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Abstract

Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture
and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive
genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a
genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic
relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers.
In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers
and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic,
dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in
pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model
including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and
dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-
sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated
dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic
variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic
predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models
MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness
of genomic predictions.
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Introduction

Non-additive genetic variation results from interactions between

genes. Interactions between genes at the same locus are called

dominance, and interactions between genes at different loci are

called epistasis. Although many studies have shown that non-

additive effects have a substantial contribution to variation of

complex traits [1–3], this source of variation is generally ignored in

the genetic evaluation of complex traits.

Genome-wide dense single nucleotide polymorphism (SNP)

markers have been widely used for association analysis [4–8] and

genomic selection [9–12]. Unlike association analysis which aims

at identifying quantitative trait loci (QTL) or chromosome regions

with significant effect on the trait of interest, genomic selection

focuses on predicting breeding values (total additive genetic

effects). Similarly, when considering non-additive genetic effects,

association analysis tries to find interactions among the specific

genes that have a large effect on the trait of interest, while genomic

selection pays attention to total non-additive genetic variations.

Many statistical models and algorithms have been proposed to

predict breeding values using genome-wide dense markers, which

differ in the assumption of distributions of SNP effects. Best linear

unbiased prediction (BLUP) models [13–15] assume that effects of

all SNP are normally distributed with equal variance. Variable

selection models [12,14,16,17] assume that marker effects have a

thick-tailed distribution or a mixture distribution. Simulation

studies with assumption that few QTL affect the trait of interest

have shown that variable selection models are superior over BLUP

models [14,18,19]. However, studies based on real dairy cattle and

pig data indicate that BLUP models performed as well as variable

selection models for most traits [11,20,21]. Therefore BLUP

models have become popular approaches in practical genomic

evaluations because they are simple and have low computational

demands.

There are two BLUP models which have been widely used for

genomic predictions. One estimates marker effects using random

regression on marker genotypes and genomic breeding value of an

individual is calculated as the sum of estimated marker effects

(hereafter called as SNP-BLUP). The other estimates genomic

breeding value directly using a marker-based relationship matrix

(hereafter denoted as GBLUP). It has been shown that the

GBLUP model is equivalent to the SNP-BLUP model [22,23].
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One of the advantages of the GBLUP model is that the model can

use the framework of traditional pedigree-based BLUP models and

is easy to use the information of non-genotyped animals through a

combined relationship matrix [24–27].

Similar to traditional genetic evaluations, genomic predictions

are usually carried out using a model that ignores non-additive

effects. The hypothesis of this study is that statistical models which

include additive and non-additive genetic effects will predict

genetic merit more accurately and with less bias, when non-

additive genetic effects have a substantial contribution to the

genetic variation.

The objectives of this study were twofold. The first was to

describe an approach to estimate additive and non-additive

genetic variations and predict genetic values for complex traits

using models integrating additive and non-additive genomic

relationship matrices. The second was to estimate additive,

epistatic and dominance genetic variances and access the accuracy

of genomic predictions for daily gain in Danish Duroc pigs using

models with or without including non-additive genetic effects.

Materials and Methods

Genomic BLUP model for additive and non-additive
genetic effects

A linear mixed model including additive and non-additive

genetic effects can be written as:

y~XbzZaazZiizZddze

where y is the vector of observations, b is the vector of non-genetic

effects, a is the vector of additive genetic effects, i is the vector of

epistatic effects (second order epistasis in this study), d is the vector

of dominance effects, and e is the vector of random residuals.

It is assumed that

a~N 0,Gs2
a

� �
, i~N 0,Gaas

2
aa

� �
, d~N 0,Ds2

d

� �
, and e~N 0,Is2

e

� �
,

where s2
ais the additive genetic variance, s2

aa is the epistatic

variance, s2
d is the dominance variance, s2

e is the residual

variance, I is an identity matrix, G, Gaa and D are the additive,

epistatic and dominance genetic relationship matrices, respective-

ly. These matrices can be constructed from either the information

of pedigree or the information of genome-wide markers. The

marker-based relationship matrices have the advantage to capture

both the Mendelian segregation and the genetic links through

unknown common ancestors, which are not available in the known

pedigree. The present study will demonstrate the calculation of

additive, dominance and epistatic genetic relationship matrices

based on genome-wide markers. In the context, the three marker-

based relationship matrices will be denoted as additive, epistatic

and dominance genomic relationship matrices.

