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Gut microbiomes of wild great apes fluctuate
seasonally in response to diet
Allison L. Hicks1, Kerry Jo Lee1, Mara Couto-Rodriguez1, Juber Patel1, Rohini Sinha1, Cheng Guo1, Sarah H. Olson2,

Anton Seimon3, Tracie A. Seimon1,4, Alain U. Ondzie2, William B. Karesh5,6, Patricia Reed2,

Kenneth N. Cameron2, W. Ian Lipkin1,7,8,9 & Brent L. Williams 1,7,8

The microbiome is essential for extraction of energy and nutrition from plant-based diets and

may have facilitated primate adaptation to new dietary niches in response to rapid envir-

onmental shifts. Here we use 16S rRNA sequencing to characterize the microbiota of wild

western lowland gorillas and sympatric central chimpanzees and demonstrate compositional

divergence between the microbiotas of gorillas, chimpanzees, Old World monkeys, and

modern humans. We show that gorilla and chimpanzee microbiomes fluctuate with seasonal

rainfall patterns and frugivory. Metagenomic sequencing of gorilla microbiomes demon-

strates distinctions in functional metabolic pathways, archaea, and dietary plants among

enterotypes, suggesting that dietary seasonality dictates shifts in the microbiome and its

capacity for microbial plant fiber digestion versus growth on mucus glycans. These data

indicate that great ape microbiomes are malleable in response to dietary shifts, suggesting a

role for microbiome plasticity in driving dietary flexibility, which may provide fundamental

insights into the mechanisms by which diet has driven the evolution of human gut

microbiomes.
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The gastrointestinal microbiome impacts states of health
and disease through various mechanisms relating to
metabolism, immunity, and development. Evidence is

accumulating in humans and animals to suggest that microbiota
composition is not a static state defining an individual but fluc-
tuates in response to changes in environmental and lifestyle
factors. A recent study has demonstrated seasonal reconfiguration
of the microbiome in response to dietary fluctuation in the Hadza
hunter-gatherers of Tanzania1. However, such seasonal fluctua-
tions in other primate microbiomes remain under-characterized.

Unlike chimpanzees, which are ripe fruit specialists, seeking
out ripe fruit throughout the year, western lowland gorillas
(WLGs, Gorilla gorilla gorilla) are seasonal frugivores, selectively
shifting their dietary habits throughout each year to accom-
modate seasonal resource availability2. During periods of high-
fruit availability, up to 70% of WLG feeding time is devoted to
succulent fruit, while, during periods of fruit scarcity, feeding
time is almost exclusively devoted to leaves, bark, herbs, and
fibrous fruits2. Ripe fruit availability is reduced, though still
regulated seasonally, in environments inhabited by mountain
gorillas (G. beringei beringei)3, 4. WLG and mountain gorilla
microbiomes converge during periods of fruit scarcity3, suggest-
ing that seasonal resource availability may have dramatic impacts
on gorilla microbiomes. However, more complete sampling
across months and seasons is needed in order to draw conclu-
sions about the full spectrum of seasonal variation in micro-
biomes of wild gorillas. Geographical range of WLGs may also
influence microbiome composition and metabolomic profiles5,
but extreme seasonal variation in WLG frugivory were not
addressed. Dramatic seasonal shifts in WLG diets present a
unique opportunity to examine short-term effects of recurrent
dietary fluctuations on the composition of the microbiome.

Human studies from various populations have suggested that
the relative abundance of core bacterial taxa in intestinal
microbiomes of individuals varies widely and that individuals
cluster within two to three stratified variants or “enterotypes”
defined by Bacteroides, Prevotella, or Ruminococcus6–10. These
enterotypes, or stratified clusters within a population defined by
microbiota composition, are linked to long-term dietary pat-
terns8. Bacteroides enterotypes in humans are associated with
animal-based diets, while Prevotella enterotypes are associated
with plant-based, carbohydrate-rich diets8, and these enter-
otypes are functionally distinguished based on their sacchar-
olytic, proteolytic, and lipolytic profiles11, 12. However, the
relative abundance of core taxa defining enterotypes can
change, at least within some individual humans and animals,
leading to enterotype switching. Previous studies have
demonstrated enterotype switching in non-human primates
(NHPs) on the scale of months and in wild-caught mice within
one week13–16. While enterotype switching has also been
reported in human populations7, 17, 18, factors governing shifts
in microbial taxa that define the majority of microbiota var-
iance in a population, and thus enterotypes, of humans and
other animals remain unclear. From an evolutionary perspec-
tive, environmental instability may be conceptually important,
as functional variations between compositionally distinct gut
microbial communities may have facilitated adaptation of early
primates to changing nutritional resource availability19.

