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Deep convolutional neural networks (CNN) have previously been shown to be useful

tools for signal decoding and analysis in a variety of complex domains, such as

image processing and speech recognition. By learning from large amounts of data,

the representations encoded by these deep networks are often invariant to moderate

changes in the underlying feature spaces. Recently, we proposed a CNN architecture that

could be applied to electroencephalogram (EEG) decoding and analysis. In this article, we

train our CNN model using data from prior experiments in order to later decode the P300

evoked response from an unseen, hold-out experiment. We analyze the CNN output as a

function of the underlying variability in the P300 response and demonstrate that the CNN

output is sensitive to the experiment-induced changes in the neural response. We then

assess the utility of our approach as a means of improving the overall signal-to-noise

ratio in the EEG record. Finally, we show an example of how CNN-based decoding can

be applied to the analysis of complex data.

Keywords: neural decoding, EEG, deep learning, convolutional neural network, P300

1. INTRODUCTION

Decades of neuroscience research have yielded profound insights into how the brain processes
stimuli, integrates perceptual information, adapts to dual-task demands, and coordinates behavior.
Using high-resolution electroencephalogram (EEG), researchers have examined the time course
of multiple neural responses, including those related to stimulus encoding, cognitive processes,
error detection, andmotormovement. However, despite the extensive amount of research into such
phenomena and the development of advanced imaging systems and signal processing techniques,
the preferred method of analysis is still to collect large numbers of precisely timed trials within
controlled experimental paradigms. This preference is due in part to the low signal-to-noise ratio
(SNR) of task-relevant neural activity within the EEG record.

To improve the SNR of both oscillatory and evoked EEG signals, several neural decoding
approaches have been developed. These approaches include methods such as Independent
Component Analysis (ICA), Hierarchical Discriminant Component Analysis (HDCA), and
Common Spatial Patterns (CSP), among others (Jung et al., 2000; Parra et al., 2005, 2008;
Lemm et al., 2011). Whether these techniques are utilized for signal processing (e.g., ICA),
or machine learning applications (e.g., CSP), they are calibrated using subject-specific training
data. Such a requirement, however, reinforces the need for a large number of trials to reduce
the likelihood of overfitting during the training process. Furthermore, these approaches make
a number of assumptions about the data, such as non-Gaussianity, stationarity, whiteness, or
statistically independent unitary dimensions, which may not extend to cross-session, cross-subject,
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or cross-experiment analyses. For example, ICA, CSP, andHDCA
all utilize some form of spatial filtering, which can quickly
become sub-optimal with slight variations in EEG electrode
placement, as occurs across subjects or recording sessions
(Marathe et al., 2016). ICA can converge on differing solutions for
the same subject over different temporal epochs (Hsu et al., 2018)
or fail to capture signal variance due to enforcement of statistical
independence (Gordon et al., 2015). In short, we are not aware
of any neural decoding approaches that can be robustly applied
across datasets or experimental paradigms, such that they do not
require subject-, or at least experiment-, specific training data.

Recent advances in deep convolutional neural networks
(CNNs) for EEG analysis (Cecotti and Graser, 2011; Cecotti
et al., 2014; Manor and Geva, 2015; Shamwell et al., 2016;
Schirrmeister et al., 2017; Lawhern et al., 2018; Roy et al., 2019)
have opened the door for development and training of large-
scale generalized models, i.e., models that can reliably decode
neural activity across subjects and experimental configurations.
In the broader machine learning community, CNNs have often
been applied to pattern recognition problems such as automatic
speech recognition and image processing (see Hinton et al.,
2012; Schmidhuber, 2014; LeCun et al., 2015 for reviews). CNNs
make limited assumptions about the underlying data, can learn
from large, diverse datasets, and extrapolate well to previously
unseen data. Although generalized neural decoding models, such
as those enabled by CNN architectures, have the potential to
interpret data in more complex and less repeatable scenarios, as
well as generally enhance SNR, it is important to quantitatively
establish the link between the decoding model output and the
underlying neural phenomena.

In this paper, we (1) establish such a link for the visual P300
evoked response, and (2) introduce a CNN-based approach for
EEG decoding that can alleviate the need for large amounts
of the test experiment’s data. We validate our CNN approach
using a leave-one-out experimental analysis, and show that the
outputs of the CNN (trained exclusively on other experimental
datasets) faithfully replicate the well-known modulation of the
P300 signal observed in the test set. The sources of P300
variability we examine include (1) perceptual similarity, (2)
target-to-target interval, and (3) dual-task demands. We then
show that the improved SNR in the CNN output space allows
us to obtain the same level of significance when comparing
experimental conditions using EEG derived P300 amplitude
measures, while requiring substantially fewer trials. Finally, we
examine a free-viewing target detection task, in which the
anticipated neural response is masked by both subsequent eye
movements as well as task-relevant visual feedback. Using our
CNN approach, the underlying target-related neural response
can be recovered, whereas with conventional P300 amplitude
measurement techniques, it cannot.

