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Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid),
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Abstract

It has been proposed that in wild ecosystems viruses are often plant mutualists, whereas

agroecosystems favour pathogenicity. We seek evidence for virus pathogenicity in wild eco-

systems through the analysis of plant-virus coevolution, which requires a negative effect of

infection on the host fitness. We focus on the interaction between Arabidopsis thaliana and

Cucumber mosaic virus (CMV), which is significant in nature. We studied the genetic diver-

sity of A. thaliana for two defence traits, resistance and tolerance, to CMV. A set of 185 indi-

viduals collected in 76 A. thaliana Iberian wild populations were inoculated with different

CMV strains. Resistance was estimated from the level of virus multiplication in infected

plants, and tolerance from the effect of infection on host progeny production. Resistance

and tolerance to CMV showed substantial genetic variation within and between host popula-

tions, and depended on the virus x host genotype interaction, two conditions for coevolution.

Resistance and tolerance were co-occurring independent traits that have evolved indepen-

dently from related life-history traits involved in adaptation to climate. The comparison of the

genetic structure for resistance and tolerance with that for neutral traits (QST/FST analyses)

indicated that both defence traits are likely under uniform selection. These results strongly

suggest that CMV infection selects for defence on A. thaliana populations, and support

plant-virus coevolution. Thus, we propose that CMV infection reduces host fitness under the

field conditions of the wild A. thaliana populations studied.

Author summary

Plant-virus coevolution has not been demonstrated in any wild system, and it has been

proposed that viruses often would be mutualistic symbionts, rather than pathogens, in

wild plant ecosystems. We analyse if viruses are virulent pathogens of plants in wild
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ecosystems and, consequently, plants have evolved defences against virus infection. To

test this hypothesis, we studied the genetic diversity of Arabidopsis thaliana for two

defence traits, resistance and tolerance, to Cucumber mosaic virus (CMV) at a regional

scale in the Iberian Peninsula. Resistance and tolerance to CMV showed substantial

genetic variation within and between host populations, and depended on the virus x host

genotype interaction, two conditions for coevolution. Resistance and tolerance were inde-

pendent traits that co-occurred at the population and regional scales, and that have

evolved independently from other adaptive life-history traits. Analyses also indicated that

resistance and tolerance are likely under selection, most likely due to virus infection.

These results support a hypothesis of plant-virus coevolution and contribute to demon-

strate that plant viruses may be virulent parasites of plants in wild ecosystems.

Introduction

It is commonly accepted that hosts and pathogens coevolve [1]. This concept rests on the

assumption that pathogens are virulent parasites, defining virulence as the negative impact of

infection on the host fitness. As a consequence, hosts will evolve defences to limit pathogen

infection, or to compensate for its costs [2]. In plants, the two major defences against patho-

gens are resistance, defined as the ability of the host to limit infection and/or parasite multipli-

cation and tolerance, which limits the fitness effect of a given parasite burden, i.e., specifically

decreases virulence [3,4]. As host defences may reduce the parasite’s fitness, hosts and parasites

may coevolve, coevolution being the process of reciprocally adaptive genetic change in two or

more species [1]. Evidence for host pathogen coevolution is not abundant. For plants it derives

mostly from studies of agroecosystems in which the pathogen evolves in response to the

deployment of resistance in the host population [5]. These studies have provided the bases for

theory on host-pathogen coevolution, including the gene-for-gene model of host-pathogen

interaction [6,7]. However, coevolution requires certain conditions to be met [1]: i) genetic

variation in the relevant host (e.g., resistance, tolerance) and pathogen (e.g., infectivity, viru-

lence) traits; ii) reciprocal effects of the relevant traits of the interaction on the fitness of host

and pathogen; iii) dependence of the outcome of the host-pathogen interaction on the combi-

nation of host and pathogen genotypes involved. These conditions must be analysed in wild

systems, in which the host may evolve in response to environmental pressures, including path-

ogen infection, at odds with agricultural systems. Evidence for plant-pathogen coevolution

from wild pathosystems is limited to a few instances, all involving fungal, oomycete or bacterial

pathogens [8,9].

To our knowledge, plant-virus coevolution has not been demonstrated in any wild system.

In fact, it has been proposed that viruses often would be mutualistic symbionts, rather than

pathogens, in wild plant ecosystems [10–12], and it has been shown that virus infection may

be detrimental or positive for the host depending on the environment [13,14]. Hence the inter-

est in seeking evidence about whether viruses are plant pathogens in wild ecosystems and

viruses and plants co-evolve, or if virus virulence is the result of the specific conditions of

agroecosystems. Reports of negative effects of virus infection in wild plants in their natural

habitats are not abundant [e.g., [15–22] and indicate that effects may largely depend on site or

host population [23], but the genetic variation of defence and virulence has not been analysed

in these systems.

To analyse plant-virus coevolution in wild ecosystems we have chosen the system Arabidop-
sis thaliana L. Heynh. (Brassicaceae)-Cucumber mosaic virus (Cucumovirus, Bromoviridae),
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(CMV). A. thaliana is an annual semelparous species with two distinct developmental periods:

the vegetative growth period, producing a rosette of leaves, and the reproductive period in

which the inflorescence grows, new flowers are produced continuously, and older flowers

develop into siliques [24]. It is a cosmopolitan species, with a broad native distribution in Eur-

asia and Africa [25–27]. The Iberian Peninsula has been shown to contain the largest A. thali-
ana diversity in Eurasia due to its colonization from different refugia after the last glaciations

[26–29]. In Iberia, A. thaliana occurs in a variety of habitats, and substantial genetic variation

has been described, within and among populations, for relevant adaptive traits including phe-

nological traits like flowering time and seed dormancy [30–33]. Although wild populations of

A. thaliana have been shown to contain ample genetic and phenotypic diversity for responses

to herbivores and pathogens [34–38], the diversity for traits related to plant-virus interactions

has not been systematically analysed.

CMV is an RNA virus with the broadest host range including about 1,200 species in more

than 100 plant families. CMV is horizontally transmitted by many species of aphids in a non-

persistent manner, and through the seed with efficiencies that depend on the genotypes of

CMV and the plant species [39]. In A. thaliana, seed transmission rates vary between 2 and 8%

[40, 41]. CMV isolates are highly diverse and have been classified into subgroups IA, IB and II,

based on the nucleotide sequence similarity of their genomic RNAs [39,42].