In this study, we investigated fecal microbiota of 87 individual
unhabituated wild WLGs and 18 sympatric central chimpanzees
(Pan troglodytes troglodytes) from the Republic of the Congo,
with samples collected over a three-year period. To place our
results in the context of humans and other NHPs, we compared
fecal microbiota from these WLGs and chimpanzees to those of
US and Mongolian humans9 and Old World monkeys15, 20. We
further investigated temporal dynamics of WLG and chimpanzee

microbiomes in order to understand how seasonal variation in
resource availability may drive fluctuation in the composition of
the microbiome. Using metagenomic approaches, we compared
microbial functional metabolic pathways, archaeal communities,
and dietary plant content among representative WLG fecal
samples. This study presents evidence that the microbiomes of
our closest living relatives fluctuate seasonally in response to
diet, and provides insight into how symbiotic bacteria may have
shaped the trajectory of primate evolution.

Results
Composition of WLG and sympatric chimpanzee gut micro-
biota. To characterize microbiotas of wild African great apes, we
sequenced the V1–V3 region of the bacterial 16S rRNA gene in
fecal samples collected from 87 individual WLGs (Fig. 1a) and
18 sympatric chimpanzees (Supplementary Data 1-3) from the
Sangha region of the Republic of the Congo (Fig. 1b, Supple-
mentary Note 1) over 2008–2010. These data were compared with
V1–V3 sequences from studies of Old World monkeys (baboons,
black-and-white colobus, red colobus, and red-tailed guenon)
15, 20, as well as from human populations from the US (Human
Microbiome Project) and Mongolia9.

Firmicutes dominated the WLG microbiota (Fig. 1c), as was
the case for other NHPs (Supplementary Fig. 1a–e). In contrast,
US and Mongolian humans are dominated by the Bacteroidetes
phylum (Supplementary Fig. 1f, g), a distinction especially
evident in the US population. The most striking difference in
WLGs compared to humans and other NHPs is the high-
relative abundance of the phylum Chloroflexi. Further,
Spirochaetes is the fourth most abundant phylum in both
WLGs and sympatric chimpanzees, while it is either absent or
present in very low-relative abundance in Old World monkeys
and humans. We found no evidence for gender-specific
differences in WLG microbiota. For additional information
on phylum- and genus-level composition of WLG and
sympatric chimpanzee microbiota compared to humans and
Old World monkeys, see Supplementary Data 4, Supplementary
Fig. 2 and Supplementary Note 2.

Genus- and phylum-level alpha diversity metrics (observed
taxa and Chao1) revealed significantly higher diversity and
richness in NHPs (with the exception of baboons in genus-level
analyses) compared to US and Mongolian humans (Fig. 1d and
Supplementary Fig. 3a, 3c, and 3d). Consistent with previous
findings, US humans had the lowest diversity and richness at
these taxonomic levels21. This previous study also indicated
that WLGs have greater genus-level diversity compared to
allopatric chimpanzee populations21. Our findings comparing
cross-seasonally collected samples from sympatric WLGs and
chimpanzees indicates that genus-level diversity and richness are
higher in chimpanzees than WLGs. Genus-level Shannon index
was higher in all NHPs compared to humans, with US humans
displaying the lowest index (Supplementary Fig. 3b). Phylum-
level Shannon index was highest in African great apes
(Supplementary Fig. 3e).

Inter-individual genus-level Bray–Curtis (BC) dissimilarity was
higher in WLGs compared to chimpanzees and both human
populations (Supplementary Fig. 4a). Inter-individual dissim-
ilarity was highest in baboons. Both WLGs and baboons have
pronounced seasonal variation in their diets, which may have a
greater impact on inter-individual dissimilarity in these NHP
populations15. Chimpanzees may have less dissimilarity in their
microbial composition as they seek out ripe fruits year-round.
Thus, seasonal variation in succulent fruit availability, while
relevant, may have less impact on chimpanzee microbiota (see
analyses below).
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Principle coordinate analysis (PCoA) based on genus-level
BC dissimilarity revealed distinct clustering of NHPs that
separated from both US and Mongolian humans (Fig. 1e).
US humans separated from both NHPs and most Mongolian
humans along PC1 and PC2. In contrast, NHPs and
Mongolian humans separated further along PC2. This likely
reflects the high-relative abundance of Bacteroides in the US
population, which is not found in NHPs and is less common in
Mongolians (Supplementary Fig. 1 and Fig. 1c). Partitioning

around medoids (PAM) clustering of all primate groups,
inter-group BC dissimilarity, and unweighted UniFrac suggested
that, in general, African great apes and Old World monkeys
were more similar to each other than to either human
population (Supplementary Figs. 4b–d, 5a, b and Supplementary
Note 3), consistent with previous findings showing that
distantly related NHPs and non-primates with largely folivorous
diets form a distinct cluster based on unweighted UniFrac
distance19.
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Unique composition of WLG and sympatric chimpanzee
microbiota. In humans, inter-individual differences in gut
microbiota appear to derive largely from continuous gradients of
bacterial taxa22, 23. In contrast, some studies suggest that human
microbiotas may be stratified into clusters or enterotypes7, 24.
However, evaluation of variation in microbiotas of wild animal
populations is sparse. Therefore, we have investigated inter-
species and intra-species differences in the microbiota using
methods that can identify differences arising from continuous
variation of raw taxon-relative abundance, as well as stratified
clusters.