2. REVIEW OF THE P300 EVOKED
RESPONSE

The P300 evoked response, first reported by Sutton et al. (1965),
is a stereotyped neural response to novel or task-relevant stimuli

with maximal amplitude in the parietal region (Polich, 2007).
In a two-stimulus paradigm, the P300 is most often observed
as a response to an infrequent target stimulus presented among
more frequently occurring background stimuli with typically 1–3
s between stimulus presentations. In the three-stimulus version
of the task, an additional infrequent “non-target” stimulus is
presented along with the target and background. In either case,
only the target stimulus requires a response from the observer,
though overt responses (e.g., button press) are not required to
elicit the P300. When visual stimuli are used and the rate of
stimulus presentations increases to 2 Hz or greater, the approach
is commonly referred to as rapid serial visual presentation
(RSVP) (Chun and Potter, 1995).

It is well-established that both the amplitude and latency of the
P300 are affected by endogenous, exogenous, and pathological
factors (Jeon and Polich, 2003; Polich and Comerchero, 2003;
Polich, 2007). This includes both feature (e.g., target and
background similarity) and temporal (e.g., target frequency)
stimulus properties, as well as cognitive states (e.g., high working
memory load). As such, it provides an ideal event-related neural
response fromwhich to assess the effectiveness of our generalized
neural decoding methodology. Prior research shows the P300
amplitude is generally larger with an earlier latency for tasks with
easy vs. difficult target/background discrimination, in tasks with
long vs. short target-to-target intervals, and in tasks with low vs.
high task demands. Here we use P300 to indicate target-detection
related activity showing maximum positive voltage over parietal
electrodes. This is also referred to as the P3b, as opposed to the
P3a elicited over more anterior electrodes by novel distractors
(Polich, 2007).

2.1. Perceptual Similarity
Both the amplitude and latency of the P300 are modulated
by the perceptual similarity between targets and non-targets.
Specifically, P300 amplitudes in response to non-target stimuli
tend to increase the more similar these stimuli are to target
stimuli (Verleger, 1997; Azizian et al., 2006; Marathe et al.,
2015; McDaniel et al., 2018). Variability in P300 responses
evoked during an RSVP task can be attributed, in part,
to the presence of distractor images that share physical
and/or semantic characteristics with the rare target class of
interest, interspersed with frequent background images (Polich
and Comerchero, 2003). Studies have shown that when the
target/background discrimination difficulty increases, that is,
when the target is similar to the standard background, P300
amplitude decreases and latency lengthens (McCarthy and
Donchin, 1981; Comerchero and Polich, 1999).

2.2. Target-To-Target Interval
Prior work has also shown that P300 amplitude can change
as a function of the target stimulus probability, the number
of background images preceding the target (i.e., target-to-target
interval or TTI), as well as the interstimulus interval (ISI)
(Gonsalvez and Polich, 2002). Targets at short ISIs tend to have
smaller and longer latency P300 responses compared to those
elicited at longer ISIs (Woods et al., 1980; Gonsalvez et al., 1999).
However, when ISI is manipulated together with TTI, more of
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the P300 amplitude variance is accounted for by TTI than ISI
(Gonsalvez and Polich, 2002). P300 amplitude remains relatively
constant when TTIs approach 6–8 s or longer (Gonsalvez and
Polich, 2002). Together these findings suggest that the neural
system needs time to efficiently recover from processing target-
related information.

2.3. Task Demands
Amplitude and latency effects have also been observed with
changes in cognitive workload (Wickens et al., 1983; Handy
et al., 2001; Pratt et al., 2011). Specifically, it has been shown
that working memory manipulations from one task can affect
multiple levels of neural processing in another. For example,
in a study by Pratt et al. (2011), subjects performed an arrow
flanker task either alone or while performing a Sternberg task
with high or low working memory load. The results showed
decreased P300 amplitude with increased working memory load
for the incongruent flanker stimuli. This result has also been
found in more applied settings as evidenced by decreased P300
amplitudes under high compared to low workload/baseline in an
aircraft control task (Causse et al., 2016; Giraudet et al., 2016).
P300 latency is also affected by task demands, as demonstrated
in a recent study by Ries et al. (2016), which showed that target
response latency significantly increased as a function of auditory
working memory load. For a review on utilizing the P300 as an
index of task difficulty see Kok (2001).

3. MATERIALS AND METHODS

3.1. P300 Database
Our P300 EEG database was constructed from four previously
collected and analyzed P300 experimental datasets. All
experiments were approved by the Institutional Review
Board of the Army Research Laboratory. A high-level summary
is given in Table 1. The database contains examples from both
RSVP and free-viewing tasks, and were selected to investigate the
decoding properties of our CNN approach. For our leave-one-
out tests, by training a model using the three remaining datasets,
we expected to sufficiently represent the variability in our
hold-out set. An overview of the four experimental paradigms is
shown in Figure 1.

TABLE 1 | Sources of variability, # of Subjects, and # of Trials for each P300

Dataset (T, Target; D, Distractor; B, Background).

