or tighten the
LD between closely linked loci (Hill and Robertson 1968; Lorenz et al.
2011). Shifts in the pattern of QTL-marker LD, if not captured, will
result in decreased prediction accuracy. This suggests that training
populations must be updated during recurrent selection to maintain
prediction accuracy, a notion that is indeed supported by studies using
simulations and empirical data. Studies exploring simulations of re-
current selection in a clonally propagated crop (Eucalyptus) and an
inbreeding small grain (barley: Hordeum vulgare L.) both revealed that
the accuracy of genomewide selection was improved by updating the
training population with data from previous breeding cycles (Jannink
2010; Denis and Bouvet 2013). Similarly, using empirical data from an
advanced-cycle rye (Secale cereal L.) breeding program, Auinger et al.
(2016) found that aggregating training population data over multiple
cycles enhanced prediction accuracy. These investigations all demon-
strate the benefit of including previous cycle data into a training pop-
ulation; however, they did not test different methods of selecting that
data.

Though updating the training populationmay be required, there are
practical considerations in howabreeder selects individuals to fulfill this
need. Consider a breeding program employing genomewide recurrent
selection in barley. Each year, the breeder must allocate phenotyping
resources between testing potential cultivars and population improve-
ment. Though genomewide selection offers to reduce the overall phe-
notyping costs of the latter (e.g., through early-generation selection),
promising breeding lines will undoubtedly be included in field trials.
Under genomewide selection, it seems a breeder must also contend
with the composition of their training population, placing emphasis
on methods to build or maintain this population that both maximize
prediction accuracy and minimize costs.

Given the resource limitations of practical breeding and the impor-
tance of the training population, it is fitting thatmuch research has been
devoted to the composition and design of such populations. Using data
from a North American barley breeding program, Lorenz et al. (2012)
reported reduced prediction accuracy when the training population
and selection candidates belonged to separate subpopulations. Multiple
studies have found that a training population that is more closely re-
lated to the selection candidates leads to more accurate predictions
(Asoro et al. 2011; Lorenz and Smith 2015). Other researchers have
suggested more explicit criteria to determine the optimal training pop-
ulation for a set of selection candidates. Rincent et al. (2012) described
training population design based on minimizing the mean prediction
error variance (PEV) or maximizing the expected reliability of predic-
tions [i.e., generalized coefficient of determination (CD)]. When ap-
plied to empirical datasets, several investigations supported using the
expected reliability criterion to optimally construct training popula-
tions (Rincent et al. 2012; Akdemir et al. 2015; Isidro et al. 2015;
Rutkoski et al. 2015; Bustos-Korts et al. 2016). These studies generally
explored the construction of training populations from a single set of
calibration individuals, therefore the usefulness of this criterion over
multiple breeding cycles to maintain prediction accuracy is unknown.

The objective of this study was to investigate various methods of
updating a training population and their impact on genomewide re-
current selection. Using simulations, we envisioned a breeding program
implementing genomewide recurrent selection for an inbreeding, small

grain species (i.e., barley). Six different training population update
methods were compared, along with two scenarios of training popula-
tion composition. We tracked important variables in breeding, includ-
ing prediction accuracy, response to selection, and genetic variance.
Additionally, we attempted to explain some of our observations using
other parameters, including persistence of LD phase and genomic
relationship.

MATERIALS AND METHODS
A barley breeding program employing genomewide selection can re-
alistically complete a breeding cycle in a single year (Figure 1). Following
this breeding timeline, our experiment simulates a breeding population
undergoing 15 cycles of recurrent genomewide selection.

To incorporate the observed LD structure in barley breeding pop-
ulations into our simulations, we used empirical marker data from two
NorthAmericanbarleybreedingprograms: theUniversityofMinnesota
(UMN) andNorthDakota StateUniversity (NDSU).Marker genotypes
from 768 six-row spring inbred lines at 3072 biallelic SNP loci were
obtained from the Triticeae Toolbox (T3) database (Close et al. 2009;
Blake et al. 2016). The genetic map position of markers was based on
the consensus linkage map created by Muñoz-Amatriaín et al. (2011).
Markers with .10% missing data and lines with .10% missing data
were excluded. Markers were also filtered for redundancy, defined as
those located at identical genetic map positions and with identical allele
calls. A 0.01 cM interval was forced between markers with nonidentical
allele calls and shared map positions (i.e., due to low genetic map
resolution). We set all heterozygous genotype calls to missing and
imputed missing genotypes using the mode genotype across all sam-
ples. This left a set of 764 breeding lines and 1590 homozygous markers
spanning 1137 cM.

Genetic model to simulate QTL
Each iteration of the simulation was initiated by randomly selecting
L = 100 SNP loci to become causal QTL, regardless of genetic position
orminor allele frequency. Genotypic values for QTLwere drawn from a
geometric series, as suggested by Lande and Thompson (1990). At the
kth QTL, the value of the favorable homozygote was ak, the value of the
heterozygote was 0, and the value of the unfavorable homozygote
was –ak, where a = (1 2 L)/(1 + L). The value of the first allele of a
QTL was randomly assigned to be favorable or unfavorable. Dom-
inance and epistasis were assumed absent and higher values of the
trait were considered favorable. The genotypic value of a given in-
dividual was calculated as the sum of the effects of QTL alleles
carried by that individual.