Linear discriminant analysis effect size (LEfSe)25 analysis
revealed that unclassified Bacteroidales, SHD-231, and Trepo-
nema were the top genus-level biomarkers distinguishing WLGs
from all other host groups (Fig. 2a and Supplementary Data 5).
Sympatric chimpanzees were distinguished from all other groups
by the relative abundance of Erysipelotrichaceae taxa, unclassified
Prevotella, RFN20, and Sphaerochaeta. Bacteroides was the top
genus-level biomarker of US humans, while Prevotella relative
abundance was significantly higher in Mongolian humans.
Baboons were unique in their high-relative abundance of
Bifidobacterium, while other Old World monkeys were distin-
guished by their high-relative abundance of Firmicutes and
Mollicutes at various taxonomic levels.

Moeller et al.13, reported that eastern chimpanzees harbor gut
communities that cluster into enterotypes analogous to human
enterotypes. More recent studies by Moeller et al.13, report that
human microbiomes have substantially diverged from those of
African apes at an accelerated rate21, but that humans and gorillas
share a Prevotella enterotype14. These studies do not address
effects of seasonal factors on African great ape enterotypes and
their convergence with or divergence from those of humans. We
therefore evaluated the presence of enterotypes in microbiotas of
WLGs and sympatric chimpanzees, as well as baboons and US
and Mongolian humans, as described by Arumugam et al.6

(Fig. 2b and Supplementary Fig. 5). These analyses identified four
WLG enterotypes defined by the Chloroflexi genus SHD-231
(enterotype 1), Treponema (enterotype 2), Prevotella (enterotype
3) and Solibacillus and Staphylococcus (enterotype 4). Sequences
from bacterial taxa whose relative abundance define unique WLG
enterotypes (Treponema, SHD-231, and Solibacillus/Staphylococ-
cus) were all most closely related to ruminant-derived strains
(Supplementary Fig. 6). WLG enterotype 1 fell between
enterotypes 2 and 3 along PC1, but separated along PC2 (Fig. 2b).
While overlap was apparent between WLG enterotypes 3 and 4
along PC1 and PC2, enterotype 4 separated widely along PC3
from the other three enterotypes (Fig. 2b and Supplementary
Fig. 7a). In sympatric chimpanzees, we identified only two
enterotypes defined by Sphaerochaeta and Prevotella. Baboons
also have two enterotypes: one defined by several genera,
including Faecalibacterium and Clostridium, and another defined
by Bifidobacterium. Both human populations had two enterotypes

defined by Prevotella and Bacteroides. The only enterotype shared
among humans, chimpanzees, and WLGs was the Prevotella
enterotype. For additional information on validation and
geographic distribution of these enterotypes, see Supplementary
Figs. 5, 7, and 8a, b and Supplementary Note 4.

Seasonal variation in WLG and sympatric chimpanzee micro-
biota. Monthly variation in WLG microbiota was evident
(Fig. 3a–c, Supplementary Note 5, and Supplementary Fig. 9a).
However, temporal relative abundance distribution of monthly
bacterial biomarkers may be indicative of broader seasonal shifts
in bacterial composition. Thus, seasonal variation could serve as a
better proxy for changes in vegetation that impact WLG feeding
behavior. Seasonality in most of the Congo Basin is characterized
by a bimodal distribution of rainfall with alternating wet and dry
seasons that correlate with a bimodal vegetation profile26. We
analyzed Tropical Rainfall Measuring Mission (TRMM) rainfall
data in the region of sampling from 2001 to 2010 to confirm the
bimodal seasonality of rainfall in the sampling area (Fig. 4a,
Supplementary Fig. 9b). Although seasonal trends supporting two
wet and two dry seasons are apparent, anomalies during the
period of collection (2008–2010) could have impacted vegetation
and thus WLG feeding behavior and, ultimately, the microbiota.
Total regional monthly rainfall for each of the years of sample
collection indicated that some months did not follow long-term
seasonal trends (Fig. 4b). Furthermore, responses of vegetation to
rainfall in tropical forests of Central Africa have a phase lag of up
to a month26. Examination of enhanced vegetation index for the
sampling region from 2008 to 2010 indicated that while there was
little inter-annual variation in vegetation levels, for some seasons
(wet season 1 and dry season 2), changes in vegetation gradually
occurred in response to rainfall, while in other seasons (wet
season 2 and dry season 1), vegetation levels responded rapidly to
changes in rainfall (Fig. 4c, Supplementary Fig. 9c). Therefore, we
have evaluated compositional differences in the microbiota in
WLGs in relation to both long-term seasonal trends and average
daily rainfall over the 30 days prior to the date of collection for
each sample, used to adjust for the lag phase for vegetation
response and any yearly anomalies. LEfSe was used to examine
variations in WLG fecal microbiota over the two wet seasons and
two dry seasons defined by decadal rainfall patterns (Fig. 4a), as
well as more discrete wet and dry periods, determined by average
daily rainfall over the 30 days prior to sample collection (defined
as wet and dry months, Supplementary Fig. 9d). By both
measures, Treponema relative abundance was significantly asso-
ciated with wet periods (seasons or months) (Supplementary
Fig. 10a, b). Furthermore, the relative abundance of Prevotella
and unclassified Clostridiaceae were associated with individual
dry seasons (Supplementary Fig. 10a). These differences were not
attributable to year of sample collection, collection site latitude or
longitude, or gender.