Dataset Perceptual

similarity

Target

interval

Task

demands

# Subjects # Trials

(T+D, B)

1 x 18 10,512 —

99,504

2 x x 17 12,255 —

275,494

3 x 16 1,764 —

17,649

4 x x 16 3,394 —

31,506

3.1.1. Dataset 1: Target Discrimination With

Distractor Images
Our first dataset (Figure 1A) involved a 2 Hz RSVP task with
targets, distractors, and background images (Marathe et al.,
2015). Target to background ratio, and distractor to background
ratio, were both approximately 1:14. Target images contained
people holding a weapon, naturally positioned in a simulated
urban environment, while distractor images contained people not
holding weapons. Background images contained neither people
nor weapons. To avoid interference from the attentional blink
phenomena (Raymond et al., 1992), at least two background
images were required to follow any target or distractor image.
Each subject experienced a total of four conditions for this
dataset, which were the combinations of two manipulations:
(1) subjects either mentally counted or pressed a button in
response to targets, and (2) the run either had no distractors
(only target and background images), or had all image types
(target, background, and distractor images). In all conditions,
the target as well as distractor stimuli could be stationary or
moving. The appearance of moving stimuli was created by
presenting five sequential images within the 0.5 s stimulus epoch.
In each image the target was in a slightly different location (i.e.,
animation). Data were collected from 18 subjects (13 male).
EEG data were recorded with 64-channel BioSemi ActiveTwo
(Amsterdam, Netherlands).

3.1.2. Dataset 2: Target Discrimination With Complex

Imagery and Variable Target-To-Target Intervals
Our second dataset (Figure 1B) is from a 5 Hz RSVP task that
incorporated variations in TTI as well as stimulus complexity
(Touryan et al., 2014a,b). Subjects performed six 10-min blocks
of target detection in which images of everyday office scenes
were presented. There were five unique target categories: stairs,
containers, posters, chairs, and doors. Before each block, the
subject was notified of the target category for that block, and was
instructed to push a button when a target stimulus was presented
(i.e., go / no-go). There were six distinct experimental conditions
where the TTI was varied. These six block types had average
TTIs of 1.8, 2.2, 2.8, 3.9, 6.5, and 17.4 s. Targets also appeared
at various sizes, eccentricities, and occlusion levels (i.e., target
object could be fully visible or occluded by other objects in the
scene), increasing the complexity of image categorization. Due to
the difficulty of this task (on average, 44% of targets were missed),
only trials with correct responses were used for this analysis.
Data were collected from 17 subjects (7 male). EEG data were
recorded with 256-channel BioSemi ActiveTwo. Channels were
downsampled to the 64 BioSemi system montage.

3.1.3. Dataset 3: Target Discrimination During Guided

Visual Search Under Varying Degrees of Cognitive

Workload
The third dataset (Figure 1C) involved guided fixations around
a grid of target and non-target stimuli, in both the presence and
absence of an auditory task (Ries et al., 2016). Eye movements
were guided through the use of a red annulus across a grid of
mostly L’s. The annulus moved to a new location approximately
every second, and subjects made a button press when they fixated
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FIGURE 1 | Experimental paradigms from the four datasets (A–D) used in this analysis.

on the infrequent target letter, T. The guided visual search task
was performed under five conditions: (1) alone (Silent), (2) while
ignoring binaurally presented digits, numbers 0–9 (Ignore), or
(3–5) while using the auditory digits in a 0, 1, or 2-back working
memory task (0-, 1-, 2-Back). Auditory stimuli were presented
every 2 s with a 500 ms offset from the red annulus to prevent
simultaneous auditory/visual events. Data were collected from
16 subjects (all male). Eye tracking data were acquired using
a SMI RED 250 (Teltow, Germany). EEG data were recorded
with a 64-channel BioSemi ActiveTwo. Horizontal and vertical
electrooculogram (EOG) data were recorded, respectively, by
placing electrodes near the outer canthus of each eye, and above
and below the orbital fossa of the right eye.

3.1.4. Dataset 4: Target Discrimination via

Free-Viewing Visual Search During Video Playback
The fourth dataset (Figure 1D) is from a free-viewing task
in which subjects viewed an urban landscape in a 15-min
video (Passaro et al., 2017; Solon et al., 2018). In this video,
subjects were driven through a simulated urban environment
and required to find two different types of targets, humans and
tables, and then discriminate between visually similar versions
of each entity. Human entities were either holding a weapon
(threat) or unarmed (non-threat). Tables were oriented in such
a way that they could either hide an explosive device (threat) or
not (non-threat). Target stimuli would abruptly appear one at a
time in random but logical locations (i.e., on the street or in a
doorway) at an approximate rate of once every 3 s, remaining
on screen for 1 s. Subjects were free to scan the environment
but were instructed to indicate the type of entity (threat or
non-threat) by pressing a button with either the left or right
index finger (i.e., two-alternative forced choice). Therefore, while
the task was free-viewing, accurate discrimination tended to
require that the subject fixate on the object. Participants were not
required to hold target fixations for a prescribed amount of time,
and thus subsequent fixations, along with other contaminating
EOG effects, could occur once the subject had acquired enough
information about the target to perform discrimination.