Additive genomic relationship matrix. The additive

genomic relationship matrix G can be constructed using SNP

marker information according to the previous studies [13,15].

Briefly, G~
MM0P

2piqi

, where M is a n6m matrix (n = number of

animals, m = number of marker loci) which specifies SNP

genotype coefficients at each locus. The coefficients of the ith

column in the M matrix are (0 - 2pi) for genotype A1A1, (1-2pi) for

A1A2, and (2-2pi) for A2A2, where qi and pi are the frequencies of

allele 1 (A1) and allele 2 (A2) at locus i, respectively.

Epistatic genomic relationship matrix. According to the

previous study [28], the epistatic genomic relationship matrix can

be derived from additive genomic relationship matrix. When

considering only second order epistasis (i.e., additive by additive

interactions) and ignoring inbreeding, the epistatic genomic

relationship matrix is: Gaa&G#G, where # denotes the

Hadamard product operation.

Dominance genomic relationship matrix. The domi-

nance genomic relationship matrix D can be derived as follows.

Denote u as the dominance value at a single locus and h0 as the

heterozygosity of an individual at the locus. The dominance effect

of an individual at a locus can be described as d0~h0u. For a

locus with two alleles (say A1 and A2), h0~0for the homozygous

genotypes A1A1 and A2A2, and h0~1for the heterozygous

genotype A1A2. Since h0 is either 0 or 1, h0 ~Bernoulli 1,2pqð Þ.
Therefore, E h0ð Þ~2pqand s2

h0
~2pq 1{2pqð Þ.

To simplify the algorithm in the above linear mixed models, it is

assumed that dominance effects (d) are normally distributed with

mean equal to zero. In order to meet this assumption, dominance

effects are expressed as deviations from the population mean,

h~ h0{2pqð Þ. Thus, let d~hu, then E hð Þ~0, E dð Þ~0,

s2
h~2pq 1{2pqð Þand s2

d~s2
hs

2
u, where s2

u is the variance of

dominance values.

Expanding to m loci, the genome-wide dominance effect of an

individual is d~hu, where h is the m-dimensional vector of

heterozygosity coefficients, and u is the m-dimensional vector of

dominance values. Assuming that dominance values at different

loci are identically and independently distributed normal variables,

the variance of genome-wide dominance effects in a Hardy-

Weinberg equilibrium population is

s2
d~V huð Þ~

Pm
i~1

2piqi 1{2piqið Þs2
u:

Expanding to n individuals and m loci,

d~Hu;

where d is the n-dimensional vector of dominance effects, H is the

n6m matrix of heterozygosity coefficients with element

hki~0-2piqi if individual k is homozygous, and hki~1-2piqiif

individual k is heterozygous at locus i. The covariance structure of

d is

V dð Þ~HH0s2
u~

HH0P
2piqi 1{2piqið Þs

2
d:

Consequently, the dominance genomic relationship matrix D is,

D~
HH0P

2piqi 1{2piqið Þ :

By centering hki with 2piqi and scaling HH’ withP
2piqi 1{2piqið Þ, the D matrix has the properties that the

expectation of an off-diagonal element is zero for two unrelated

individuals, and the expectation of a diagonal element is one for a

non-inbred individual. The D matrix is a realized dominance

relationship matrix and is analogous to the pedigree-based

numerator dominance relationship matrix.

Non-Additive Genetic Effect and Genomic Prediction
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Marker data and phenotypic data of daily gain in pigs
Marker data. SNP marker data were obtained from 1911

Danish Duroc pigs (most were boars) which were genotyped using

Illumina PorcineSNP60 BeadChip (Illumina, San Diego, CA).