Fig. 1 Sample collection and fecal microbiota composition of WLGs and chimpanzees compared to humans and other non-human primates. a WLG (G. g.
gorilla)-photo by T. Breuer/WCS. b Collection sites of the 87 WLG and 18 chimpanzee fecal samples (dark blue and turquoise dots, respectively). All
collection coordinates were east of Odzala-Kokoua National Park in the Sangha region of the Republic of the Congo. Raw spatial files were sourced from
public or open source databases, including Map Library (www.maplibrary.org; Africa and Republic of Congo), The World Bank Data Catalog (https://
datacatalog.worldbank.org; roads), Humanitarian OpenStreetMap Team (https://data.humdata.org; rivers) and the World Resource Institute Congo Basin
Forest Atlases (www.wri.org/our-work/project/congo-basin-forest-atlases; Odzala). Maps were created and modified with R version 3.4.0, Inkscape and
Gimp software. c Box-and-whiskers plots showing the distributions of all bacterial phyla (left of dotted line), as well as the 30 most abundant bacterial
genera (right of dotted line) in feces from the 87 WLGs in this study. Phyla and genera labels in red with asterisks indicate bacterial taxa identified by LEfSe
as being elevated in WLGs compared to other host types (see Fig. 2a). Phyla and genera labels preceded by “u” represent taxonomic groups that could only
be classified at higher taxonomic levels. d Alpha diversity rarefaction plot based on the observed genera metric. Mean observed genera for each host type
are shown with the standard error of the mean. e PCoA plot based on the BC dissimilarity among bacterial genus-level abundance distributions for each
host type. Color designations for each host type shown in d, e are indicated at the bottom
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The relative abundance of two genera that defined WLG
enterotypes, Treponema and Prevotella, varied with seasonal
rainfall patterns; thus, we investigated differences in average
daily rainfall over the 30 days prior to sample collection
among samples stratified by enterotype (Fig. 5a). Samples
from enterotype 2, defined by Treponema, were collected
during periods with higher rainfall than samples from each of
the other three enterotypes. Furthermore, the proportions of
samples assigned to each enterotype were different between
wet and dry months, as well as wet and dry seasons (Fig. 5b
and Supplementary Fig. 10c, d), and proportions of both
enterotype 2 and enterotype 3 differed significantly between wet
and dry months (Fig. 5b). Collectively, these data support a

seasonally defined distribution of enterotypes in this WLG
population.

While we had fewer sympatric chimpanzees, precluding
evaluation of monthly variation in their microbiota, we have
evaluated stratification by wet and dry months. Chimpanzees
are ripe fruit specialists, but also adjust their dietary patterns
in response to seasonal availability of fruit. Prevotella was a
significant biomarker of chimpanzee samples collected in dry
months (Supplementary Fig. 10e), while unclassified Deltapro-
teobacteria and unclassified Spirochaetes were the top taxa
associated with wet months. Similar to what we found for WLGs,
chimpanzee samples from enterotype 1, defined by Sphaerochaeta
relative abundance, were collected during periods of significantly
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Fig. 2 The relative abundance of fecal bacterial taxa and enterotype clusters distinguish WLGs, sympatric chimpanzees, Old World monkeys, and two
human populations. a Bar chart showing the log-transformed LDA scores of bacterial taxa of each NHP or human host type identified by LEfSe analysis.
Note that while a log-transformed LDA score of 2 was used as a threshold for identification of significant taxa, LEfSe analysis of this dataset yielded 377
taxa. Therefore, only bacterial taxa with LDA score ≥3.5 are shown (see Supplementary Data 5 for all associated taxa). b Principal coordinate analysis plots
based on rJSD among genus-level relative abundance distributions with the four WLG, two chimpanzee, two baboon, two Mongolian human, and two US
human enterotypes identified by PAM analysis indicated. Numbered white rectangles indicate the centroid of each cluster, while solid black lines indicate
the distance of each sample from the centroid of the cluster. Defining genera of each enterotype identified by BCA and LEfSe analysis (see Supplementary
Fig. 5n–r) are indicated along with the percentage of samples from the dataset that was assigned to each enterotype
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higher rainfall than samples from enterotype 2, defined by
Prevotella relative abundance (Fig. 5c). Furthermore, proportions
of chimpanzee samples assigned to enterotype 1 and enterotype 2
differed significantly between wet and dry months (Fig. 5d).
These results suggest that seasonality in these sympatric WLG
and chimpanzee populations impacts both the relative abundance
of taxa and defines community enterotype distribution.