Subjects performed this task under two distinct visibility
conditions: (1) a baseline of clear visibility (Clear) for easy
stimulus detection, and (2) low visibility with an obscuring
fog (Fog) for difficult stimulus detection. Subject responses
were graded for speed and accuracy, and the subject received
performance feedback for every target occurrence. The per
trial score was visually displayed on the screen after button
press response. Following the offset of each target stimulus, a
cumulative score bar was updated, and displayed at the top
and bottom of the screen. Data were collected from 16 subjects
(all male). EEG data were recorded with a 64-channel BioSemi
ActiveTwo. Horizontal and vertical EOG data were recorded in
the same fashion as Dataset 3.

3.2. CNNs for Neural Decoding
CNNs for image processing typically require vast amount of
training data, often on the order of millions of images distributed
across thousands of classes (Deng et al., 2009; Xiao et al., 2010;
Zhou et al., 2018). In neuroimaging studies, however, collecting
such vast amounts of data is prohibitively expensive and
impractical, thus necessitating the need for CNN architectures
designed specifically for low-sample neuroimaging data, while
still being robust to both inter- and intra- subject differences.
Early work applying CNNs to EEG signal classification was
done by Cecotti and Graser (2011) for classification of subject-
specific P300 responses and by Ren and Wu (2014) and
Sakhavi et al. (2015) for classification of imagined movements.
Recent work by Lawhern et al. (2018) has yielded a CNN
architecture for EEG (EEGNet) that can learn from relatively
small amounts of data, on the order of hundreds of trials
per subject. Furthermore, (Lawhern et al., 2018; Waytowich
et al., 2018) showed that EEGNet enabled cross-subject transfer
performance equal to or better than conventional approaches
for several EEG classification paradigms, both event-related and
oscillatory. EEGNet is also the model used to obtain our cross-
experiment results described in Gordon et al. (2017), McDaniel
et al. (2018), and Solon et al. (2018).

EEGNet is a compact CNN that takes minimally processed
time-series EEG data as input, first using temporal convolutions

Frontiers in Human Neuroscience | www.frontiersin.org 4 June 2019 | Volume 13 | Article 201

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Solon et al. Decoding P300 Variability Using CNNs

that act as bandpass frequency filters, followed by depthwise
spatial convolutions that act as spatial filters, which together
improve SNR and reduce the dimensionality of the data. The
depthwise convolution allows the model to learn spatial filters for
each temporal filter, without being fully connected to all of the
outputs of the previous layer and thus greatly reduces the number
of parameters to be learned. EEGNet uses separable convolutions
to more efficiently combine information across filters (Chollet,
2015). Each convolution layer is followed by batch normalization
(Ioffe and Szegedy, 2015), 2D average pooling, and Dropout
layers (Srivastava et al., 2014). We fit the EEGNet-4,2 model,
denoting four temporal filters of length 64 samples and two
spatial filters per temporal filter, as described in Lawhern et al.
(2018) as it was previously shown to perform well for cross-
subject P300 classification when compared to existing CNN-
based models. In addition, it is a smaller model (measured by the
number of free parameters) compared to existingmodels, making
it faster to train.

3.3. EEG Signal Preprocessing
For all EEG datasets analyzed in this paper, the data were
bandpass filtered between 0.3 and 50 Hz before being
downsampled to 128 Hz. To ensure that all datasets were
scaled similarly, we normalized each subject in each experiment
by dividing the filtered data by its median absolute deviation
(MAD), calculated over all channels and time points. We use
MAD to reduce the effect of transient but large artifacts that
occurred in some of the EEG recordings.

3.4. Model Training
All CNN models were trained using a leave-one-experiment-
out procedure, combining data across all but one experiment
for training and then testing on the held-out dataset. We used
EEG epochs 1s in length for our training instances. For all
datasets, with the exception of Dataset 4, instances were created
by epoching [0,1] s around stimulus or fixation onset. In Dataset
4, the P300 responses appear to begin prior to fixation, and
therefore training instances were epoched [–0.3 0.7] s around
fixation onset (Solon et al., 2018).

Models were trained to perform a binary classification
between instances that contained a P300 response [response to
target (T) and distractor (D) stimuli], and those that did not
[responses to background stimuli (B)]. When present, distractors
were included in the target class to capture the natural variability
of the P300 response, as they elicit attenuated P300 responses
(Azizian et al., 2006). To handle imbalance in both class (more
non-targets than targets) and experiment size (some experiments
had more instances than others), we applied a sample weighting
procedure during training to ensure each class and experiment
contributed equally. This was done using the inverse proportion
of the data in the training dataset. For example, if the target
to background ratio was 1:4, the sample weight for all target
trials was set to 4, while the sample weight for all background
trials was set to 1. The weights to control for experiment
imbalance were calculated in a similar manner. The weights
to control for class imbalance and experiment imbalance were
multiplied together to form the final sample weights used in

model training. The EEGNet-4,2 model was implemented in
Tensorflow (Abadi et al., 2015), using the Keras API (Chollet,
2015). The model was trained for 100 iterations using the Adam
optimizer with default parameter settings (Kingma and Ba, 2014),
with a minibatch size of 64 instances, optimizing a categorical
cross-entropy loss function. We trained this model for 100
iterations as we anecdotally observed minimal change in the
training set cross-entropy loss going beyond 100 iterations. The
dropout probability was set to 0.25 for all layers. Source code
for the models can be found at https://github.com/vlawhern/
arl-eegmodels. We will refer to the EEGNet-4,2 model as the
“CNN Model,” and its model outputs as “CNN Outputs,” for the
remainder of the paper.