The SNP data were edited using the following criteria: 1) Minor

allele frequency higher than 5%; 2) locus call rate larger than 0.95;

and 3) individual animal call rate larger than 0.95. In addition, if

the GenCall score of a single SNP in an animal was less than 0.65,

the SNP in this animal was treated as missing and the

corresponding genotype coefficient was replaced by the expected

genotype coefficient at this locus. After editing, there were 26,142

SNP markers available for 1,911 pigs (born from 1996–2009, with

77% born during 2006–2009).

Phenotypic data. The analyzed trait was average daily gain

(DG) from 30 kg to 100 kg. More details about the data can be

found in the previous study [21]. Five datasets were used in the

current analysis. DG of 339,393 individuals born during 1992–

2009 (DATAall) were used to calculate corrected phenotypic

values of DG (see detail below). The corrected DG of the 1,911

genotyped pigs (DATAgen) were used to estimate additive and

non-additive genetic variances. The data were further divided

into reference dataset (DATAref, n = 1,484) and test dataset

(DATAtest, n = 427) by a cut-off date June 1, 2008 (birth date).

DATAref were used to predict breeding value of the genotyped

pigs in DATAtest.

Corrected phenotypic values of daily gains (DGc), instead of

original observations, were used as response variables to estimate

additive and non-additive genetic variances and to predict genetic

effects using SNP markers. The reason for using DGc as response

variables was to reduce noise by removing contemporary group

effects which could be estimated much more accurately using a

large dataset including all contemporaries and relatives, rather

than using only genotyped animals. The contemporary group

effects were estimated using a traditional pedigree-based linear

model including sex, herd-week-section, pen, litter and additive

genetic effects as well as random residuals. The DGc was defined

as original observations of daily gain adjusted for all non-genetic

effects except for litter effect because based on this model it

included part of non-additive genetic effects that should not be

corrected for.

Statistical analysis of daily gain
Four linear mixed models were used to estimate variance

components and predict genetic effects, based on DGc of

genotyped animals.

y~1mzWllzZaaze ðMAÞ

y~1mzWllzZaazZiize ðMAEÞ

y~1mzWllzZaazZddze ðMADÞ

y~1mzWllzZaazZiizZddze ðMAEDÞ

where y is the vector of DGc, m is the intercept, l is the vector of

litter effects and is assumed that l~N 0,Is2
l

� �
, and the definitions of

a, i, d and e are the same as stated above.

The analyses were carried out applying the average information

restricted maximum likelihood algorithm [29] implemented in the

DMU package (http://dmu.agrsci.dk).

Model Validation
Goodness of fit for each model was evaluated by likelihood

value based on the dataset DATAgen. The superiority of an

alternative model over model MA was tested using a likelihood

ratio test. The predictive ability of the model (with respect to

accuracy and unbiasedness) was evaluated by comparing predic-

tions and DGc of animals in the test dataset (DATAtest). Prediction

accuracy was measured as the correlation between predicted

genetic values and DGc. Both predictions of additive genetic effect

(breeding value) and total genetic value (defined as the sum of the

genetic effects in the model) were evaluated. Hotelling-Williams t-

test [30,31] was implemented to test if the correlations obtained

from these prediction methods were significantly different. By

definition, the reliability of predicted additive genetic effects is the

squared correlation between predicted and true additive genetic

effects, r2
âa~

Cov2 âa,að Þ
s2

âas
2
a

. Since true additive genetic effects were

unknown, the reliability of predicted additive genetic effects was

calculated as the squared correlation between predicted additive

genetic effects and DGc, divided by heritability of DGc, i.e.,

r2
âa~

Cov2 âa,DGcð Þ
s2

âas
2
DGc

h2
DGc

~
Cov2 âa,azresidualð Þ

s2
âas

2
a

~
Cov2 âa,að Þ

s2
âas

2
a

. Here,

the heritability h2
DGcwas the narrow-sense heritability estimated

from the full model MAED. Unbiasedness of genomic predictions

was measured using the regression of DGc on the genomic

predictions. A necessary condition for unbiased predictions is that

the regression coefficient does not deviate significantly from one.

Results

Mean and standard deviation of daily gain
The mean and standard deviation of DGc (the corrected daily

gain) were significantly different in the different datasets (Table 1).