Phenotypic valueswere simulatedbyaddingnongenetic effects to the
genotypic values according to the model yij ¼ gi þ ej þ eij; where yij
was the phenotypic value of the ith individual in the jth environment, gi
was the genotypic value of the ith individual, ej was the effect of the jth
environment, and eij was the residual effect of the ith individual in the
jth environment. Environmental effects were assumed to be samples of
a normally distributed random variable with mean 0 and SD

ffiffiffiffiffiffi
s2
E

p
;

wheres2
E was eight times the variance among genotypic values (i.e.,s2

G)
(Bernardo 2014). Residual effects were assumed to be samples of a
normally distributed random variable with mean 0 and SD

ffiffiffiffiffiffi
s2
R

p
;

where s2
R was scaled to achieve a target entry-mean heritability of

h2 ¼ 0:5 in the base population. Phenotyping was assumed to take
place in three environments with one replication, therefore within-
environment variance and genotype-by-environment variance were
confounded into s2

R: The variance of environmental effects and the
variance of residual effects remained unchanged over cycles of selec-
tion, allowing the heritability to vary. The mean phenotypic value of
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each individual over the three environments was used in genomewide
prediction.

Base population and cycle 1 of genomewide selection
The base population (i.e., cycle 0 training population) consisted of
genotypic and simulated phenotypic data on the 764 breeding lines.
Based on these simulated phenotypes, the top 50 UMN lines and the
top 50 NDSU lines were intermated between breeding programs to
generate the cycle 1 population. Specifically, 50 crosses were simulated,
using each parent once, and 20 F3-derived lines were generated per
cross. Gametes were generated following Mendelian laws of segrega-
tion, with recombination events simulated according to the genetic
map positions of all loci (Muñoz-Amatriaín et al. 2011) and assum-
ing no crossover interference or mutation. Population development
resulted in a pool of 1000 F3 selection candidates.

Themarker data for the trainingpopulation and selection candidates
consisted of genotypes at all loci except the 100 QTL. This essentially
simulated genotyping with complete accuracy. Monomorphic markers
and those with a minor allele frequency ,0.03 were removed prior to
genomewide prediction. Marker effects were predicted using ridge-
regression best linear unbiased prediction (RR-BLUP) according to the
model

y ¼ 1mþ ZTPuþ e; (1)

where y was an N · 1 vector of the phenotypic means of N training
population lines, 1 was anN · 1 vector of ones,mwas the grandmean,
ZTP was an N · m incidence matrix of training population genotypes
for mmarkers, u was an m · 1 vector of marker effects, and e was an
N · 1 vector of residuals. Elements of ZTP were 1 if homozygous for

the first allele, 21 if homozygous for the second allele, and 0 if het-
erozygous. Genotypic values of the F3 selection candidates were pre-
dicted using the equation ĝ ¼ ZSCû; where ĝ was a 1000 · 1 vector of
predicted genotypic values, ZSC was a 1000 · m incidence matrix of
selection candidate genotypes, and û was anm · 1 vector of predicted
marker effects. Elements of ZSC were the same as those in ZTP.

Cycles 2–15 of genomewide selection
Subsequent cycles of the simulation consisted of three steps: (1)
crossing and population development, (2) prediction and selection,
and (3) training population updating. These are outlined in the
diagram presented in Figure 2. Parents selected in the previous cycle
were randomly intermated to form a pool of selection candidates.
Again, 50 crosses were simulated and 1000 F3-derived selection
candidates were generated. Prior to predictions, we removed mono-
morphic markers and those with a minor allele frequency ,0.03 in
both the pool of selection candidates and in the training population.
Since markers could become monomorphic due to selection or drift,
the number of markers used for prediction decreased over breeding
cycles. We predicted marker effects by Equation 1, using phenotypic
and genotypic data on the training population. These marker effects
were then used to predict genotypic values of the 1000 selection
candidates, and those with the top 100 predicted genotypic values
were designated as parents for the next cycle. A subset of all selec-
tion candidates were then designated as new additions to the train-
ing population according to one of the updating methods described
below.We simulated phenotypes for these additions and merged the

Figure 2 A single breeding cycle in our simulations may be broken
down into two main streams. Blue indicates steps involving the training
population and red indicates steps involving crossing and population
development. Green indicates the intermediate step of selection. (1)
Fifty crosses are made using 100 randomly intermated parents from
the previous cycle. Population development follows and 1000 selection
candidates are genotyped at the F3 stage. Concurrently, marker ef-
fects are estimated using genotypic and phenotypic data from the
training population (TP). (2) The predicted genotypic values (PGVs)
of the selection candidates are used in decision-making. (3) The 100 se-
lection candidates with the highest predicted genotypic values are
selected as parents for the next cycle. Additionally, 150 selection can-
didates are selected based on the six different update methods. These
candidates are phenotyped, and phenotypic and genotypic data are
added to the pool of training data.

Figure 1 Realistically, a cycle of genomewide recurrent selection in
barley may only be 1 yr in length. Crosses are made in the autumn
(year n) and progeny undergo single-seed descent through the follow-
ing winter and summer. (1) At the F3 generation during the next au-
tumn (year n + 1), lines are genotyped and predicted genotypic value
(PGVs) are determined using training data from the previous cycle.
These predictions determine the lines to use as parents in the next
cycle of crosses (blue arrow). (2) Predictions are also used to select
lines to phenotype in the following summer (year n + 2). (3) This
phenotypic information is then incorporated into the training data
for the next cycle of predictions and crosses during the subsequent
autumn.
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phenotypic and genotypic data to the pool of training population
data.