3.5. Model Testing
Once the model was trained, we applied it to the test set using the
sliding window approach depicted in Figure 2. For all datasets,
we made a prediction (using 1 s of EEG as input) every six
samples over a duration beginning at 1 s before, and ending at 1 s
after, stimulus or fixation onset. For example, a CNN output at T
= 0 uses the EEG epoch [0,1] s as input, and a CNN output at T =
0.5 uses the EEG epoch [0.5, 1.5] s as input. This produced a time-
series of 65 CNN outputs, with each CNN output summarizing
1 s of EEG data. Each output can be considered a probability
that the 1 s long input epoch of EEG data contained the same
neural response associated with target stimuli extracted from
the training data. It is important to note that, depending on
the step size, neighboring points may be highly correlated. For
example, a step size of 100 ms would produce neighboring points
that were computed using data with 90% overlap. As a result,
sharp deviations in the original signal, such as the relatively
instantaneous phase resetting that initiates the P300 response,
are difficult to pinpoint in time using our CNN outputs. Our
modeling approach is more suited for assessing amplitude shifts
that result from changes in the underlying signal as well as large
latency shifts in the evoked response. Minor variances in latency,
such as temporal jitter in the component waveforms, should be
largely ignored by our convolutional approach. We show these
sliding window outputs to provide a more complete perspective
of model performance.

3.6. Statistical Testing for Signal to Noise
Ratio Analysis
For our SNR analysis, using Dataset 3, we performed pairwise
statistical testing on both P300 amplitudes as well as CNN
outputs. The steps that we followed for testing P300 amplitudes
were to (1) compute the average over a parietal region of interest
(ROI) using channels Pz, P1, P2, CP1, CP2, and CPz in the 10-20
montage, (2) identify the mean value, per trial, in the window
400–850 ms post-stimulus or fixation onset, (3) remove, per
subject, the mean of (2) for background trials from the means
computed for target trials, (4) aggregate the data across subjects,
and then (5) compare the distribution of target means in the
Silent condition to target means in the 2-Back condition using
a 1-tailed T-test. The steps that we followed to compare CNN
outputs were similar to those used for P300 amplitudes, with
the exception that we used the CNN output at T = 0 s rather
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FIGURE 2 | Production of CNN Outputs. Each CNN output is produced by

passing as input an epoched sample of the EEG, i.e., a multi-dimensional

array of channels × time. By stepping the CNN over the EEG record our

approach produces an output signal that is decoded, in time and space, by

the encoded deep model. For convenience purposes, we record the CNN

output times using the first time point of the EEG epoch in question.

than means computed over time and space. In other words, we
computed the average non-target CNN output, per subject, and
subtracted that value from the per trial response for targets. We
aggregated the target values across subjects and performed a T-
test to compare the distributions of CNN outputs for targets in
the Silent condition to targets in the 2-Back condition.

In section 4.4 we report the resulting p-values for Dataset 3 as a
function of the percentage of trials selected. Trials were randomly
downselected per subject, and only selected trials were used to
perform both the P300 amplitude and CNN output tests. To
reduce noise in our comparison resulting from trial selection, we
repeated our random sampling and testing procedure 100 times
for each percentage value analyzed.

4. RESULTS

4.1. Perceptual Similarity
Figure 3A shows the P300 response, along with standard errors,
as a difference wave for the target and distractor stimuli (i.e.,
target minus background, distractor minus background) for
Dataset 1, aggregated across subjects. For this test, we compute
our Evoked Responses and CNN outputs only for the condition
that employs mental counting only (i.e., no button press) and
has both target and distractor stimuli. The data for these plots
was computed from the average over a parietal ROI (channels Pz,
P1, P2, CP1, CP2, and CPz) and utilized the same preprocessing
used to prepare the data for the CNN model. The CNN model
was trained on Datasets 2, 3, and 4. Figure 3B shows the average

CNN outputs for the same conditions presented in Figure 3A.
We see that the model outputs closely mirror the P300 amplitude
differences; in both plots, a clear separation of amplitudes is
visible between target and distractor responses. In Figure 3B the
CNN outputs peak at T = 0, which is consistent with the model
training, given that both use epochs [0,1] s around stimulus onset.