This was due to continuous selection for this trait, which led to a

continuous genetic progress. Animals with records in the whole

dataset were born during the period from 1992 to 2009 (almost the

same number of animals per year), while most genotyped animals

were born during the period from 2006 to 2009. Thus, the mean

DGc in the whole dataset was lower than that in the dataset of

genotyped animals. Similarly, the animals in the reference dataset

were born before those in the test dataset and consequently had a

lower mean in DGc. The selection also resulted in a larger overall

standard deviation of DGc in the dataset covering a longer period,

because the standard deviation included the variation of year

means. Therefore, the within-year standard deviation is a more

Table 1. Mean, total standard deviation (SDt) and within-year
standard deviation (SDw) of the corrected phenotypic values
of daily gain in different datasets.

Dataset N Mean SDt SDw

All 339,393 964 134 74

Genotyped 1,911 1,134 78 67

Reference 1,484 1,125 77 64

Test 427 1,164 74 74

doi:10.1371/journal.pone.0045293.t001

Non-Additive Genetic Effect and Genomic Prediction
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appropriate measure of the variation of this trait. The coefficients

of within-year variation for DGc in different datasets ranged from

5.7% to 7.7%.

Estimates of variance components and heritability
The dominance variance accounted for 5.6% of the phenotypic

variance (Table 2). The epistatic variance accounted for about

9.5% of the phenotypic variance, but the estimate had a large

standard error, and thus was not statistically significantly different

from zero. Model MA resulted in the largest estimates of additive

genetic, litter and residual variances, while model MAED led to

smallest estimates of these variances, and estimates from model

MAE and MAD were intermediate in size. The results suggested

that when a model excluded non-additive genetic effects, the

variation due to non-additive genetic effects was distributed to

other variance components in the model. Estimates of narrow-

sense heritability (proportion of additive genetic variance to

phenotypic variance) were 0.397, 0.373, 0.379 and 0.357 from

model MA, MAE, MAD and MAED, respectively. Based on

model MAED, the estimate of broad-sense heritability (proportion

of the sum of additive, epistatic and dominance genetic variances

to phenotypic variance) was 0.506.

Goodness of fit
Measures of goodness of fit are given in Table 3. Model MA had

the largest -2 log likelihood, followed by MAE and then by MAD,

whereas model MAED had the lowest -2 log likelihood and thus

fitted the data best. However, the likelihood ratio test showed that

model MAE did not fit data significantly better than MA. On the

other hand, model MAD and MAED were superior to model MA

at a level approaching to statistical significance (P = 0.054 for

MAD vs. MA, P = 0.067 for MAED vs. MA). These results

indicated that the goodness of fit was improved by including

dominance effects, but no detectable improvement was observed

by including epistatic effects.

Accuracy of prediction
Model MAED led to the highest correlation between predicted

total genetic values and DGc, followed by MAD, then followed by

MAE, and MA yielded the lowest correlation (Table 4). The same

pattern was observed in correlations between predicted additive

genetic effects (which is typically defined as breeding value) and

DGc. Reliabilities of predicted additive genetic effects were 28.5%,

28.8%, 29.2% and 29.5% for models MA, MAE, MAD and

MAED, respectively. The Hotelling-Williams t test showed that

the difference in accuracies of predictions using these models were

statistically significant from zero, except for predictions of total

genetic values between models MA and MAE. The results

indicated that including non-additive genetic effects in a prediction

model improve accuracy of genomic predictions.

Unbiasedness of prediction
As shown in Table 5, the range of regression coefficients of DGc

on predicted total genetic value was between 0.927 (model MA)

and 0.985 (model MAED), the regression coefficients of DGc on

predicted additive genetic values ranged from 0.927 (model MA)

to 1.029 (model MAED). For all models, the regression coefficients

were not significantly different from 1, indicating the predictions

were not significantly biased. However, the regression coefficients

for the predictions using the models that included the non-additive

genetic effects were closer to 1, suggesting that these models

slightly improved the unbiasedness of genomic predictions.