Frugivory-associated changes in WLG and chimpanzee
microbiota. Studies of WLG and other NHP feeding patterns in
the Republic of the Congo and surrounding areas indicate that
even in the case of a bimodal rainfall distribution, succulent fruit
availability and consumption are uniquely elevated in dry season
2, predominantly in July and August2, 27–30. In contrast, during
low frugivory (LF) periods (October–May, with June and Sep-
tember excluded as transitional months), leaves constitute the
major fallback food. This distinct seasonality of diet provides an

opportunity to investigate impacts of pronounced dietary shifts
on the microbiotas of great ape populations.

We identified bacterial taxa associated with the high frugivory
(HF) season of July–August compared to periods of LF, even after
adjusting for year of collection, collection site latitude or
longitude, or gender (Fig. 6a). HF-associated bacterial taxa were
dominated by Clostridia and Prevotellaceae members, which rose
dramatically in relative abundance in July–August and declined
over a period of months (September–December) thereafter
(Fig. 6b). The slow decline in HF bacteria over an extended
period may be indicative of a slow decline in residual succulent
fruit consumption as availability wanes. Alternatively, HF
bacteria, once established in WLG intestines, may resist
replacement by other bacteria, despite dietary shifts. Interestingly,
Treponema was the only genus associated with LF (Fig. 6a).
Treponema relative abundance rose dramatically from March to
May, declining rapidly in June as HF bacteria spike (Fig. 6c).
Then, as HF bacteria declined over the next several months,
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Fig. 5 The fecal microbiota compositions and enterotype distribution of WLGs and sympatric chimpanzees vary with seasonal patterns of rainfall. a Box-
and-whiskers plots showing the distribution of average rainfall per day over the 30 days prior to sample collection for each WLG enterotype. b Pie charts
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Treponema abundance rose steadily. We investigated differences
in the distributions of samples assigned to each enterotype
between HF and LF seasons and found that, similar to seasons
defined by rainfall, prevalence of enterotype 2 varied significantly
between HF and LF seasons (Fig. 6d). This is consistent with
PCoA analysis based on BC dissimilarity showing separation of
Treponema and Prevotella enterotypes along PC1, as well as a

clear gradient along PC1 based on the ratio of Treponema to
Prevotella relative abundance (Supplementary Fig. 11a, b).
Accordingly, PCoA analysis further demonstrates that the
density of HF samples changes along PC1, consistent with
changing relative abundance ratios of Treponema to Prevotella
along PC1 and the near complete exclusion of samples collected
during the HF period falling within Treponema enterotype 2
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(Supplementary Fig. 11c). Furthermore, though not associated
with HF or LF periods, SHD-231 relative abundance was elevated
in March and June when both Treponema and HF bacterial
abundance were diminished (Fig. 6c). The relative abundance of
SHD-231 was the primary factor driving separation along PC2,
and the ratio of the relative abundance of SHD-231 to the
cumulative relative abundance of Treponema and Prevotella
revealed a clear gradient along PC2 (Supplementary Fig. 11d).
This raises the possibility that SHD-231 defines a transitional
enterotype-like state where changes in dietary patterns (i.e.,
switch between high-fiber fallback foods and frugivory) have
occurred, but the microbiome has not yet responded to a degree
that results in switching between enterotypes 2 and 3. Indeed,
within SHD-231 enterotype 1 samples, the ratio of Treponema
to Prevotella relative abundance differs significantly based on
whether enterotype 1 samples were collected in the HF or LF
season. The majority of HF-associated bacterial taxa, including
Prevotella, are significantly elevated in enterotype 1 samples
collected during the HF season, while Treponema is elevated in
those collected during the LF season (Supplementary Fig. 11e, f).
We found no evidence for an association between geographic
distance between samples and pairwise microbiota BC dissim-
ilarity within either the HF or LF season (Supplementary Fig. 8c)
or between pairwise changes in Treponema or Prevotella relative
abundance (Supplementary Fig. 8d, e).