4.2. Target-To-Target Interval
Figure 4A shows the P300 response as a function of TTI for
Dataset 2. Shorter TTIs (i.e., more frequent target presentations)
measurably attenuate P300 amplitude. As TTI increases, the
amplitude of the P300 response also increases. Figure 4B

shows the model outputs for the same conditions presented in
Figure 4A. It should be noted that the responses in Figure 3A

appear faster, yet persist longer, than the responses in Figure 4A.
The baseline period, –0.5 to 0 s, in Figure 3A shows greater
desynchronization (i.e., negative dip). Although the origins of
these differences are not critically important for our current
analysis, it is important that the cross-experiment-trainedmodels
represented the amplitude shifts with a similar degree of fidelity,
while also reflecting the subtle temporal shifts and overall shorter
responses in Figure 4A. The CNN outputs in Figure 4B are
shifted to the right and the main lobe appears thinner.

4.3. Task Demands
We compare the P300 waveforms from Dataset 3, in
which subjects performed a guided visual search task while
simultaneously performing an auditory N-back task at varying
degrees of difficulty. Figure 5 presents the results for conditions
Silent, 0-Back, and 2-Back for both the P300 response (A) and
model outputs (B). The high workload P300 waveforms have,
on average, lower peak amplitudes and longer latencies. The
model outputs reflect both of these shifts, though the shift in
amplitude is much stronger than the shift in latency. That the
model outputs continue to reflect shifts in amplitude and latency
for fixation-locked P300 responses, when the majority of the
training data were stimulus-locked, is further indication that
the underlying template encoded within the CNN is based on a
generalized representation of the P300 response. This template
is reasonably invariant to the other experimentally-contingent
components or induced artifacts, whether those are visual-
evoked responses from rapid image presentations, or saccadic
spikes/EOG contamination during visual search.

4.4. Signal to Noise Ratio Analysis
We performed the following analyses to assess the extent to
which CNN-based decoding improves SNR. In the first test, we
systematically downselected the amount of data extracted from a
test set, Dataset 3, to compare the outcome of statistical testing
as a function of the amount of data available. For this test, we
compared data from the Silent and 2-Back conditions; the results
of this test are shown in Figure 6. As can be seen in the figure,
the P300 amplitude analysis produces a p-value of approximately
0.01 using 100% of the data. An equivalent p-value can be
obtained using the CNN output with roughly 25% of the data.
Of course, the decision to reject the Null Hypothesis (i.e., that
target amplitudes are the same in both conditions) is a function
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FIGURE 3 | Perceptual Similarity Results using Dataset 1. (A) Averaged P300 Evoked Response plots for target and distractors computed as difference waves for all

subjects measured at the parietal ROI. (B) CNN outputs are generated, for the same trials shown in (A), via sliding window approach detailed in Figure 2. Starting at

1s before stimulus onset, CNN outputs are generated (using 1 s epochs of EEG data) every 6 samples, resulting in a time-series of 65 total predictions. Shaded

regions in both figures denote 2 standard errors of the mean.

FIGURE 4 | Target-to-Target Interval using Dataset 2. (A) Averaged P300 Evoked Response (computed as difference waves) measured at the parietal ROI across

subjects for the 6 distinct experimental conditions with varied TTI. The 6 conditions have, on average, TTI values of 1.8, 2.2, 2.8, 3.9, 6.5, and 17.4 s. (B) A

time-series of 65 CNN outputs are generated, for the same Target trials shown in (A), via sliding window approach detailed in Figure 2. Shaded regions in both figures

denote 2 standard errors of the mean.

FIGURE 5 | Task Demands results using Dataset 3. (A) Averaged P300 Evoked Response (computed as difference waves) for targets trials, time-locked to fixation

onset, obtained from the parietal ROI for the Silent, 0-Back, and 2-Back conditions (B). A time series of 65 CNN outputs are generated, for the same trials shown in

(A), via sliding window approach detailed in Figure 2. Shaded regions in both figures denote 2 standard errors of the mean.

of several factors, including significance threshold and multiple-
comparison corrections. In the original paper (Ries et al., 2016),
the authors did not report a significant difference in amplitudes
after performing a multiple-comparisons correction. Use of CNN
outputs would have affected this result due to the enhanced SNR
of the CNN method.

To better understand what is happening in the temporal
domain, we performed a follow-up analysis on Dataset 2. We
artificially created three groups of data from this dataset by
grouping correct target responses by reaction time. The groups
we considered were fast, medium, and slow RTs, which were

calculated using the 33rd and 66th percentiles as cutoffs. These
results are presented in Figure 7 andTable 2. As can be seen from
Figure 7A, the P300 response for fast and medium responses
appear relatively similar in amplitude, but the medium response
is temporally shifted ∼100 ms to the right of the fast response,
which is consistent with the measured reaction times presented
in Table 2. The P300 response for the slow group is shifted∼100
ms to the right of the medium response; however, the amplitude
appears severely attenuated, while the lobe width appears wider.
This phenomenon is largely a result of the unequal variance
in the slow RT group; the P300 response in these trials is not
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FIGURE 6 | (A) Result of significance testing for amplitude differences between target response in the Silent vs. 2-Back conditions in Dataset 3 using CNN outputs

(black) and measured P300 amplitude (green). (B) Sample of the P300 and CNN outputs using 25% of the data. (C) Sample of the P300 and CNN outputs using 75%

of the data.