Analyses of the incidence of five viruses in six wild A. thaliana populations from central

Spain during 10 years showed that CMV was most prevalent, up to 80% according to popula-

tion and year [43,44], indicating that the A. thaliana–CMV interaction is significant in nature.

As in other hosts monitored in the Iberian Peninsula, Subgroup IA isolates are most prevalent

[44–46]. Our group has analysed the role of resistance and tolerance in this interaction. The

infection of 21 wild genotypes of A. thaliana representing the variation of the species in Eur-

asia with three CMV strains, showed that quantitative resistance to CMV depended on the

interaction between host genotype x virus strain, and was a host trait with moderate to high

heritability [47]. Virulence, estimated as the effect of infection on viable seed production, did

not correlate with virus load, due to host genotype x virus strain-specific tolerance and, again,

tolerance was a host trait with moderate to high heritability [47]. Interestingly, tolerance was

positively correlated with the length of post-embryonic development (life span) of the host

genotypes [47], and was due, at least in part, to host life-history trait modification upon infec-

tion: long life span genotypes delayed flowering upon infection and re-allocated resources

from vegetative growth to reproduction, thus decreasing the effects of infection on progeny

production, i.e., attaining tolerance [48]. It remains to be shown that defence polymorphisms

result from the selection applied by CMV infection, and not by any other environmental factor

known to modulate plant developmental architecture and phenology, such as life span, flower-

ing time and plant size, which are known to have a role in adaptation of A. thaliana to the abi-

otic environment [49–51].

In this work we study the genetic diversity of A. thaliana for resistance and tolerance to

CMV at a regional scale in the Iberian Peninsula. To this end, we exploit a collection of 76 nat-

ural populations covering the wide ecological, environmental and genetic diversities of A.

thaliana in this region [32,49]. We address the following questions: i) Which is the amount of

genetic diversity for resistance and tolerance to different CMV genotypes? ii) Are the geo-

graphic and environmental climatic patterns of resistance and tolerance similar or different

from those of related adaptive life history traits of A. thaliana? iii) Are resistance and tolerance

traits under natural selection? Addressing these questions is crucial to determine if CMV infec-

tion has a negative impact on its host fitness under natural field conditions and, consequently,

if there is coevolution between A. thaliana and CMV.

Virus infection as a selective pressure on Arabidopsis wild populations
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Results

Genetic variation for resistance and tolerance to CMV in A. thaliana
To estimate the genetic diversity for resistance and tolerance to CMV, 76 A. thaliana wild

genotypes collected in different natural populations from the Iberian Peninsula (Fig 1 and S1

Table) were assayed. We consider here a population as the set of A. thaliana plants growing in

a specific geographical site. Plants were inoculated after eight-week vernalisation, using two

CMV isolates from Iberian A. thaliana populations, Cdc-CMV and Lro-CMV. All 76 geno-

types were systemically infected by both CMV isolates, no immunity or hypersensitive resis-

tance reaction being detected.

Resistance was estimated from the levels of virus multiplication, quantified as virus RNA

accumulation. RNA accumulation varied between 0.26 and 56.28 μg of virus RNA g fwt-1

(Table 1, Fig 2 and S2 and S3 Tables), variation significantly depending on the A. thaliana
genotype (F75,816 = 2.98, P<10−4), the virus isolate (F1,816 = 113.30, P<10−4) and the interac-

tion virus isolate x host genotype (F75,816 = 75.82, P<10−4), which together explained 88% of

Fig 1. Geographic distribution of Arabidopsis thaliana populations analysed in this study. Circles indicate population locations. Circles with asterisk indicate the 12

populations used for within/between population analyses, their names appearing next to them.

https://doi.org/10.1371/journal.ppat.1007810.g001
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the variance (24.6% for A. thaliana genotype, 38.9% for virus isolate and 24.5% for their inter-

action). On average, Cdc-CMV accumulated to higher levels than Lro-CMV (19.28±1.37 and

7.53±0.71 μg virus RNA g fwt-1, respectively) (Fig 2 and Table 1). Virus accumulation in the

host plant showed high heritability for both CMV isolates, with an average of 0.8 (Table 1),

heritability being defined as the genetic component of the variance of the trait.

Tolerance was estimated from the effect of virus infection on progeny production. Since

CMV infection does not affect seed viability or the weight of single seeds in a large number of

A. thaliana genotypes [14,47,52], tolerance was estimated as the ratio of seed weight in infected

to mock-inoculated plants (SWi/SWm), which varied between 0.03 and 0.79 (Table 1, Fig 2, S2

and S3 Tables). As for resistance, tolerance significantly depended on A. thaliana genotype

(F76,816 = 3.10, P<10−4), virus isolate (F1,816 = 71.40, P<10−4) and their interaction (F75,816 =
5.18, P<10−4), which together explained 73% of the variance (26.9% for A. thaliana genotype,

25.0% for virus isolate and 21.2% for their interaction). Tolerance to Cdc-CMV (0.35±0.02) was

lower than tolerance to Lro-CMV (0.51±0.02) (Fig 2 and Table 1). Tolerance in the host showed

medium to high heritability, between 0.70 and 0.54 for Cdc-CMV and Lro-CMV, respectively.

No significant relationship was detected between virus RNA accumulation and SWi/SWm
across genotypes nor within genotypes (r�-0.11, P�0.358). Together, results show that natural

populations of A. thaliana contain substantial but independent genetic variation for resistance

and tolerance to CMV.

Geographic and climatic patterns of A. thaliana resistance and tolerance to

CMV

To determine if there is a geographic pattern for the genetic diversity for CMV resistance or

tolerance, we first analysed the spatial autocorrelation of both variables. Neither virus

Table 1. Values (mean and range of variation), heritability and autocorrelation, of life history and defence traits to CMV in the Iberian population of A. thaliana.