While chimpanzees are more frugivorous than WLGs through-
out the year, they also respond to seasonal changes in succulent
fruit availability by increasing time spent feeding on fruit31.
Sphaerochaeta, defining chimpanzee enterotype 1, was the top-
ranked genus-level biomarker of the LF season (Fig. 6e),
mirroring findings in WLGs where the Spirochaete Treponema
was the top biomarker of the LF period (Fig. 6a). Similarly,
Clostridia members, including Lachnospiraceae, were the top taxa
associated with the HF season for both WLGs and chimpanzees
(Fig. 6a, e, respectively). While Prevotella relative abundance was
not a biomarker for HF in chimpanzees, Prevotella enterotype
was associated with total rainfall and dry months in both WLGs
and chimpanzees (Fig. 5a–d). We further observed a trend
suggesting that the prevalence of chimpanzee enterotypes 1 and 2
varied between HF and LF (Fig. 6f).

These results suggest that resource availability may have a
similar impact on microbiotas of sympatric African great ape
species. However, impacts of frugivory on WLGs may be more
extreme as they rely more heavily on fallback foods during
periods of fruit scarcity. Accordingly, BC dissimilarity between
WLGs in the HF season compared to WLGs in LF season was
significantly higher than the dissimilarity between chimpanzees in
the HF season compared to chimpanzees in the LF season
(Fig. 6g). Niche separation among sympatric species may be most
distinct during seasons of resource scarcity32. In both WLGs and

chimpanzees, BC dissimilarity was significantly lower in within-
season (HF vs. HF and LF vs. LF) compared to between season
(HF vs. LF) comparisons (Fig. 6g). Between sympatric African
great apes, we find that BC dissimilarity is greatest between WLGs
in the LF season and chimpanzees in the HF season (Fig. 6g). This
comparison represents the most extreme dietary divergence
between these apes, based on heavy reliance of WLGs on fallback
foods during periods of fruit scarcity and accelerated frugivory in
chimpanzees during the HF season. In contrast, when WLGs
are in the HF season, their microbiotas become more similar to
chimpanzees in both the HF and LF seasons (Fig. 6g). Surpris-
ingly, WLGs and chimpanzees in the LF season had low
dissimilarity (Fig. 6g). Collectively, these data suggest that
composition of WLG and chimpanzee microbiota, including
bacterial taxa that define enterotypes, is dynamic and responds
seasonally to shifting resource availability and dietary preferences.

Comparison of functional pathways between enterotype
groups. In order to investigate differences in functional capacity
associated with WLG enterotypes, we performed metagenomic
sequencing on representative WLG samples (SHD-231-abundant
enterotype 1, n= 5; Treponema-abundant enterotype 2, n= 5;
Prevotella-abundant enterotype 3, n= 5; and Solibacillus/Sta-
phylococcus-abundant enterotype 4; n= 4).

WLG SHD-231-abundant enterotype 1 samples were enriched
in superpathways for nucleotide sugar biosynthesis, purine
metabolism, and carbohydrate synthesis compared to the other
three enterotypes (Fig. 7). Additionally, enterotype 1 samples
were enriched in superpathways for cell wall biogenesis, bacterial
outer membrane biogenesis, capsule biogenesis, and spore coat
biogenesis (Supplementary Data 6). See Fig. 7, Supplementary
Note 6, Supplementary Data 6, and Supplementary Fig. 12 for
additional information on metabolic functions associated with
WLG enterotype 1.

WLG Treponema-abundant enterotype 2 samples, which were
associated with the LF period when WLGs rely on plant parts
higher in fiber and protein, were enriched in superpathways for
pyrimidine metabolism, fermentation, glycan metabolism, and
glucan metabolism (Fig. 7 and Supplementary Data 6). Enter-
otype 2 samples were enriched in various pathways for
degradation of plant fibers, including beta-D-glucan, cellulose,
xyloglucan, and starch degradation (Fig. 7 and Supplementary
Data 6). Further analyses at the gene level demonstrated
enrichment in cellulolytic (endoglucanase and cellodextrinase),
hemicellulolytic (alpha-glucuronidase), lignocellulolytic (ligni-
nase), and plant xyloglucan polymer degrading (xyloglucanase)
enzymes33 (Fig. 8a–e). Enrichment in plant-fiber degrading
pathways and genes, enriched capacity for fermentation, and
association of Treponema relative abundance with the LF period