Methods of updating the training population
Seven different methods of updating the training population were
explored in the simulations. For each method, 150 selection candidates
from each cycle were selected and added to the training population.
Thesemethods are termedTop, Bottom,Random,PEVmean, CDmean,
Tails, and No Change and are described below. For Top, Bottom, and
Tails, selection candidates were ranked based on predicted genotypic
value. The 150 selection candidates with the highest (Top) or lowest
(Bottom) values were added to the training population. For the Tails
method, the 75 selection candidates with the highest values and the
75 selection candidateswith the lowest valueswere added to the training
population. For Random, a random sample of selection candidateswere
added to the training population, and for No Change, the training
population was not updated over breeding cycles.

Two methods involved optimization algorithms previously de-
scribed by other researchers, specifically PEVmean and CDmean
(Rincent et al. 2012). Using only the genotypic data on all individ-
uals, these algorithms aim to create a training population by opti-
mally sampling individuals to be phenotyped in order to predict the
value of individuals that would be unphenotyped. Our intention is
similar, except that the individuals we sampled to be phenotyped are
one cycle removed from the individuals that would be unpheno-
typed. For PEVmean, selection candidates were chosen to minimize
the mean PEV of the genotypic values. As described in Rincent et al.
(2012), the general PEV can be computed using a matrix of con-
trasts, C, between the unphenotyped individuals and the mean of
the whole population (phenotyped and unphenotyped individuals).
In solving Henderson’s (1984) equations, the PEV of any contrast
can be computed as

PEVðCÞ ¼ diag
C9

�
Z9MZþ s2

e
s2
a
A21

�21
C

C9C

2
64

3
75 ·s2

e ; (2)

where Z is an incidence matrix,M is an orthogonal projector (Rincent
et al. 2012), and A is the genomic relationship matrix (described
below). For the variance of the residuals (s2

e ), we used the restricted
maximum likelihood estimate ofs2

e from the RR-BLUP linearmodel in
Equation 1. The additive genetic variance (s2

a) was calculated by mul-
tiplying the number of markers, Nm, by the restricted maximum likeli-
hood estimate of the variance of marker effects (Bernardo 2014). The
PEVmean was then calculated as PEVmean ¼ meanfdiag½PEVðCÞ�g

Similarly, for CDmean, candidates were chosen to maximize the
reliability of thepredictions,measured as themeangeneralizedCD.This
can also be expressed as the expected reliability of the contrasts (Laloe
1993; Rincent et al. 2012), computed as

CDðCÞ ¼ diag
C9

h
A2s2

e
s2
a

�
Z9MZþ s2

e
s2
a
A21

�i21
C

C9AC

9>=
>;
:

8><
>:

(3)

The values of s2
e ands

2
a were the same as described for Equation 2. The

CDmean was then calculated as CDmean ¼ meanfdiag½CDðCÞ�g
We implemented an exchange algorithm similar to that described by

Rincent et al. (2012), with one modification in the designation of in-
dividuals to predict and individuals to sample for phenotyping. The
situation outlined by Rincent et al. (2012) assumes that the genotypic

data for the individuals to sample and for the individuals to predict is
available concurrently. In our simulation, this is not the case, since
phenotyping of the selections in one cycle (cycle n) will occur before
genotypic data on selection candidates of the next cycle (cycle n + 1)
becomes available (Figure 1). We therefore chose the 100 parents of the
cycle n + 1 selection candidates to be a proxy for the unphenotyped
individuals, while the entire 1000 selection candidates (including the
parents) constituted the population of individuals to be sampled by the
algorithm. To maintain a reasonable computation time, the exchange
algorithms were iterated 500 times. Preliminary data showed that a
reasonable optimum for either criterion was reached after 500 iterations
(data not shown). The PEVmean or CDmean algorithms were used to
select individuals from the selection candidates to be included in the
training population for the next cycle.

We also considered two scenarios of using the updated training
population data. The first scenario represented a situation where a
breedermaywant to use all available information, and in this case, the
training population grew by 150 lines in each cycle. This was termed
the Cumulative scenario, and over cycles the size of the training
population ranged from764 to 2864 individuals. In the next scenario,
we attempted to control for the effect of training population size by
using a “sliding window” of 764 lines along breeding cycles. Specif-
ically, in each cycle the 150 new training population additions from
the latest breeding cycle took the place of the 150 training popula-
tion additions from the earliest breeding cycle. Since the 764 base
population lines all constituted cycle 0, these lines were discarded
randomly until no base population lines remained in the training
population. Afterward, lines from earlier cycles were discarded as
lines from later cycles were added. This was termed the Window
scenario.

Variables tracked over breeding cycles
To better interpret the observations in the simulations, we tracked a
numberof additional variables, includingpersistenceof LDphase,mean
realized additive genomic relationship, prediction accuracy, genetic
variance, mean genotypic value, inbreeding coefficient, and the fre-
quency of QTL and marker alleles.

The genetic variance in each cycle was calculated as the variance
among the genotypic values of the selection candidates. Prediction
accuracy was measured by computing the correlation between the
predicted genotypic values of the selection candidates and their true
genotypic values.

Wemeasured the LD betweenQTL andmarkers as follows: for each
and every polymorphic QTL in a given population (i.e., the training
population or the selection candidates), we computed the correlation
between that QTL and each and every polymorphic marker in the
genome. We calculated persistence of LD phase by first measuring
QTL-marker LD in the training population and in the selection candi-
dates. QTL or markers that were not polymorphic in either of these
populations were excluded.We then computed the correlation between
the measures of QTL-marker LD in the training population and in the
selection candidates. This metric, also known as the correlation of r,
evaluates whether patterns of QTL-marker LD are similar between two
populations. High correlations of r indicate that QTL-marker LD
phases are consistent, and presumably the predicted marker effects in
one population would accurately represent the marker effects in the
second population (de Roos et al. 2008; Toosi et al. 2010).