Autocorrelation

Traita nb Mean±SEc Min-Maxd h2b e Moran's I f Distanceg

RW 76 0.50±0.04 0.04–1.80 0.96 0.43–0.85 219.31

IW 76 1.83±0.06 0.66–3.48 0.71 0.41–0.89 204.69

SW 76 0.85±0.02 0.31–1.23 0.61 0.23–0.33 153.47

GP 76 117.72±0.80 103.40–140.71 0.92 0.43–0.59 191.75

LP 76 184.26±0.76 170.80–198.00 0.72 ns ns

Resistance to Cdc-CMVh 76 19.28±1.37 0.56–56.28 0.81 ns ns

Resistance to Lro-CMVh 76 7.53±0.71 0.26–27.83 0.78 ns ns

Tolerance to Cdc-CMVi 76 0.35±0.02 0.03–0.77 0.70 ns ns

Tolerance to Lro-CMVi 76 0.51±0.02 0.06–0.79 0.54 ns ns

a: Traits are: Rosette weight (RW), inflorescence without seed weight (IW) and viable seed weight (SW), expressed in g, and growth period (GP) and life span (LP),

expressed in days.
b: number of individuals.
c: Mean value and standard error of at least 5 replicated plants.
d: Minimum and maximum values of the trait.
e: Broad sense heritability expressed as percentage of genetic variation.
f: Values of significant values ofMoran's index (P<0.001).
g: Geographic distance in km, showing significant values of Moran’s index.
h: Resistance is expressed as virus accumulation (μg of virus RNA g fresh leaf weight-1).
i: Tolerance is expressed as effect of infection on viable seed production (SWi/SWm).

ns: non-significant.

https://doi.org/10.1371/journal.ppat.1007810.t001
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accumulation nor SWi/SWm showed significant spatial autocorrelation at any geographic scale

(P>0.050) (Table 1).

Second, to find if these defence traits might be associated with the climate, we analysed

their relationship with climatic variables from the original local populations. Neither the accu-

mulation of any of the two CMV isolates, nor the SWi/SWm ratio in plants infected by any of

them, significantly correlated with any of the analysed abiotic variables (see Methods and S4

Table) according to Dutilleul’s t-tests (r�-0.30, P�0.039), SARs (F�7.185, P�0.009), or Man-

tel tests (r�-0.12, P�0.019) (S4 Table).

Fig 2. Variation for resistance and tolerance to CMV in A. thaliana. Frequency distributions are for accumulation (μg RNA g fresh leaf

weight-1) of (A) Cdc-CMV and (B) Lro-CMV RNA, and of the effect of infection by (C) Cdc-CMV and (D) to Lro-CMV on seed production.

https://doi.org/10.1371/journal.ppat.1007810.g002
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Finally, we analysed if there is a relationship between the genetic diversity for CMV defence

traits and the overall genetic diversity of the A. thaliana wild genotypes estimated from neutral

markers (250 SNPs). Mantel tests between pair-wise genetic distances estimated from neutral

markers and pair-wise differences for virus RNA accumulation or SWi/SWm did not detect

any significant correlation in relation to Cdc-CMV or Lro-CMV (r�-0.04, P�0.403).

Genetic diversity and geographic or climatic patterns of life history traits in

A. thaliana
Tolerance to CMV in A. thaliana is related to the host life history traits, as tolerance is due in

part to a reallocation of resources from growth to reproduction, which depends on the allome-

try of the vegetative to reproduction organs, (SW+IW)/RW [48]. In the 76 wild genotypes,

resource reallocation upon infection by both CMV isolates also depended on plant allometry,

being more efficient in genotypes with lower (SW+IW)/RW (F1,76>14.58, P<10−4), and the

effect of infection by both CMV isolates on RW correlated positively with LP and RW of

mock-inoculated plants (r�0.29, P�0.022). Neither resistance nor tolerance correlated with

viable seed production of mock-inoculated controls (r�0.02, P�0.540).

We then analysed several life history traits related with growth and phenology in eight-week

vernalised mock-inoculated plants of the 76 wild genotypes. Rosette weight (RW), inflorescence

without seeds weight (IW) and seed weight (SW), growth period (GP) and life-span (LP) signifi-

cantly differed between genotypes (F75,399�9.23, P<10−4) (S2 and S3 Tables). Heritability of

these traits was high, between 0.61 and 0.96 (Table 1). Overall, A. thaliana populations display a

large genetic variation for the analysed life history traits, as in previous works [33,49,50].

Rosette weight (RW), inflorescence without seeds weight (IW) and seed weight (SW) signif-

icantly differed between genotypes (F75,399�9.23, P<10−4) (S2 Table). To determine if life his-

tory traits related to tolerance showed similar or different geographic patterns than CMV

defences, we analysed their autocorrelation. All growth and phenological traits showed signifi-

cant spatial autocorrelation up to 153 km (Table 1). Furthermore, we analysed the relationship

between these life history traits and climate using Dutilleul’s t-test, univariate SAR models and

Mantel tests (S4 Table). Overall, RW, IW, SW and GP, but not LP, were positively correlated

with altitude and negatively correlated with most climatic variables, including annual mean,

minimal and maximal temperature, and precipitation seasonality (Fig 3 and S4 Table). These

analyses showed A. thaliana genotypes from higher altitude, lower temperatures and higher

precipitation seasonality flowered later, developed larger rosettes and inflorescences and pro-

duced more seeds. Moreover, Mantel tests showed that genetic distance was positively corre-

lated with IW, SW, GP (r>0.15, P<0.008) and marginally with RW (r = 0.08, P = 0.078) but

not with LP (r<-0.02, P>0.700).

In contrast to CMV defence traits, life history traits related with resource allocation vary

according to the climatic environment where populations evolved. Therefore, resistance and

tolerance to CMV show different evolutionary histories than life history traits, likely reflecting

distinct abiotic and biotic environmental selective forces acting on each group of traits.