Fig. 6 The fecal microbiota compositions and enterotype distributions of WLGs and sympatric chimpanzees varies with fruit availability. a Bar chart
showing the log-transformed LDA scores and cladogram showing the phylogenetic relationships of bacterial taxa in WLGs found to be significantly
associated with seasons of high or low-fruit availability (HF or LF, respectively) by LEfSe. b Stacked area charts showing the mean monthly relative
abundance for bacterial taxa associated with the HF season for WLGs. c Line chart showing the average monthly relative abundance of Treponema and
SHD-231 in WLGs, as well as the average monthly cumulative relative abundance of genus-level HF biomarkers identified by LEfSe analysis. d Pie charts
showing the proportion of samples from each WLG enterotype in the HF season (Jul–Aug) and LF season (Jan–May, Oct–Dec). e Bar chart showing the
log-transformed LDA scores and cladogram showing the phylogenetic relationships of bacterial taxa in chimpanzees found to be significantly associated
with seasons of high or low-fruit availability (HF or LF, respectively) by LEfSe. f Pie charts showing the proportion of samples from each chimpanzee
enterotype in the HF season (Jul–Aug) and LF season (Jan–May, Oct–Dec). g Bar chart showing the mean intra- and inter-season (HF and LF) BC
dissimilarities within and between WLG and chimpanzee samples based on genus-level relative abundance distributions. Asterisks in a, e (left panels)
indicate that Box-Cox-transformed relative abundance was significantly predicted by HF or LF season in ANCOVA analyses, adjusting for the effects of
potentially confounding variables (*P < 0.05, **P < 0.01, ***P < 0.001). Error bars in c and g indicate the standard error of the mean. Two-tailed P-values
from a χ2-test (all enterotypes in the HF season vs. the LF season) and Fisher’s exact tests (WLG enterotype 2 in the HF season vs. the LF season, WLG
enterotype 3 in the HF season vs. the LF season, chimpanzee enterotypes 1 and 2 in the HF season vs. the LF season) are indicated in d and f. Two-tailed P-
values from Mann–Whitney tests are indicated in g. NS not significant at α= 0.05
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suggest that high fiber fallback/staple foods may be important
determinants of Treponema relative abundance and enterotype 2
membership.

In contrast, the top superpathways enriched in Prevotella-
abundant WLG enterotype 3, which was associated with dry
months and the HF period, were carbohydrate degradation and
amino acid degradation (Fig. 7 and Supplementary Data 6). The
strongest pathway biomarker for carbohydrate degradation was
L-fucose degradation. Fucose is not a common constituent of
plant polysaccharides, but is an important component of mucus
glycans34. Therefore, we compared gene content along the entire
pathway of fucose degradation. Genes for fucosidase, L-fucose:H
+ symporter permease (fucP), L-fucose isomerase (fucI), and
L-fuculose-phosphate aldolase (fucA) were all enriched in
metagenomes of enterotype 3 samples compared to samples
from each of the other enterotypes, while L-fuculokinase (fucK)
was also enriched in enterotype 1 samples (Fig. 8f). Thus, WLG
Prevotella-abundant enterotype 3 may be associated with
enrichment in bacteria suited for growth on intestinal mucus
glycans. It has been shown in mice that fiber deprivation
promotes growth and activity of colonic mucus-degrading
bacteria35. In addition to fucose, O-linked and hybrid N-linked
mucus glycans are made up of N-acetylglucosamine, N-
acetylgalactosamine, N-acetylneuraminic acid (sialic acid), galac-
tose, and mannose34. Enterotype 3 was enriched in a variety of
important genes involved in mucus degradation, including alpha-
and beta-N-acetylglucosaminidases, alpha-N-acetylgalactosami-
nidase, beta-galactosidase, and beta-glucuronidase (Supplemen-
tary Fig. 13a–g and Supplementary Note 6).

The top functional superpathways distinguishing the rare WLG
Solibacillus/Staphylococcus-abundant enterotype 4 samples from
the other three WLG enterotypes were aromatic compound,
nitrogen, and porphyrin containing compound metabolism and

xenobiotic degradation (Fig. 7). The majority of enterotype 4
enriched pathways were associated with superpathways of
aromatic compound metabolism and xenobiotic degradation
(Fig. 7 and Supplementary Data 6). See Fig. 7, Supplementary
Note 6, and Supplementary Data 6 for additional information on
metabolic functions associated with WLG enterotype 4.

As the relative abundance of Treponema and Prevotella were
found to be associated with seasonal fluctuations in diet, we
also compared metabolic pathways that most distinguished fecal
samples dominated by these two taxa. As was the case when
Prevotella-abundant enterotype 3 samples were compared against
all other enterotypes, L-fucose degradation remained one of the
top pathways discriminating enterotype 3 samples from Trepo-
nema-abundant enterotype 2 samples (Supplementary Fig. 14a
and Supplementary Data 7). However, in the two-way compar-
ison of seasonally fluctuant enterotype 2 and enterotype
3 samples, the top superpathway enriched in Treponema-
abundant enterotype 2 samples was one carbon metabolism
(Supplementary Data 7), consisting of four significantly enriched
methanogenic pathways that are typically associated with archaea
(Supplementary Fig. 14a and Supplementary Data 7). The
methanogenic pathway for coenzyme B-coenzyme M hetero-
disulfide reduction was also enriched in enterotype 2 samples, as
was the biosynthetic pathway for L-pyrrolysine, which is found
almost exclusively in methyltransferases from methanogens
utilizing pathways of mono-, di- and tri-methylamine36 (Supple-
mentary Data 7).