Discussion

This study described a novel approach to model additive,

epistatic and dominance genetic effect. The approach, by

constructing additive and non-additive genetic relationship matri-

Table 2. Estimates of additive genetic variance (s2
a), epistatic

variance (s2
aa), dominance variance (s2

d), litter variance (s2
l ),

residual variance (s2
e ) and their standard errors, and the

proportions of these variances (h2
a,h2

aa,h2
d,l2) to phenotypic

variance (defined as the sum of variance components in the
model).

Parameters MA MAE MAD MAED

s2
a 2,1766241 2,0296255 2,0816246 1,9426260

s2
aa - 5296429 - 5066429

s2
d - - 3096175 3036175

s2
l 6046231 5236237 5426231 4656238

s2
e 2,7076241 2,3626371 2,5576252 2,2316376

h2
a 0.397** 0.373** 0.379** 0.357**

h2
aa - 0.098 - 0.093

h2
d - - 0.056* 0.056*

l2 0.110* 0.096* 0.099* 0.085*

*: Significantly differ from 0 at P,0.05.
**: Significantly differ from 0 at P,0.01
doi:10.1371/journal.pone.0045293.t002

Table 3. -2log likelihood, x2 value and the corresponding P-
value of likelihood ratio.

Model -2logL x2-valuea) P-value

MA 18019.6

MAE 18017.8 1.8 0.180

MAD 18015.9 3.7 0.054

MAED 18014.2 5.4 0.067

a) x2~{2 ln
likelihood for MA

likelihood for alternative model

� �

doi:10.1371/journal.pone.0045293.t003

Table 4. Correlation between corrected daily gain (DGc) and
predicted total genetic value (GTV, defined as the sum of
genetic effects in the model), between DGc and estimated
additive genetic effect (GBV), and reliability of GBV (R2

GBV), for
the animals in the test dataset.

Model Cor(GTV, DGc) Cor(GBV, DGc) R2
GBV (%)

MA 0.319a 0.319a 28.5a

MAE 0.320a 0.321b 28.8b

MAD 0.330b 0.323c 29.2c

MAED 0.331c 0.325d 29.5d

a-d:Within a column, estimates without a common superscript differ significantly
(P,0.05), according to the Hotelling-Williams t test.
doi:10.1371/journal.pone.0045293.t004

Non-Additive Genetic Effect and Genomic Prediction
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ces using information of genome-wide SNP markers, is generally

applicable for different populations with or without pedigree

information. The method was used to investigate the variance

components of additive and non-additive genetic effects and the

accuracy of genomic predictions for DG in Danish Duroc

population. The estimates of dominance variance and epistatic

variance indicated that non-additive genetic effects had a

substantial contribution to total genetic variation of this trait.

The models including non-additive genetic effects predicted

breeding values more accurately and unbiasedly, compared with

a model ignoring non-additive genetic effects.

Additive and non-additive genomic relationship matrices
Genome-wide dense markers provide a new approach to detect

non-additive genetic variation and predict genetic merit. Additive

genomic relationship matrix [13,15] has been widely used for

genomic prediction applying a linear mixed model [20,32,33].

The present study firstly demonstrated the method to construct

dominance relationship matrix using genome-wide dense SNP

markers. Following the previous study [28], epistatic genomic

relationship matrix can be easily derived from additive genomic

relationship matrix. The genomic relationship matrices represent

the realized rather than expected sharing of ancestral genes.

Compared to the pedigree-based relationship matrix, the genomic

relationship matrix can capture both the Mendelian segregation

and the genetic links through unknown common ancestors, which

are not available in the known pedigree. Furthermore the genomic

relationship matrices are applicable for different populations with

or without pedigree information, which is particularly advanta-

geous in studies on wild populations or human populations

[34,35].