A. thaliana population differentiation for resistance and tolerance to CMV

To quantify the distribution of genetic diversity for CMV defence traits within and among A.

thaliana populations we analysed ten randomly sampled individual plants (henceforth named

as “individuals”) from 10 or 12 Iberian populations, which were tested for their resistance and

tolerance to two CMV isolates. One isolate from an Iberian population of A. thaliana (Cdc-

CMV) and a reference isolate (Fny-CMV) were chosen because they had been used in previous

work [43,47,48]. Since CMV resistance and tolerance depend on the environment [14,48,53],
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two experiments were performed with different vernalisation period lengths, as vernalisation

affects life history traits relevant to tolerance such as rosette size, rosette leaf number, flowering

time [33,49,54], and seed germination [55]. An eight-week vernalisation treatment simulated a

cold winter, whereas a four-week vernalisation simulated a mild winter, as often occur across

years in the original population locations. In both experiments, all individuals were systemi-

cally infected by both CMV isolates. The two experiments yielded similar results. For clarity

only results of the long vernalisation treatment experiment are presented in the text, but results

of the short-vernalisation are shown in S5 Table.

Virus accumulation varied considerably among individuals within populations (Fig 4,

Table 2 and S6 Table). The average virus accumulation in each population ranged from 2.62 to

32.02 μg virus RNA g fwt-1. The heritability of virus accumulation varied between 0.23 and 0.90

depending on CMV isolate and host population (Table 2). Virus accumulation significantly

depended on the virus isolate (F1,884 = 67.88, P<104), the A. thaliana population (F9,884 = 2.40,

P = 0.059) (Fig 4 and Table 2), the A. thaliana individual nested to population (F88,884 = 2.54,

P<10-4), and on the interactions CMV isolate x A. thaliana population (F9,884 = 4.11, P<10-4)

and CMV isolate x A. thaliana individual nested to population (F88,884 = 7.08, P<10-4). CMV

isolate, A. thaliana individual nested to population and their interaction explained 49.7, 3.3 and

14.6% of the variance, respectively, while A. thaliana population and the interaction CMV iso-

late x population explained 7.0 and 5.5%. The average accumulation was higher for Cdc-CMV

than for Fny-CMV (18.61±2.76 and 7.37±1.74 μg virus RNA g fwt-1, respectively). Besides, aver-

age values of Cdc-CMV accumulation over individuals and populations correlated significantly,

or marginally, with the corresponding values of Fny-CMV accumulation (rs = 0.32, P = 0.001;

rs = 0.60, P = 0.067, respectively), indicating that, in general, individuals and populations that

were more resistant to Cdc-CMV were also more resistant to Fny-CMV.

CMV tolerance also showed substantial variation among individuals within populations,

SWi/SWm values ranging between 0.02 and 0.93 for Cdc-CMV, and between 0.03 and 0.81, for

Fny-CMV-infected plants (Fig 4, Table 2 and S6 Table). Average SWi/SWm values in each pop-

ulation varied from 0.16 to 0.47 (Fig 4 and Table 2), indicating a lower range of variation

among than within populations. Heritability of tolerance varied between 0.10 and 0.80

depending on CMV isolate and host population (Table 2). SWi/SWm varied significantly

depending on virus isolate (F1,884 = 5.30, P = 0.046), A. thaliana population (F9,884 = 2.40,

P = 0.059) (Fig 4 and Table 2), A. thaliana individual nested within population (F88,884 = 2.445,

P = 0.023) and the interaction CMV isolate x A. thaliana individual (F88,884 = 2.65, P<10−4). A.

thaliana individual and the interaction CMV isolate x A. thaliana individual explained a larger

proportion of SWi/SWm variance (32.2%, 16.1%, respectively) than CMV isolate or A. thaliana
population (1.6%, 6.4%, respectively). When averaged over all individuals, tolerance to Cdc-

CMV (0.36±0.06) and Fny-CMV (0.32±0.06) were similar. Average values of SWi/SWm in

Cdc-CMV-infected plants correlated across individuals and populations with those of Fny-

CMV-infected plants (rs = 0.73, P = 0.016; rs = 0.60, P<10−4, respectively). Thus, as for resis-

tance, the individuals and populations more tolerant to Cdc-CMV were also, in general, more

tolerant to Fny-CMV. However, values of virus accumulation and SWi/SWm did not correlate

over individuals for any CMV isolate (rs�0.09, P�0.129). Together, these results indicate that

A. thaliana defences against CMV infection depend on the host genetic variation determining

the specific defences.

Fig 3. Relationships between life-history traits and geographic or climatic factors. Correlations are shown (A, B, C) for rosette weight (RW), (D, E, F)

inflorescence weight (IW), (G, H, I) seed weight (SW) and (J, K, L) growth period (GP) with altitude, annual mean temperature and precipitation

seasonality. Values are means of at least five replicates per plant genotype.

https://doi.org/10.1371/journal.ppat.1007810.g003
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Comparison of genetic differentiation among A. thaliana populations

between quantitative traits and neutrals markers

To find out if CMV defence traits of A. thalianamight be under selection, we compared the

genetic differentiation among populations for CMV resistance and tolerance, with that for

neutral genetic variation (Fig 5). Two-hundred and fifty genome-wide SNPs, distinguished 74

different genotypes among the 120 individuals analysed (S7 Table) and were used to calculate

FST values. As in the previous section, analyses are based on the results of the long vernalisation

treatment experiment, analyses based on the short-vernalisation treatments gave similar

results and are shown in S5 Table.

The estimated average genetic differentiation among populations for neutral markers was

0.58 (95%CI = 0.54–0.62), which is presumed to reflect the demographic history of the popula-

tions. Genetic differentiation among populations for quantitative traits was estimated by QST
values, leading to a similar average value of 0.31 (95%CI = 0.22–0.52) for accumulation of both

CMV isolates. The average QST estimated for SWi/SWm was 0.18 (95%CI = 0.12–0.35) for Cdc-

CMV and 0.10 (95%CI = 0.06–0.21) for Fny-CMV-infected plants. Therefore, the genetic vari-

ation of A. thaliana for both defence traits is distributed mostly within populations. QST values

for resistance and tolerance to Cdc-CMV and Fny-CMV were significantly smaller than FST
values (Fig 5), thus indicating that A. thaliana populations are genetically less differentiated

for resistance and tolerance to two CMV isolates than for neutral markers.

Furthermore, we analysed if FST and QST values followed a pattern of isolation-by-distance.

Mantel tests detected a significant correlation between FST values and geographic distance

between pairs of populations (r = 0.50, P<10−4), a likely result of their demographic history.