necessarily diminished, but rather the increase in RT variance
diminishes the amplitude of the averaged response (Verleger
et al., 2005). Inspecting the results in Figure 7B, we observe that
the time course of CNN outputs reflect the overall temporal
trend of the three groups, i.e., the peak of the fast response is
∼100 ms before the peak of the medium response, which is
itself about ∼100 ms before the peak of the slow response. In
other words, a temporal shift of the entire distribution of the
P300 response also shifts the CNN output peaks. Unlike the raw
amplitude measurements, though, the CNN outputs indicate no
difference in amplitude between the fast and slow responses.
The convolutional structure of the CNN has, effectively, resolved
the increased temporal variability in the slow group. There does
appear to be a difference in amplitudes between the medium
response and the response of the fast/slow groups; however,
this can be explained by remembering that the CNN outputs
are probability assessments that the input signal matches a pre-
trained template, which is maximized in this case by the medium
group. The shifts in amplitude as a function of latency are
distributed about the center axis, i.e., T = 0 s, in Figure 7.

Returning to Figures 6B,C, we see that there is a minor,
observable, shift in latency, which could impact the amplitude
measurements of our CNN. However, the shift in latency for
the low amplitude group (i.e., 2-Back) is toward the center
axis (T = 0 s), where one would expect the CNN probability
estimates to peak. In other words, the result in Figure 7 would
suggest that if the amplitudes in Dataset 3 were equal, we would
observe a lower amplitude for the Silent condition than the 2-
Back condition, due to the leftward shift of the Silent response.
We argue that by observing the opposite trend, our confidence in
the result increases.

4.5. Application to Complex Data
In our previous work (Solon et al., 2018) utilizing Dataset 4,
we show that in the Clear condition, the fixation-locked and

stimulus-locked neural responses are largely identical, with the
exception of a small time shift. Here, the target’s “pop-up” effect
acts an exogenous, or peripheral, cue that reliably guides the
subject’s attention to the target. When the scene is obscured
by fog, the latencies between stimulus onset and its subsequent
fixation become longer and more variable, as the effect of this
peripheral cue is diminished, and in some cases eliminated. As
a result, subjects must employ more top-down search strategies
to discover the target, which they may only perceive once it is
within their parafoveal vision. Consequently, we expect that in
the Clear condition, that the P300 response will be primarily
locked to stimulus onset, whereas in the Fog condition, that the
P300 responses are mixed between stimulus onset locking and
fixation onset locking.

The latency between stimulus and a peripherally cued fixation
is relatively stereotyped, with the most common fixation onset
occurring 0.2194 s post stimulus. We arrived at this value
by fitting a lognormal probability distribution to a histogram
of target fixation onset times in the Clear condition only,
and choosing the peak value of the fitted distribution (the
distribution of fixation onsets was heavily right skewed). In the
Fog condition, we expect fixations that occur faster than this
value to have predominantly fixation-locked neural responses,
as these fixations occur faster than they would have if they
were peripherally cued. In other words, considering the standard
stimulus-to-fixation timing in the easier Clear condition, the
subjects would not have had time to receive the peripheral
cue and then saccade to the object. In Figure 8, we compare
four conditions: Fog and Clear with short fixation onset
times, and Fog and Clear with long fixation onset times. The
Fog with short fixation times represents the case where the
subject relies on no peripheral cuing. Short fixation onset
times are defined as being less than 0.2194 s, whereas long
fixation onset times are defined as being greater than or equal
to 0.2194 s.
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FIGURE 7 | (A) Averaged P300 Evoked Response (computed as difference waves) for correct target trials for each RT bin, detailed in Table 2 (B). A time series of 65

CNN outputs are generated, for the same trials shown in (A), via sliding window approach detailed in Figure 2. Shaded regions in both figures denote 2 standard

errors of the mean.

TABLE 2 | Mean and Standard Deviation values for Fast, Medium, and Slow

reaction time groups.

Category Average reaction time (s) STD of reaction time (s)

Fast 0.428 0.051

Medium 0.540 0.031

Slow 0.740 0.135

In the Evoked Response difference waves shown in Figure 8A,
the differences between the conditions are imperceptible.
Importantly, the Evoked Response wave forms are atypical, with
the apparent response persisting well after 1 s post fixation, a
result, we believe, of the mixture of subsequent search fixations
(which occur ∼0.65 s after target fixation) and visual feedback
indicating the subject’s game score (∼0.5 s after target fixation).
In Figure 8B, we see that the CNN outputs for the Clear
condition, both slow and fast, are similar to each other in timing
and magnitude despite the difference in fixation latency relative
to stimulus onset. However, the neural response, as measured
by the CNN output, associated with short fixations (red-763
trials) occurs closer to fixation onset than the neural responses
associated with long fixations (black- 1,676 trials). For the Fog
condition, we see that the CNN outputs associated short fixations
(blue-101 trials) peak at T = 0 s, which confirms our hypothesis
that the neural responses are driven by top-down search rather
than peripheral cuing. In other words, processing of these stimuli
begin at fixation. For long fixation onsets in the Fog condition
(green-854 trials) we see two peaks in the CNN output: one that
begins prior to fixation onset, and one that begins at fixation
onset. We hypothesize that the first of these peaks represents the
Fog targets, despite their obfuscation, that subjects were able to
detect through peripheral cuing. The second represents the trials
with slow-fixation-onset where peripheral cuing did not play a
significant role in target discovery.