The proposed method to construct epistatic genomic relation-

ship matrix is an approximate approach and only second order

epistasis (additive by additive interactions) is considered. Following

previous report [28], higher order epistatic genomic relationship

matrix can be approximately calculated as particular Hadamard

product, such as G#G#D for additive by additive by dominance

genomic relationship matrix, G#G#G for additive by additive by

additive genomic relationship matrix. However, when higher

order epistasis is involved in the analysis, more data information is

required. A precise epistatic relationship matrix is difficult to be

obtained when considering a large number of markers. Epistasis

among a few specific markers can be modeled in a desired way

[36–38]. However, instead of dealing with a small proportion of

non-additive genetic variation from a few specific markers, the

current study tries to use a feasible approach to account for overall

non-additive genetic variation as accurate as possible.

With additive and non-additive genetic relationship matrices,

additive and non-additive genetic variances and genetic values can

be easily estimated using a typical linear mixed model, such as a

GBLUP model. A GBLUP model is equivalent to a linear random

regression model assuming that effects of all SNP are normally

distributed with equal variance. A GBLUP model may be not

satisfactory in the situation that few markers have large effect

whole the most markers have null effect or very small effect.

However, experiences with real dairy cattle data and pig data

indicate that a BLUP model performed well for most traits.

Therefore, the approach proposed in this study could be not an

optimal but a simple and feasible approach for estimating additive

and non-additive variances and predicting genomic breeding

values.

Additive and non-additive genetic variances of daily gain
Based on the present data, the estimated epistatic variance and

dominance variance in proportion to additive genetic variance

were about 26% and 15%, respectively. The estimates are in the

range of those for complex traits reported in previous studies.

Additive and non-additive variances are usually estimated using a

model with a pedigree-based relationship matrix. In dairy cattle, it

was reported that the ratios of dominance variance to additive

genetic variance were 118% and 161%, and the ratios of epistatic

variance to additive genetic variance were 59% and 2% for days

open and service period, respectively, in US Holstein [39]; the

ratio of dominance variance to additive genetic variance was 17%

for stature in US Holstein [40]; and non-additive variances were,

in general, as large as or greater than the additive variances for

reproductive traits in Canadian Holstein [2]. In beef cattle, the

ratio of dominance variance to additive genetic variance was

larger than 50% for weaning weight in Hereford, Gelbvieh and

Charolais beef cattle [1,41], and for post-weaning gain in

Limousin beef cattle [42]. In pigs, significant contributions of

non-additive genetic variance have been reported. The ratios of

dominance variance to additive genetic variance ranged from 11%

to 31% for reproductive and growth traits in Yorkshire pigs [43].

The ratios were 15% for 21-day litter weight, 44% for number

born alive, and 57% for interval between parities in South African

Duroc pigs [3]. These results indicate non-additive genetic

variations are important for complex traits, especially for fitness

traits.

Several previous studies have reported non-additive genetic

effects of detected QTL. In chicken, QTL analysis revealed that

the non-additive genetic effect was more pronounced prior to 46

days of age, whereas additive genetic effect explained the major

portion of the genetic variance later in life [44,45]. In pigs, it was

reported that the proportion of non-additive variance relative to

the entire QTL variance exceeded 50% in most meat quality and

carcass composition traits in a porcine Duroc 6 Pietrain

population [46]. Rather than using detected QTLs, the present

study estimated additive and non-additive genetic variances using

genome-wide SNP markers. This is the first scientific report on

estimation of on non-additive genetic variances in livestock using

such an approach.

It has been observed that there is a large variation between the

estimates of non-additive genetic variances in different studies,

which may reflect the different features of various traits and

populations. In addition, the large variation could be caused by

large sampling error due to insufficient data information. As

shown in this study, the standard errors of non-additive genetic

variance were large. In fact, the estimated epistatic variance was

not statistically significantly different from zero. The relative

standard errors for the estimated dominance variance and epistatic

variance (here defined as standard error/estimated variance) were

4.5 times and 6.5 times as large as that for additive genetic

Table 5. Regression coefficients (6 standard errors) of
corrected daily gain on predicted total genetic value (GTV)
and on predicted breeding value (GBV) for the animals in the
test dataset.

Model Reg. on GTV Reg. on GBV

MA 0.92760.134 0.92760.134

MAE 0.95460.137 0.98160.140

MAD 0.95960.133 0.98360.140

MAED 0.98560.136 1.02960.147

doi:10.1371/journal.pone.0045293.t005

Non-Additive Genetic Effect and Genomic Prediction
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variance. Similarly, the relative standard error for dominance

variance was 4.1 as large as that for additive genetic variance of

stature in US Holstein [40]. These results suggest that a large

dataset is needed in order to get accurate estimates of non-additive

genetic variances.