By contrast, no significant correlation was found between the pair-wise QST values for virus

accumulation or SWi/SWm, for any CMV isolate, and their geographic distances (r�0.24,

P�0.258). Therefore, factors other than demography contribute to the population differentia-

tion patterns observed for resistance and tolerance to CMV.

Discussion

Host-pathogen coevolution determines the dynamics and genetics of infectious disease, and

may shape the genetic structure of host and pathogen populations [1]. Understanding this

topic, central in pathology and evolutionary biology, requires knowledge on the genetics of

defence and pathogenicity, and the dynamics of their change in populations [1]. The abun-

dance of theoretical analyses of host-pathogen coevolution (e.g., [1,56,57]) is not matched by a

similar amount of empirical and experimental studies. While there is abundant information

compatible with host-pathogen coevolution in plant systems (e.g. [58]), it mostly derives from

crops, in which the genetic composition of the host plant is manipulated by humans. Studies

from wild systems, in which the genetic composition of host and pathogen populations may be

determined by reciprocal selection, are much scarcer, particularly for plant-virus interactions

[5,59]. To address this question we challenged A. thaliana individuals collected from a high

number of local populations with different CMV isolates. We chose to inoculate plants

mechanically rather than by aphid transmission, which is the natural means of horizontal

transmission [39]. Mechanical inoculation ensures a high rate of infection and minimises inoc-

ulum dose effects on virus accumulation, as opposed to aphid transmission, which is highly

Fig 4. Variation for resistance and tolerance to CMV within and among wild A. thaliana populations. Frequency

distributions of resistance (virus accumulation, μg RNA g fresh leaf weight-1) and tolerance (SWi/SWm) to Cdc-CMV

(blue) and Fny-CMV (red). Three-letter code for each population is as in Fig 1.

https://doi.org/10.1371/journal.ppat.1007810.g004
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Table 2. Values (mean and range of variation) and heritability of defence traits to CMV in Iberian populations of A. thalianaa.

Population Resistance to Cdc-CMVb Resistance to Fny-CMVb Tolerance to Cdc-CMVc Tolerance to Fny-CMVc

Agu Mean±SEd 32.02±3.64 11.85±2.84 0.43±0.07 0.36±0.07

Min-Maxe 7.98–45.64 2.16–26.11 0.14–0.78 0.08–0.74

nf 10 10 10 10

h2b g 0.74 0.90 0.49 0.44

Bis Mean±SEd 17.05±2.31 10.91±1.11 0.34±0.04 0.37±0.07

Min-Maxe 9.37–30.04 3.31–14.14 0.12–0.48 0.03–0.71

nf 10 10 10 10

h2b g 0.74 0.58 0.38 0.8

Gra Mean±SEd 15.77±1.68 6.24±1.15 0.40±0.07 0.26±0.05

Min-Maxe 6.69–24.45 2.42–13.97 0.12–0.84 0.04–0.54

nf 10 10 10 10

h2b g 0.66 0.68 0.64 0.741

Leo Mean±SEd 22.36±1.90 9.48±1.40 0.32±0.07 0.22±0.05

Min-Maxe 15.45–32.05 3.59–16.29 0.05–0.74 0.03–0.46

nf 10 10 10 10

h2b g 0.62 0.79 0.61 0.77

Mer Mean±SEd 17.58±2.56 11.55±2.35 0.16±0.04 0.19±0.06

Min-Maxe 5.37–36.76 3.89–24.15 0.04–0.46 0.05–0.67

nf 10 10 10 10

h2b g 0.79 0.89 0.32 0.67

Moc Mean±SEd 15.49±2.25 5.15±0.43 0.35±0.04 0.32±0.05

Min-Maxe 4.08–24.43 2.92–7.07 0.13–0.49 0.12–0.57

nf 10 10 10 10

h2b g 0.71 0.34 0.27 0.47

Pob Mean±SEd 14.91±1.71 2.62±0.60 0.36±0.07 0.33±0.05

Min-Maxe 5.33–22.55 0.94–7.01 0.02–0.59 0.07–0.57

nf 9 9 9 9

h2b g 0.52 0.23 0.74 0.10

Pra Mean±SEd 15.04±2.15 4.78±0.93 0.47±0.09 0.41±0.07

Min-Maxe 5.19–24.98 1.99–10.26 0.06–0.93 0.04–0.68

nf 9 9 9 9

h2b g 0.635 0.63 0.55 0.66

Qui Mean±SEd 15.23±2.34 6.21±0.78 0.47±0.06 0.46±0.06

Min-Maxe 6.26–27.61 3.87–11.85 0.20–0.69 0.24–0.81

nf 10 10 10 10

h2b g 0.68 0.34 0.64 0.52

San Mean±SEd 20.00±2.48 4.16±1.46 0.36±0.06 0.32±0.05

Min-Maxe 11.38–38.89 0.08–12.18 0.11–0.66 0.10–0.57

nf 10 10 10 10

h2b g 0.69 0.81 0.47 0.32

Average of populations Mean±SE 18.53±1.65 7.25±0.30 0.37±1.09 0.31±0.02

Min-Max 14.91–32.02 2.62–11.85 0.16–0.47 0.22–0.46

h2bg 0.60 0.62 0.51 0.55

(Continued)
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inefficient for CMV [39, 40]. Moreover, there is no information on the aphid species that

transmit CMV in A. thaliana populations in central Spain. Also, A. thaliana genotypes were

assayed under common controlled conditions, which are not necessarily the same as in the

field.