Additive relationships between lines in the simulation were mea-
sured with respect to the base population. Before initiating the simu-
lations, a matrix P was calculated as 2ðpi 2 0:5Þ; where pi is the
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frequency of the second allele at locus i in the base population. Addi-
tionally, a normalization constant c was calculated as 2

P
pið12 piÞ:

Both calculations are described in VanRaden (2008). To compute ad-
ditive relationships at any one cycle in the simulation, the genotype
matrices (including QTL) of the training population and selection can-
didates were combined into a matrix M. The matrix P was subtracted
fromM to obtainmatrixW. We then calculated the relationshipmatrix
asA ¼ WW9=c: This ensured that the relationshipmatrix was scaled to
reflect the allele frequencies in the base population (VanRaden 2008).
We calculated the mean additive relationship as the mean value of the
training population-selection candidate combinations. Inbreeding co-
efficients for each individual were also calculated from this matrix as
the diagonal elements minus one.

All simulations were performed in R (version 3.3.1, R Core Team
2016) using the packages hypred (version 0.5, Technow 2014) and
rrBLUP (version 4.4, Endelman 2011). Each simulation experiment
was repeated 250 times. The methods of updating the training popu-
lation (i.e., Top, Bottom, Random, CDmean, PEVmean, Tails, and No
Change) each constituted an independent experiment. With the two
updating scenarios (i.e., Window and Cumulative), there were 14 dif-
ferent simulations.

Data availability
Simulation scripts, starting marker genotypes, and summarized data
are provided in the R package GSSimTPUpdate, available from the
GitHub repository https://github.com/UMN-BarleyOatSilphium/
GSSimTPUpdate. Included is a vignette on how to obtain the marker
data from the T3 database.

RESULTS

Long-term prediction accuracy
Prediction accuracy (Figure 3 and Supplemental Material, Table S1)
consistently decreased over cycles of selection for all methods of updat-
ing the training population and in both updating scenarios.Within and
between scenarios, we observed differences among the update methods
in the decay rate of prediction accuracy. A prominent observation was
the precipitous decline in accuracy when not updating the training
population (i.e., No Change). Early in breeding cycles, prediction ac-
curacy for this method was similar to the remaining methods, but by
cycle five it had decayed beyond the remaining methods. As expected,
identical trends were observed for No Change in both updating
scenarios.

Among methods of actively updating the training population (i.e.,
excluding No Change), differences in prediction accuracy were ob-
served in early cycles, but became increasingly similar in later cycles.
The Top and Tails methods resulted in a nonsignificant but noticeable
accuracy advantage early on that persisted for several cycles (Figure 3
and Table S1). On the other hand, the Bottom method displayed a
noticeable disadvantage that persisted for a similar length of time.
The Random, PEVmean, and CDmean methods were highly compa-
rable and yielded accuracies intermediate of the Top and Bottommeth-
ods. By cycle 10, the differences between active methods of updating
were negligible. These patterns were observed in both the Cumulative
and Window scenarios.

One noticeable difference between the trends in the Cumulative
and Window scenarios was in the rate of prediction accuracy decay.
Among the active methods of updating, the rate of prediction accuracy

Figure 3 Prediction accuracy over breeding cycles of the simulation. Accuracy was measured as the correlation between the predicted and true
genotypic values of the selection candidates. Line colors and point shapes delineate the different methods of updating the training population.
Plots are separated into the (A) Cumulative and (B) Window updating scenarios. Average values are shown with 95% confidence intervals. To help
reduce plot clutter, points for each update method are given a small, consistent jitter along the x-axis. Because the plotting jitter may accentuate
small differences between updating methods, these data are also provided in Table S1.
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decay was slightly greater in the Cumulative scenario (Figure 3A)
compared to the Window scenario (Figure 3B). By the 15th breeding
cycle, the difference in these decay rates amounted to a difference in
prediction accuracy of roughly 0.02–0.04.

Genetic variance and response to selection
Genetic variance among the selection candidates (Figure 4, A and B)
similarly decreased across cycles for all training population update
methods. For this variable, however, the rank among methods
remainedmore consistent. That is, compared to the remaining update
methods, the genetic variance in the Top and Tails methods was con-
sistently less and the genetic variance in the Bottom method was con-
sistently greater. The Tails method resulted in slightly higher genetic

variance compared to the Top method; however, this difference was
never significant. Genetic variance across the CDmean, PEVmean, and
Random methods was very similar within and between scenarios. Not
updating the training population resulted in genetic variance similar to
CDmean, PEVmean, and Random in early breeding cycles. After seven
cycles, however, the loss of genetic variance was abated compared to
remaining methods. By the end of the breeding timeline, the genetic
variance for No Change was noticeably and significantly (95% confi-
dence interval) higher than the remaining methods.