5. DISCUSSION

Existing methods to analyze neural phenomena often require the
collection of large numbers of precisely-timed trials due to the
relatively poor SNR of minimally processed EEG data. Here we

introduced a technique that utilizes convolutional deep-networks
to decode EEG data. We applied this neural decoding approach
to the analysis of the well-known P300 response. The P300
response has previously been shown to vary in both amplitude
and latency as a result of a variety of experimental manipulations.
We showed that the outputs of our CNN were sensitive to these
changes, whether those changes occurred as a result of perceptual
similarity, target interval, or task demands. We further showed
that our CNN-based decoding approach improved overall SNR
of the underlying EEG signal, allowing us to correctly reject the
null hypothesis for a comparison of amplitude means using only
a fraction of the recorded data. We also demonstrated that the
CNN outputs shift with latency of the underlying signal, but that
temporal variability about a shifted mean does not impact CNN
output to the same extent that it impacts averaged amplitudes.
Perhaps most importantly, our technique can be completely pre-
trained using previously run experiments. Taken together, these
results validate the use of CNN architectures for generalized
neural decoding and show that such decoding can substantially
alleviate the need for large numbers of repeated trials.

In section 4.5, we provide an example application where we
utilized a pre-trained CNN model to decode P300 variability in
the previously unseen Dataset 4. In the future, this approach
could be applied to similarly challenging datasets, especially
those where few trials are available per experimental condition.
Likewise, our CNN decoding method may demonstrate some
utility as a feature extractor for brain computer interface (BCI)
applications. For example, previous studies have used P300
amplitude measures as features for predicting cognitive workload
(Brouwer et al., 2012). Using CNN outputs, as opposed to
P300 amplitude features or linear classifiers, may provide more
accurate estimates of workload without the burden of additional
training or calibration data.

However, there are limitations to our CNN decoding
approach. Principally, for our chosen neural response, the P300
evoked response, the CNN model loses temporal resolution.
This is a direct consequence of the windowing and temporal
convolutions within the model that are designed to reduce
the effects of temporal jitter. Whether this resolution is truly
lost or must be further decoded by analyzing the hidden
layers and internal activity of the network is an important
question that should be addressed with future work. Of
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FIGURE 8 | Results using Dataset 4. (A) Averaged P300 Evoked Response (computed as difference waves) for target trials (left axis) time-locked to fixation onset,

obtained from the parietal ROI and distribution of subsequent fixations as well as visual feedback time-locked to fixation onset (right axis). Fast fixation onset times

represent those which occur faster than those which could have been peripherally cued (B). A time series of 65 CNN outputs are generated, for the same trials shown

in (A), via sliding window approach detailed in Figure 2. Shaded regions in both figures denote 2 standard errors of the mean.

course, this also points at another potential drawback of the
CNN-based approach, which is the overall interpretability of
layered networks. Techniques for interpreting hidden layers
and activity of deep networks have advanced greatly over
the past few years, primarily in computer vision (Zeiler
and Fergus, 2014; Shrikumar et al., 2017; Ancona et al.,
2018; Montavon et al., 2018). These techniques have recently
been applied to neurophysiological data like EEG (Sturm
et al., 2016; Lawhern et al., 2018), enabling additional
insights into CNN-derived feature representations. However,
algorithms and approaches to fully enable the interpretation
and understanding of network behavior remains an open
scientific question. In addition, while CNN decoding improves
amplitude measurements in the presence of temporal jitter,
large temporal shifts can create false changes in amplitude as a
result of the template matching occurring within the CNN (see
Figure 7 fast vs. medium response). The relationship between
latency and measured amplitude can be a confound in P300
analysis. If the purpose of neural decoding includes amplitude
comparisons at different latencies, one possible solution would
be to tailor the training data to the anticipated latencies
of interest.

Finally, as our decoding approach (1) can be pre-trained,
(2) is capable of ignoring co-morbid, experimentally induced
components or artifacts, and (3) exhibits a certain amount
of invariance to temporal uncertainty, this work represents
an important extension beyond the existing approaches, data
driven or otherwise, employed in the measurement and
interpretation of neural phenomena. We believe the use of
such CNN-based decoding will enable more complex, real-world
neuroscience research (Blankertz et al., 2010; van Erp et al.,
2012; Saproo et al., 2016). By allowing the experimenter to
develop decoding models from precisely controlled laboratory
experiments, yet analyze data from a much smaller number of
trials without requiring the same level of temporal precision,
CNNs such as the one presented here, can help bridge the
gap between our knowledge of how the brain functions in
the laboratory and how it may function in the real-world.
Although there remains additional work to develop, refine, and

validate CNN decoding approaches, including different neural
phenomena and brain states, we anticipate a growing reliance
on deep models for neuroscientific research in complex, real-
world environments.
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