The challenge with different CMV strains of 185 individuals collected in 76 A. thaliana
local populations from the Iberian Peninsula, showed large differences in quantitative resis-

tance, as estimated from the level of virus multiplication in infected plants. Similarly, large dif-

ferences were found for tolerance to CMV, estimated as the effect of infection on host progeny

production. A large part of the variation of resistance and tolerance was explained by the virus

isolate, in agreement with previous results showing that CMV isolates vary largely in multipli-

cation rate and virulence in A. thaliana [41,47,48,53]. Variation for resistance and tolerance

Table 2. (Continued)

Population Resistance to Cdc-CMVb Resistance to Fny-CMVb Tolerance to Cdc-CMVc Tolerance to Fny-CMVc

Over populations h2bg 0.77 0.85 0.57 0.55

a: Values are for plants inoculated after an eight-week vernalisation period.
b: Resistance is expressed as virus accumulation (μg of virus RNA g fresh leaf weight-1).
c: Tolerance is expressed as effect of infection on viable seed production (SWi/SWm).
d: Mean ± SE: Mean value and standard error (SE) of at least 5 replicated plants.
e: Minimum and maximum values of the trait.
f: number of individuals
g: Broad sense heritability expressed as percentage of genetic variation.

https://doi.org/10.1371/journal.ppat.1007810.t002

Fig 5. Genetic differentiation among wild A. thaliana populations for CMV resistance and tolerance traits, or for

neutral markers. Fig shows values of quantitative genetic differentiation (QST) for resistance (squares) and tolerance

(triangles), to Cdc-CMV (blue) or Fny-CMV (red), and for neutral genetic differentiation (FST) (black circle), among ten

A. thaliana populations. 95%CI are indicated.

https://doi.org/10.1371/journal.ppat.1007810.g005
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occurred at all analysed spatial scales: among individuals from a local population, among local

populations, and within the whole Iberian Peninsula region. These conclusions held for assays

conducted in different environments, a result to be underscored, as resistance and tolerance of

A. thaliana to CMV can be modulated by the abiotic environment [14]. The observed variation

in resistance and tolerance had a significant genetic component, as they showed medium to

high heritability values (0.23–0.81 for resistance, and 0.10–0.70 for tolerance) depending on

the spatial scale of the analysis and the isolate of CMV. Thus, our results show genetic variation

for presumably defence traits in the host population, a condition for host-pathogen coevolu-

tion. Regardless of spatial scales, our data also show that resistance and tolerance significantly

depend on the interactions between virus genotype and host genotype, another condition for

host-pathogen coevolution.

It has been reported that A. thaliana genotypes showing high tolerance to CMV have a long

life span, and that tolerance is, at least in part, the result of resource re-allocation from vegeta-

tive growth to reproduction, which is more efficient in long-lived genotypes [14,47,48,52]. It

also has been shown that these life history and phenological traits have evolved as (direct or

indirect) responses to climatic conditions [33,49,50,60]. Accordingly, the analysis of 76 A.

thaliana genotypes from different Iberian populations showed that resource reallocation upon

infection depended on the allometric ratio (SW+IW)/RW, and the effect of CMV infection on

vegetative growth correlated positively with LP and RW of mock-inoculated plants. Life span,

vegetative growth and seed production in non-infected plants were correlated with climatic

variables. In contrast, the genetic variation for CMV multiplication in the infected host, and

for the effect of CMV infection on seed production, was unrelated to those climatic factors.

Therefore, the CMV defence traits have evolved, at least partly, independently from those

other adaptive traits which have evolved in response to climate. Accordingly, the evolution of

defence traits is not the result of A. thaliana responses to climate. These differential evolution-

ary histories strongly suggest that these traits are true resistance and tolerance defence

responses that may have evolved in response to CMV infection (see below). This conclusion

also agrees with the fact that resistance and tolerance are virus-specific traits of A. thaliana,
and not unspecific responses to the stress of virus infection [52]. Thus, our study shows sub-

stantial genetic variation for resistance and tolerance to CMV within and between populations

of A. thaliana. Genetic variation within or/and between populations for resistance to a variety

of pathogens has been reported for a limited number of wild plants, including Amphicarpaea
bracteata, Eucalyptus globulus, Podophyllum peltatum, Linummarginale, Silene latifolia, Pha-
seolus vulgaris, Plantago laceolata or A. thaliana [61–78]. Analyses of the variation for plant

tolerance to pathogens are much rarer [47,75,79], and none of them has analysed within popu-

lation variation. All these studies refer to resistance or tolerance to fungi, oomycetes or bacte-

ria, and the only report we are aware of on variation for resistance to a virus, is our previous

analysis in the A. thaliana-CMV system [43], which involved a much more limited sample of

host populations.

The analyses in this study also showed that resistance and tolerance display different evolu-

tionary histories than neutral genetic variation, since QST values for resistance and tolerance

are lower than FST values. Accordingly, resistance and tolerance are traits likely under uniform

selection, i.e., a selection which favours a higher diversity of traits within than among popula-

tions. This conclusion is supported by results for two CMV isolates and in different environ-

mental conditions. Also, neutral genetic differentiation follows a pattern of isolation by

distance, which is not detected for the genetic differentiation for resistance or tolerance. By

contrast, similar analyses have previously suggested diversifying selection on the genetic varia-

tion for quantitative traits such as flowering time, leaf number, specific leaf area or leaf succu-

lence in A. thaliana [32,80,81]. The most parsimonious explanation for uniform selection on
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CMV defence traits is that CMV infection plays a role as selective factor. Although we cannot

discard that the analysed defence traits may have evolved in response to selection from other

pathogens or pests, several arguments make a strong case for selection pressure due to CMV

infection: i) the high prevalence of CMV (up to 80%) in wild A. thaliana populations in the Ibe-

rian peninsula [43,44]; ii) the fact that the analysed defence traits are virus-specific in A. thaliana
[52]; and iii) the lack of correlation between CMV multiplication and virulence [47], virus mul-

tiplication being highly dependent on virus genotype and environment [14,47]. Selection for

resistance to pathogens has been best documented in populations of Linummarginale in

response to the fungusMelampsora lini, of Plantago lanceolata in response to the fungus Podo-
sphaera plantaginis, or of A. thaliana in response to the oomyceteHyaloperonospora arabidopsi-
dis or the bacterium Pseudomonas syringae [37,68,69,72–74,78,82,83]. Our results extend these

observations to plant-virus interactions. If defence in A. thaliana against CMV is under selec-

tion, a corollary is that CMV is a virulent pathogen of this plant under natural conditions, a rele-

vant conclusion that contributes significantly to understanding plant-virus interactions.