Overall, themean genotypic value of the selection candidates (Figure
4, C and D) displayed a similar, but opposite pattern compared to the
genetic variance. Updating the training population by the Top or Tails
methods yielded an advantage in genotypic value, a trend that became

Figure 4 Genetic variance (A and B) and genotypic values (C and D) among the selection candidates over breeding cycles of the simulation. Line
colors and point shapes delineate the different methods of updating the training population. Plots are separated into the (A and C) Cumulative
and (B and D) Window updating scenarios. Average values are shown with 95% confidence intervals. To help reduce plot clutter, points for each
update method are given a small, consistent jitter along the x-axis.
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more apparent in later breeding cycles. Conversely, the genotypic val-
ues under the Bottommethod ranked lowest among the active updating
methods. This disadvantage was often slight and nonsignificant, espe-
cially in the Cumulative scenario (Figure 4C). As in the observations of
genetic variance, the CDmean, PEVmean, and Random methods
responded similarly.Most noticeable was the rapid plateau in genotypic
value under the No Change method, particularly around the eighth
breeding cycle. By the end of the breeding timeline, the No Change
method appeared to have reached a limit, and although the trajectory of
the remaining methods suggested further increases, their trends im-
plied a limit as well (Figure 4, C andD). Curiously, the Topmethod was
generally superior to the Tails method in the Cumulative scenario;
however, the opposite was true in the Window scenario. In both sce-
narios, the Tails method exhibited a trend suggesting that this method
would eventually yield selection candidates with an average genotypic
value superior to that of the Top method. The trends among the
remaining training population update methods were similar in both
updating scenarios.

Drivers of prediction accuracy
Average relationship between training population individuals and
selection candidate individuals, as measured by marker information,
varied among the update methods (Figure 5, A and B). As expected, the
average relationship did not change in either updating scenario when
the training population remained unaltered. Across both scenarios, the
relationship generally remained highest under the Top method, lowest
under the Bottommethod, and intermediate under the CDmean, PEV-
mean, Random, and Tails methods. In the Cumulative scenario (Figure
5A), actively updating the training population resulted in a linear in-
crease in average relationship for all methods. Additionally, the differ-
ent update methods, particularly Top and Bottom, displayed slight
divergence, especially in later breeding cycles. The Window scenario
(Figure 5B) presented a more sigmoidal trend, eventually resulting in
slight convergence in average relationship among active update meth-
ods. Interestingly, after cycle 12, the average relationship between the
training population and the selection candidates in the Tails method
remained greater than that in the Top method.

Generally, we observed a curvilinear increasing trend in the level of
inbreeding (Figure 5, C and D). The No Change method performed
similarly in the different updating scenarios, but differed markedly
from the active updating methods. This method resulted in a more
rapid increase in inbreeding, beginning after the fourth breeding cycle.
By the end of the breeding timeline, the trend had not yet plateaued and
suggested that inbreeding would continue to increase. Considering the
active updating methods, there were slight differences in inbreeding
trends between the two updating scenarios. In the Cumulative scenario
(Figure 5C), these methods performed similarly, showing no significant
differences. Inbreeding was slightly greater for these methods in this
scenario than in the Window scenario (Figure 5D). In this case, differ-
ences between the updating methods were more apparent. The Top
method displayed noticeably lower levels of inbreeding, particularly
after the eighth breeding cycle. Remaining methods performed simi-
larly between each other.

We noticed consistent trends among methods of updating the
training population in the rate of fixation of QTL (Figure 5, E and
F). In both updating scenarios, the Top method maintains a higher
number of fixed QTL across breeding cycles, followed by the CDmean,
PEVmean, Tails, and Random methods, which performed similarly,
followed by the Bottom and No Change methods, which also per-
formed similarly. Additionally, we observed that �10% of the QTL

became fixed in cycle 1 of the breeding timeline, while by cycle
15 �70% of the QTL were fixed. There were two slight, noteworthy
differences in these trends between the updating scenarios. First, active
updatingmethods generally displayed a higher proportion of fixedQTL
in the Window scenario (Figure 5E) than in the Cumulative scenario
(Figure 5F). Second, the degree of separation between the Top method
and the CDmean, PEVmean, and Random methods appeared greater
in the Cumulative scenario.

There were marked differences in the persistence of LD phase
between the methods of updating the training population within and
between the updating scenarios (Figure 5, G and H). Under the Cu-
mulative scenario (Figure 5G), persistence of phase for all update meth-
ods declined quickly in initial cycles, but reached equilibrium around
the 10th cycle. The Top and Tails methods maintained the highest
degree of persistence across breeding cycles, but the Tails method
trended closer to the other active update methods by cycle 12. Further-
more, the initial decay was much lower under the Top and Tails meth-
ods, and the equilibrium point was higher than other methods.
Persistence of phase under the Bottom method was initially much less
than the other active update methods, and although it soon became
similar to these methods, it still remained less. The remaining active
update methods were quite similar in this scenario.

In comparison, actively updating the training population under the
Window scenario (Figure 5D) yielded increasing persistence of phase
over the course of the breeding timeline. Each of these methods saw a
small drop in persistence of phase initially, but after the fifth cycle
values began to increase. Interestingly, none of these methods appeared
to reach an equilibrium point. The disparity between update methods,
especially between Top and Bottom, was highly apparent under this
scenario. Conversely, CDmean, PEVmean, and Random resulted in
very similar levels of persistence of phase. Finally, the persistence of
phase under the Tails method was initially intermediate between the
Top method and the CDmean, PEVmean, and Random methods;
however, it eventually became more similar to the latter.

Expectedly, the No Change method resulted in identical trends in
both updating scenarios. In the same way as prediction accuracy, we
observed a precipitous, exponential decay in persistence of phase. The
trend appeared to reach an equilibrium point at around the same
breeding cycle as the active updating methods in the Cumulative
scenario; however, this equilibrium point was much lower than the
others.