Genomic prediction of daily gain
The current and previous studies have shown that non-additive

genetic variance is considerable in complex traits. Therefore, it is

expected that a model including non-additive genetic effect would

increase the prediction accuracy and improve the unbiasedness. In

terms of practical animal breeding, focus is the prediction of

breeding value (additive genetic value) or the genetic improvement

in next generation. In this study, reliabilities of genomic predicted

breeding value using model MAE, MAD and MAED were 0.3%,

0.7% and 1.0% units higher than that using the additive genetic

model. In addition the models including non-additive genetic

effects slightly improved unbiasedness of genomic prediction.

Compared to large non-additive genetic variances, the gain in

reliability of genomic predictions by including non-additive genetic

effects in the prediction model was relatively small. The small

improvement indicates the difficulty to distinguish additive and

non-additive genetic effects. Using traditional BLUP model with

pedigree-based relationship matrix, a previous study on stature in

US Holsteins [47] found that animals with large amount of

additive information were influenced little by the inclusion of

dominance, but large for the animals with a large amount of

dominance information. The superiority of model MAE over

model MA for genomic prediction is negligible, which was

consistent with the large standard error for the estimates of

epistatic variance. It should be noted that the current study was

based on a small dataset. The data information might not be

sufficient to distinguish additive genetic and non-additive genetic

effects efficiently. It is expected that the benefit for genomic

prediction by including non-additive genetic effects in the model

will be larger when using larger reference dataset, especially when

reference dataset including records of crossbred animals. More-

over, an additive and non-additive genetic model could be benefit

for exploiting specific combining ability. A simulation study with

various scenarios by [48] reported that the ratio of dominance

response to additive genetic selection ranged from 3.8 to 16.6% by

one generation of selection.

In a genetic evaluation system, there are two limitations in

practice for using a model with both additive and non-additive

genetic effects for genomic prediction. The first limitation is that

the computational demand for models with both additive and non-

additive genetic effects are generally high, since both additive and

non-additive genomic relationship matrices are dense. This

requires more powerful computers and/or more efficient algo-

rithms. Second, a reference population often consists of sires which

have records of progeny performance, and popularly used

response variables are conventional estimated breeding value

(EBV), de-regressed EBV or mean of corrected progenies’

performances which are more informative than individual

observation. However, these pseudo observations are appropriate

for an additive genetic model, but not appropriate for a model that

includes non-additive genetics effects because the interaction

effects observed in the offspring are not related to interactions of

genes in the sire. A genomic prediction model including non-

additive genetic effects requires that the response variable is

individual record. An extension of single-step model [24–26] to

handle non-additive genetic effects may be a good approach,

because this approach allows predicting breeding value using the

observations from both genotyped and non-genotyped animals by

combining genomic and pedigree information into a joint

relationship matrix.

The current study was based on data from purebred Duroc pigs.

Non-additive genetic variation in a crossbred population is

expected to be much larger than that in a purebred population.

In farm animals such like poultry, pig, and beef cattle, crossbreds

are usually the end product. Nonetheless, selection is carried out in

the purebreds to improve performance of the crossbreds. The

information from crossbred population will be useful for increasing

accuracy of genetic evaluation of animals in the purebreds due to

additional information of the relatives in crossbred. Moreover, the

information of crossbred population allows selecting candidates in

purebreds for the performance of their crossbred offspring.

According to the results from the present study, when using data

of crossbreds, a model including non-additive genetic effects,

especially dominance effect, is expected to yield a substantial

improvement of genetic evaluations.

It can be concluded that the present method is a feasible

approach to estimate additive and non-additive variances and

predict genomic breeding values. Non-additive genetic effects are

important sources of genetic variation for daily gain in pigs.

Genomic prediction models including non-additive genetic effects

can improve accuracy and unbiasedness of genomic predicted

breeding value.
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