The observed pattern of genetic diversity for resistance and tolerance to CMV, higher

within than between populations, can be explained by the features of the pathosystem. CMV is

ubiquitous in Iberia [45,84] and has been found in all monitored wild populations of A. thali-
ana, prevalence differing among populations and years [43]. Also, our present and past results

[47,48] show that CMV isolates differ in virulence to A. thaliana, and that virulence is modu-

lated by environmental factors as diverse as temperature, light intensity or host plant density

[14,53].Variation in the genetic composition of CMV populations would also result in varia-

tion for CMV infection-associated selection, as the outcome of the interaction depends on the

A. thaliana and CMV genotypes involved. These factors would explain the maintenance of

genetic variation in defence traits within host populations and the limited differentiation

among populations. Furthermore, this explanation suggests that resistance and tolerance to

CMV involve fitness penalties for A. thaliana, which would hinder fixation of resistance/toler-

ance alleles and would contribute to the maintenance of defence polymorphisms within popu-

lations [85]. We have not found evidence for such costs under the assayed conditions, as

neither resistance nor tolerance were negatively correlated with viable seed production of

mock-inoculated controls. However, fitness costs might not be detectable under our experi-

mental conditions, and/or might be unveiled under the less favourable environment of the

field.

Another interesting result is that resistance and tolerance to CMV co-occur in wild A. thali-
ana populations. Theory predicts that resources being limited, hosts would not invest in both

resistance and tolerance, which would be mutually exclusive defences. The conditions that

should favour the evolution of resistance or tolerance have been much modelled, and a nega-

tive correlation between both traits across host genotypes is expected [4,86,87]. We found no

correlation between resistance and tolerance in any experiment, indicating that they evolve as

independent traits. It has been proposed that resistance and tolerance could coexist if costs

and benefits of each defence were different and non-additive [88–91]. Models also propose

that tolerance alleles should become fixed in host populations, which would not be polymor-

phic for this trait under most assumptions [91–93]. A report on the tolerance to CMV in

Mimulus guttatus conforms to these predictions, as tolerance had no costs, but showed little

genetic variation [94,95]. On the contrary, our results do not agree with model predictions, as

we found large genetic variation for tolerance and evidence for coexistence of resistance and

tolerance.

In conclusion, this work shows that in A. thaliana there is genetic variation, within and

among populations, for defences to CMV that result in lower virus multiplication or in lower

impact of infection on the plant fitness. Genetic variation for defence to CMV is not associated
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with variation for climatic factors, in contrast to variation for other adaptive life-history traits

of A. thaliana. In addition, we found evidence that these two defence traits are under uniform

selection. The results of this study are compatible with CMV infection acting as a selection

pressure for defence on populations of A. thaliana and, hence, we propose that CMV infection

likely reduces the host fitness under the field conditions of the analysed wild A. thaliana popu-

lations, although field experiments would be required to prove this fact. The results presented

here also show that some of the conditions for coevolution are met in the system A. thaliana-
CMV, but more work on the virus side is necessary to prove if coevolution occurs. These

results raise two challenging questions: what are the mechanisms that maintain polymor-

phisms for resistance and tolerance within A. thaliana populations, and what is the negative

impact of CMV infection on the host in nature and how does such an impact vary according

to field conditions.

Materials and methods

Plant material and environmental data

Two different sets of A. thaliana samples from the Iberian Peninsula were analysed. First, 76

accessions or wild genotypes collected from different populations were selected to cover the

genetic and environmental diversity of the species in that region [30,49] (Fig 1 and S1 Table).

This collection spanned 800 x 700 km, populations being spaced in the average 384.9±3.7

(20.2–1,038.1 km). Altitudes ranged from 123 to 1,670 m above sea level. Each sample was

genetically different based on previous SNP genotyping and genome sequences [51,96]. Sec-

ond, ten individuals plants (individuals) randomly sampled from 12 of these populations were

selected for intra and inter-population analyses (Fig 1 and S1 Table). Samples from eight of

these populations have been previously genotyped for 250 genome-wide SNPs that were segre-

gating in these populations [30,32]. For the remaining four populations (Bis, Mer, Moc, Pob)

10 individuals/population were genotyped in this study for the same set of SNPs.

The climatic information from the locations of A. thaliana populations was obtained from

the digital climatic atlas of the Iberian Peninsula at 1 km2 resolution [50,97]. Thirty-three vari-

ables were used, related to temperature, precipitation and solar radiation (S3 Table). In addi-

tion, 19 bioclimatic variables derived by combination of annual trends, seasonality and

extreme conditions were also included (www.worldclim.org). Altitude was also analysed as a

proxy for climate. Annual mean temperature of the populations ranged 6.1–17.4˚C (12.5±0.3)

and annual precipitation ranged 405.7–1695.8 mm (753.8±33.9) (S8 Table).

All accessions or individuals used in this study were propagated by selfing during two gen-

erations by the single seed descent procedure, in a glasshouse supplemented with lamps to pro-

vide a long-day photoperiod. This allowed reducing residual heterozygosity that might contain

some wild individuals but also removing any potential maternal and grand-mother effects.

Seeds were stratified (darkness, 4ºC) for 7 days before germination at 25/20ºC day/night, 16 h

light. Ten day-old seedlings were transferred to 4ºC, 8 h light, for vernalisation during 4 or 8

weeks, depending on the experiment. After vernalisation, plants were transplanted to 0.43 L

pots and returned to the greenhouse, where they were kept (25/20ºC day/night, 16 h light)

until the end of the experiment.

Virus isolates and inoculations

Three subgroup IA CMV isolates were used, Fny-CMV, Cdc-CMV and Lro-CMV, which dif-

fer in the sequence of their genomic RNAs in about 1% of positions. Fny-CMV is a well-char-

acterized reference isolate [98]. Cdc-CMV and Lro-CMV were isolated from field-infected A.

thaliana plants of the Cdc and Cho populations, respectively, in 2008 and 2011, Cdc-CMV was
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named At-CMV in [43]. Isolates were multiplied in Nicotiana clevelandii, Fny-CMV from

transcripts of cDNA clones and Cdc-CMV and Lro-CMV from biological clones derived from

local lesions in Chenopodium quinoa. Virions were purified as in [99]. A. thaliana plants were

mechanically inoculated at the five-leaf stage (stage 1.05, [100]) with 15 μl of sap from infected

N. clevelandii leaves in 0.01 M phosphate buffer pH 7.0, 0.2% sodium diethyldithiocarbamate.

Fifteen μl of buffer were applied to mock-inoculated controls. The (unkown) virus concentra-

tion in leaf sap ensured infection of 100% of inoculated plants. Each treatment (virus-inocu-

lated or buffer mock-inoculated) involved at least five replicated plants from each original

sample, that is at least five plants derived from the same genotype or individual. All plants in

each experiment were grown in a completely randomized design.