DISCUSSION

Updating the training population can be simple
and effective
We observed similar patterns in prediction accuracy (Figure 3), mean
genotypic value (Figure 4, C and D), and genetic variance (Figure 4, A
and B) among active methods of updating the training population (i.e.,
excluding No Change). The high similarity between these methods
suggests that simply including more recent data in the training pop-
ulation provides a marked advantage in improving the breeding pop-
ulation in the long term. This is encouraging in a practical sense, as any
phenotypic information generated on breeding lines, regardless of how
they may have been selected, would probably be helpful in preventing
severe long-term loss in prediction accuracy.

Although we only tested six active methods of updating the training
population, wemight expect that anymethod should outperform doing
nothing. Over breeding cycles, including recent genotypic and pheno-
typic information in the training population helps to capture new LD
generated by selection and drift (Hill and Robertson 1968). Older
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Figure 5 Other variables tracked over the course of the simulations. (A and B) The average genomic relationship was calculated between the training
population and the selection candidates using marker genotypes. Relationships were scaled to reflect the allele frequencies in the base population. (C
and D) The level of inbreeding was measured on the selection candidates and was derived from the relationship matrix described above. (E and F) The
number of QTL fixed for an allele was measured in the selection candidates. (G and H) Persistence of LD phase was measured as the correlation of r
between the training population and the selection candidates. Line colors and point shapes delineate the different methods of updating the training
population. Plots are separated into the (A, C, E, and G) Cumulative and (B, D, F, and H)Window updating scenarios. Average values are shown with 95%
confidence intervals. To help reduce plot clutter, points for each update method are given a small, consistent jitter along the x-axis.
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training population lines will of course not provide any information on
this new LD; however, wemay presumemost or all selection candidates
will share a proportion of this new LD as long as the parents of these
lines are not unrelated. Therefore, even the selection candidates most
distantly related to those chosen as parents will provide informative
training data for the next cycle. In the long term, we might expect a
decrease in the relative importance of how selection candidates are
chosen to add to the training population. Over continued cycles of
selection in a closed population, parents will become increasingly re-
lated (Daetwyler et al. 2007), thus the pool of selection candidates will
share a greater proportion of the new, informative LD.

Though it appears updating the training population is favorable
regardless ofmethod, it is worth pointing out differences in themethods
we tested. The Topmethod achieved high prediction accuracy and high
mean genotypic value across breeding cycles. These results are not
entirely surprising, since the candidates selected to update the training
population were mostly those selected as parents for the next cycle
(100outof150).These additions to the trainingpopulationwill behighly
related to the selection candidates in the next cycle, and will therefore
provide the trainingpopulationwith themostuseful information shared
through genomic relationships andQTL-marker LD (Lorenz and Smith
2015). Indeed, this is readily apparent in measures of relatedness be-
tween the training population and the selection candidates (Figure 5, A
and B) and in measures of persistence of LD phase (Figure 5, C and D).

With this in mind, it is not surprising that the Bottom method
delivers the lowest prediction accuracy (Figure 3, A and B) and lowest
mean genotypic value (Figure 4, C and D), as zero lines added to the
training population overlap with the selected parents. This lack of over-
lap would suggest that QTL-marker LD information in the training
additions and that observed in the selection candidates will be in high
disagreement. Indeed, we observe that this method produces training
populations with the lowest average relationship to the selection can-
didates (Figure 5, A and B) and the lowest persistence of LD phase
(Figure 5, G and H).

The Tailsmethod, as a combination of the Top andBottommethod,
offers some curious results. Though the prediction accuracy achieved
from this method is, for the most part, not significantly different than
that of the Topmethod, it is oftenhigher, leading to lowgenetic variance
(Figure 4, A and B) and high average genotypic value (Figure 4, C and
D). This is in spite of the observation that under the Tails method, the
average relationship between the training population and selection
candidates (Figure 5, A and B) and persistence of LD phase (Figure
5, G and H) are roughly equal to or lower than the Top method. A
possible explanation for this observation could be that this method
produces training populations that satisfy different conditions for ac-
curate genomewide predictions. First, 75 out of the 150 training pop-
ulation additions overlap with the 100 selected parents. Just as in the
Top method, these additions will be highly related to the selection
candidates of the next cycle and contribute useful QTL-marker LD
information. The other 75 additions will presumably bemore unrelated
to these selection candidates, leading to the intermediate average re-
lationship (Figure 5, A and B) and often lower persistence of LD phase
(Figure 5, G and H); however, these training population additions may
provide information for more reliable predictions. In a study where the
training population was a subset of a larger population, Yu et al. (2016)
found that individuals in the validation population (i.e., selection can-
didates) with the highest and lowest predicted genotypic values had the
greatest upper bound for the reliability of those predictions (Karaman
et al. 2016). It may be the case in our simulations that the training
population additions in the Tails method had more reliably predicted
genotypic values. This reliability may have led to better identification of

individuals that, when added to the training population, could provide
information that more clearly differentiated the effects of QTL alleles,
leading to more accurate predictions of marker effects. Thus, the Tails
method may have taken advantage of both high relatedness and greater
genotypic diversity in the training population.

The criterion-based updating methods (CDmean and PEVmean)
performed very similarly to the Randommethod in prediction accuracy
(Figure 3, A and B). This observation is generally in agreement with
previous research (Akdemir et al. 2015; Isidro et al. 2015; Bustos-Korts
et al. 2016) and may be related to the size of the training population
used in our simulations. In several examples in these studies, the pre-
diction accuracy of a randomly selected training population was similar
to that of a training population selected by the CDmean or PEVmean
criteria, particularly at larger sizes of the training population. While
these investigations examined training populations ranging from 25 to
300 individuals, our simulations looked at much larger training pop-
ulations, ranging from 764 to 2864 individuals. It may be, then, that as
the size of the training population becomes sufficiently large, the per-
formance of the CDmean and PEVmean criteria becomes more similar
to a random sampling. This, of course, does not suggest that these
criteria have no use in selecting training populations. If these criteria
are in fact superior in smaller training populations, they may be ad-
vantageous when performing genomewide selection on a trait that is
expensive or low-throughput to phenotype.

It is worth addressing the continued loss in prediction accuracy in all
updating methods and in both updating scenarios. This occurs even as
two known components of prediction accuracy, persistence of LDphase
and genomic relationship (de Roos et al. 2008; Toosi et al. 2010; Lorenz
et al. 2011; Lorenz and Smith 2015; Sallam et al. 2015), stabilize or
increase. The primary reason for these observations is undoubtedly the
reduction in heritability as genetic variance declines over cycles (Figure
4, A and B). Since residual variance remains constant, the phenotypic
datameasured on lines becomes increasingly uncorrelated with the true
genotypic value (Bernardo and Yu 2007; Bernardo 2010). Thus, the
data included in the training population will not capture the effects of
QTL alleles, decreasing the accuracy of predicted marker effects. A
second potential contributor is the fixation of marker loci over cycles.
Since monomorphic markers are removed prior to model training,
fewermarkers will be used in later cycles. Indeed, by cycle 7, on average
55% of the original markers are used, and by cycle 15 this drops to 30%
(data not shown). Though previous studies have stated the benefit of
greater marker density (Combs and Bernardo 2013), many others have
noted diminishing returns (Lorenzana and Bernardo 2009; Heffner
et al. 2011; Lorenz et al. 2012). Reasonably high marker densities were
maintained in our simulations, so this is likely not a strong driver of the
decay in prediction accuracy.

The performance of the Topmethod suggests a simple procedure to
optimize genomewide selection in an applied breeding program. Our
results indicate that a breeder may prevent severe loss of prediction
accuracy in recurrent selection by updating the training population to
include information on lines that would be selected anyway. Ultimately,
this method should be more cost effective than the others. A breeder
would likely desire to evaluate selected parents in field trials, perhaps for
variety development or to gather phenotypic data to accompany pre-
dicted genotypic values. TheTopmethodprovides an advantage here, as
the number of additional lines to phenotype for updating the training
population is minimal. The breeder can use this information for dual
purposes, using phenotypic data to build a more accurate training
dataset whilemaking informed decisions on potential variety selections.

Although theTailsmethod led to slightly greater prediction accuracy
than the Top method, there are at least three reasons why it may not be
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the most practical method. First, the difference in prediction accuracy
between thesemethodswas generally not significant (Table S1). Second,
the overlap between training population additions and candidates that
would be prioritized for phenotyping by the breeder (i.e., parents and
superior lines) is lower, and therefore, third, because of this lack of
overlap, the breeder would expend costly resources on phenotyping
lines that may not provide any utility outside of model training for
genomewide selection.

Encouragingly, empirical data in abarleybreedingprogramsupports
the Top method in enhancing prediction accuracy. Over a few cycles of
recurrent genomewide selection for yield and deoxynivalenol content (a
mycotoxin produced by the fungal pathogen Fusarium graminearum
Schwabe.), T. Tiede (unpublished data) found that updating the train-
ing population improved prediction accuracy. Specifically, including
data only on lines selected for favorable predicted genotypic values in
previous cycles enhanced the prediction accuracy in subsequent cycles.
This method was superior to a random selection of lines and was often
superior to a selection based on criteria optimization.

Not updating the training population is unfavorable
It is quite apparent from our simulations that in the long term, not
updating the training population is highly unfavorable. Prediction
accuracy decreases rapidly in this case (Figure 3, A and B), and as a
consequence, response to selection also collapses, leading to the ob-
served plateau in genotypic value (Figure 4, C and D). Here selection is
acting on nongenetic noise, preventing the mean genetic value in the
population from changing.

The genetic composition of the breeding populations underscores
the negative consequences of leaving the training population unaltered.
Although genetic variance appears to be preserved in the long term
(Figure 4, A and B), considering the decrease in accuracy and the
plateau in genotypic value, this may be due to a larger number of
QTL that remain segregating. We do indeed observe this (Figure 5, E
and F), but given the similarity in the number of fixed QTL under the
No Change method and that under the remaining methods, we may
also surmise that a greater proportion of QTL are becoming fixed for
unfavorable alleles. We also observe alarming levels of inbreeding
among the selection candidates when not updating the training pop-
ulation (Figure 5, C and D). This result is not surprising, since previous
theory and simulations into genomewide selection show that more
accurate predictions better capture the Mendelian sampling term
(i.e., within-family variance), preventing high rates of inbreeding
(Daetwyler et al. 2007; Jannink 2010). Although higher inbreeding does
not reduce genetic variance, it invariably will reduce the number of
usable, polymorphic markers. Collectively, this suggests that continued
genomewide selection without updating the training population will
impose a lower selection limit on population improvement.

The results of our simulations indicate that severe consequences of
not updating the training population were delayed until later cycles.
Although prediction accuracy declines very rapidly (Figure 3), mean
genotypic value and genetic variance track closely with the other updat-
ing methods (Figure 4). It is not until the fifth cycle or later that the
impact of an unaltered training population is readily apparent. This can
be encouraging in practical breeding scenarios. For instance, in a new
breeding program, the stock of germplasm with phenotypic data may
be low, and it may be several cycles before enough individual are tested
to add to the training population. One may also consider a crop where
the time between making a cross and gathering phenotypic data on the
progeny is long. Several cycles of selection could be performed before
data are available to update the training population. Our results suggest

that the same training population could be used for a small number of
cycles without serious detriment.