Quantification of CMV multiplication

Virus multiplication in plants was estimated from virus RNA accumulation as described in

Pagán et al., (2014) [41]. Briefly, at fifteen days post-inoculation 0.01 g fresh weight (fwt) of

leaf tissue was harvested from four different systemically infected leaves. Nucleic acids were

extracted from the pooled leaf tissue using TRI-reagent (Sigma-Aldrich, St Louis, MO, USA).

Virus RNA was then quantified by dot-blot hybridization with 32P-labelled RNA probes com-

plementary to nucleotides 1933–2215 of Fny-CMV RNA3 (GeneBank Acc. No. D10538). In

each blot, internal standards for Fny-CMV, Cdc-CMV or Lro-CMV RNA were included as a

two-fold dilution series (1–0.001 μg) of purified virion RNA in nucleic acid extracts from non-

inoculated plants. Mock-inoculated samples served as negative controls. Nucleic acid extracts

were blotted at different dilutions to ensure that hybridization signal was on the linear portion

of the RNA concentration-hybridization curve. As loading controls, parallel membranes were

hybridized with a cDNA probe of β-tubulin chain 2 (TUB2) mRNA of A. thaliana (1086–1568

nt, GeneBank Acc. No. NM_125664.4).

Quantification of life-history traits and tolerance to CMV

Rosette weight was used to estimate vegetative growth effort, inflorescence plus seed weight to

estimate total reproductive effort, and seed weight to estimate progeny production [101]. Pre-

vious work has shown that CMV infection does not affect seed viability, nor the weight of indi-

vidual seeds, in a broad range of A. thaliana genotypes [14,47,52]. Plants were harvested at

complete senescence and dry weight of rosettes (rosette weight, RW), inflorescence structures

without seeds (inflorescence weight, IW) and seeds (seed weight, SW) were measured sepa-

rately (g). Two phenological parameters of A. thaliana life cycle were quantified: Growth

period (GP) and life-span (LP) were measured as the time (days) between planting seedlings in

soil and opening of the first flower (GP), or complete senescence (LP). Tolerance was mea-

sured by the effect of virus infection on progeny production: SWi/SWm, where i andm denote

infected and mock inoculated plants, respectively [48].

Genetic analyses

Broad sense heritability of each trait was estimated as h2b = VG/(VG+VE), where VG is the

among-genotypes or among-populations variance component and VE is the residual variance.

Variance components were determined using the REML method [102] of SPSS 20 package

(SPSS Inc., Chicago, USA).

Genetic differentiation between populations for quantitative traits was measured by QST
values [103], estimated as VB/(VB+VW) [104,105], where VB is the between-population vari-

ance and VW is the within-population variance. VB and VW were estimated by the REML

method from a nested analysis of variance performed using population and individual or
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genotype (nested within populations) as random factors. The 95% confidence intervals (95%

CI) for QST values were estimated as P S2ðn� 1Þ

w2
n� 1

� s2 �
S2ðn� 1Þ

w2
n� 1

h i
¼ 0:95 [106]. Genetic differentia-

tion for neutral markers was estimated as FST [107] using the analysis of molecular variance

(AMOVA) as implemented in ARLEQUIN v3.5.1.2 [108]. AMOVA were performed using

multilocus genotypes for 250 segregating SNPs [30,32] and their significances were estimated

from 1,000 permutations.

The relationships between Euclidean geographical distance and FST or QST values among

population pairs were determined by Mantel correlation test using PASSaGE v.2 [109] with

1,000 permutations. Genetic distances between individuals were calculated as the proportion

of allelic differences over the total number of alleles in the corresponding set of polymorphic

loci, using GGT v. 2.0 [110].

Statistical analyses

Differences in RW, IW, SW, GP, LP, virus accumulation or tolerance to CMV, according to

host individual/genotype and virus isolate, were analysed by general linear models (GLM) con-

sidering host individual/genotype as a random factor, and virus isolate as a fixed factor. Differ-

ences in RW, IW, SW, GP, LP, virus accumulation or tolerance to CMV according to

population, host individual/genotype, and virus isolate, were analysed by GLM considering iso-

late as a fixed factor, and population and individual/genotype nested to population, as random

factors. Relationships between values of different traits were tested using Spearman’s correlation

test. GLMs and Spearman’s correlation tests were performed using SPSS 20 software package.

Spatial autocorrelation patterns of environmental variables, life-history traits, virus accu-

mulation and tolerance to virus, were analysed using correlograms [111] generated with PAS-

SaGE v.2. For each variable, Moran’s I autocorrelation coefficients [112] were calculated and

their significance tested from 1,000 permutations. Correlation between pairs of environmental

variables, between pairs of different traits and between environmental variable and different

traits were tested with Dutilleul’s modified t-test using SAM v.4 [113,114]. Simultaneous auto-

regressive models (SAR) [115] were performed to test the relationship between environmental

variables and different traits using SAM v.4. Bonferroni correction was applied for multiple

comparisons.

The relationships between environmental variables and life-history or defence traits were

analysed by partial Mantel tests controlling for the location of populations given by the geo-

graphic distance matrix using PASSaGE v.2. For that, matrices of euclidean distances were

derived for each environmental variable and phenotypic trait and significance was evaluated

from 1,000 permutations.

Supporting information

S1 Table. Geographic origin and location of Iberian A. thaliana populations.

(XLSX)

S2 Table. GLM analysis of values of life history traits of mock-inoculated A. thaliana
plants, of tolerance to CMV, and of virus accumulation, using "host genotype" as a random

factor. For each trait, heritability (h2b), mean, minimum and maximum values, are shown.
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and effective population size of Mediterranean and subalpine Arabidopsis thaliana populations. Mol

Ecol. 2001; 20: 3540–3554.
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