A smaller and more recent training population may
provide long-term advantages
We observed nonsignificant but noticeable differences in prediction
accuracy, mean genotypic value, and genetic variance between the
Cumulative and Window updating scenarios. In the short term, pre-
diction accuracy was slightly greater under the Cumulative scenario for
most of the active updating methods, particularly the Top method
(Figure 3A); however, in the long term, prediction accuracy was higher
when the training population consisted of only more recent data (i.e.,
the Window scenario). Although the trends in genotypic value suggest
that the Cumulative scenario is slightly advantageous in the short term,
the trend under the Window scenario suggested that additional gains
may be greater (Figure 4D). Indeed, given the slightly higher prediction
accuracy observed at the end of the breeding timeline for this scenario,
we would expect response to selection to be greater in the long term
(Bernardo 2010).

In addition to the explanations provided earlier in the Discussion,
other factors may be responsible for these observations. Most notable
are the differences between updating scenarios in genomic relationship
(Figure 5, A and B) and persistence of LD phase (Figure 5, G and H).
Retaining older training data results in lower average relationship be-
tween the training population and the selection candidates (Figure 5A).
This is not unexpected, since selection candidates in earlier cycles will
be increasingly unrelated to those in later cycles. Maintaining a training
population with more recent data results in higher average relationship
and a higher rate of increasing relationship (Figure 5B). This result
corroborates previous research demonstrating higher prediction accu-
racy when retaining individuals in the training population that are
more closely related to the selection candidates (Lorenz and Smith
2015).

Perhaps most drastic are the differences in persistence of LD phase
between updating scenarios. A training population with older data (i.e.,
Cumulative) results in decayed persistence of LD phase (Figure 5G).
Over cycles, recombination breaks down LD and training population
additions capture new LD. Older training data does not reflect this new
LD, decreasing the persistence of phase. The observed stabilization in
Figure 5C could be due to new training data capturing as much LD as
what is broken down by recombination. Evidence for this may be seen
under the Window scenario (Figure 5H), where persistence of LD
phase increases when actively updating the training population. A
training population of only recent data captures the new LD generated
by recombination in the previous cycle, but without the uninformative
LD present in older training data. In addition, it may be possible that
recent training additions capture more of the informative new LD than
what is lost through recombination, leading to the observed increase in
persistence of phase.

Simulation considerations
It is important to address the limitations of our simulations, including
assumptions that could be violated in a real-life breeding program. First,
random mating may be unrealistic, and we might expect a breeder to
impose a more sophisticated procedure for parent selection. For in-
stance, mating pairs may be prioritized for complementation of favor-
able valuesofmultiple traits.Additionally, an individualmaybeusedas a
parent over multiple breeding cycles, especially if observed phenotypic
values agreed with the predicted genotypic values. More sophisticated
methods of parental selection, such as those based on virtual biparental
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populations (Bernardo 2014; Lian et al. 2015; Mohammadi et al.
2015), may be used. These nonrandom mating schemes could affect
genetic variance or contribute to different patterns of LD, both of
which would impact the accuracy of genomewide prediction; how-
ever, incorporating such nuances into our simulation would likely
rest on additional assumptions and would be intractable to model.
Random mating provides a simple approach, and given the recur-
rent selection scheme, it is a reasonable assumption. Our simulation
also made the assumption that the breeding population was closed.
This is obviously inaccurate in a practical program, as the exchange
and incorporation of new germplasm is common. Realistically, we
might expect prediction accuracy to decrease when adding germ-
plasm from different breeding programs or subpopulations to the
pool of selection candidates (Lorenz et al. 2012). In recurrent selec-
tion, however, the objective is to improve a population rapidly, so a
closed population may be desirable (Bernardo 2010).

Other assumptions may not reflect biological reality. First, our
simulation forced QTL to be biallelic, but, as noted by Jannink
(2010) and suggested in Buckler et al. (2009), many QTL may have
multiallelic genetic architecture. Second, we assumed the processes of
mutation and crossover interference were absent, which is, of course,
unrealistic.

Conclusions
In our simulation experiment of recurrent genomewide selection, we
confirmed the need to update the training population over breeding
cycles. Clearly, the LDbetweenQTL andmarkers in the base population
is decaying, likely as a result of recombination. When new data are not
added to the training population, the change in LD is not captured, and
prediction accuracy collapses. Among the tested methods of updating
the training population, adding the lines predicted to have the greatest
genotypic value (i.e., the Top method) is the most attractive. The
desirability of this method stems not only from the resulting pre-
diction accuracy and response to selection, but also from its sim-
plicity and practicality. A breeder will undoubtedly desire to
confirm the predictions of genotypic value with empirical pheno-
typic data, especially for the most promising lines or those selected
to become parents. Updating the training population becomes sim-
ple, then, as this new data can be combined with previous training
data. This method also facilitates updating the training model every
cycle, likely the best option to capture the changes in LD as a result
of recombination, selection, and drift. Nevertheless, our experiment
leaves room for additional research, including fine-tuning the
updating scenarios to choose the most informative training popu-
lation from a pool of data. Additionally, optimizing other streams in
the breeding program deserves research, including methods of
selecting markers and parents. Long-term genomewide selection
may benefit greatly from such investigations.
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