Association of methanogenic archaea with WLG enterotype 2.
Based on metagenomic sequencing from WLG fecal samples, the
overwhelming majority of organismal relative abundance was
bacterial (98.8% on average [range: 96.9–99.8%]). The remainder
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Fig. 8 Genes coding for plant fiber degrading enzymes are enriched in the Treponema-abundant, LF-associated WLG enterotype 2, while genes encoding
enzymes involved in fucose degradation are elevated in the Prevotella-abundant enterotype 3. Box-and-whiskers plots showing the relative abundance (in
counts per million sequences, cpm) of a endoglucanase, b cellodextrinase, c alpha-glucuronidase, d ligninase, and e xyloglucanase (identified by
HUMAnN2 analysis) in WLG enterotypes 1 (n= 5), 2 (n= 5), 3 (n= 5) and 4 (n= 4). f Schematic of the pathway for fucose degradation, along with box-
and-whiskers plots showing the relative abundance (in counts per million sequences, cpm) of genes (identified by HUMAnN2 analysis) encoding the
enzymes or transporter in samples from WLG enterotypes 1 (n= 5), 2 (n= 5), 3 (n= 5) and 4 (n= 4). Two-tailed P-values from Mann–Whitney tests are
indicated. NS not significant at α= 0.05
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was archaea (1.2% on average [range: 0.2–3.1%]). A recent 16S
rRNA gene-based survey of fecal archaea found a high diversity of
archaea in great apes, including gorillas. OTUs from only two
orders of methanogenic archaea were detected, along with fewer
OTUs associated with the phylum Thaumarchaeota37. Our
unbiased metagenomic approach with marker gene analysis
(MetaPhlAn2) revealed representatives from 15 orders of archaea
in WLGs (Supplementary Data 8). Methanogenic archaea wer-
e highly abundant and diverse, represented by 13 archaeal
families (Fig. 9a). The largest difference in relative abundance of
methanogenic archaea was apparent between the two seasonally
fluctuating enterotypes. In fact, enterotype 2 samples had higher
relative abundance of total methanogenic archaea, as well as
individual families of methanogenic archaea (Supplementary
Fig. 14b–g). The predominant human gut-associated methano-
genic archaeal species from the order Methanobacteriales,
Methanobrevibacter smithii, and Methanosphaera stadtmanae,
were present at high prevalence but not at high-relative abun-
dance in WLGs. Our findings demonstrating enrichment in
methanogenic metabolic pathways and higher relative abundance
of methanogenic archaea in enterotype 2 samples compared
to enterotype 3 samples suggest that methanogenesis carried out

by archaea may be a prominent feature associated with high
Treponema relative abundance. Enterotype-specific Methano-
brevibacter enrichment in humans has been associated with diets
high in carbohydrates6, 38.

Evaluation of WLG diets from fecal metagenomics. As our
study examines free ranging wild gorilla populations, we have no
direct observation information on diet. Therefore, we evaluated
fecal metagenomic plant content from representative samples in
each WLG enterotype. Using a plant marker gene approach39, we
identified 32 families of plants across samples. Plants from the
families Marantaceae, Moraceae, and Zingiberaceae, which are
staple or fallback foods of WLGs at nearly every study site for
which WLG diet has been examined across West-Central
Africa40, accounted for nearly 60% of all identified sequences
(Supplementary Data 9). Most Marantaceae marker sequences
classified at genus- and species-levels were classified as Haumania
sp. and Megaphrynium macrostachyum; Moraceae marker
sequences were classified as Ficus, Milicia and Morus; and Zin-
giberaceae sequences were classified as Aframomum spp. These
plant taxa are prominent components of WLG diets40, suggesting

0

25

50

75

100

A
ve

ra
ge

 %
 a

bu
nd

an
ce

Moraceae

Urticaceae

Marantaceae

Zingiberaceae
Annonaceae

Dioscoreaceae
Vitaceae
Fabaceae
Menispermaceae
Sapotaceae
Solanaceae
Irvingiaceae
Juglandaceae
Smilacaceae
Strombosiaceae
Other

Ent
er

ot
yp

e 
1 

(n
 =

 5
)

0

25

50

75

100

M
ar

an
ta

ce
ae

 +
 M

or
ac

ea
e 

+
Z

in
gi

be
ra

ce
ae

 %
 a

bu
nd

an
ce

0

25

50

75

A
no

nn
ac

ea
e 

+
 U

rt
ic

ac
ea

e
%

 a
bu

nd
an

ce

P = 0.016

P = 0.016 P = 0.029

P = 0.032

P = 0.016 P = 0.029

Ent
er

ot
yp

e 
2 

(n
 =

 5
)

Ent
er

ot
yp

e 
3 

(n
 =

 4
)

Ent
er

ot
yp

e 
4 

(n
 =

 4
)

Ent
er

ot
yp

e 
1 

(n
 =

 5
)

Ent
er

ot
yp

e 
2 

(n
 =

 5
)

Ent
er

ot
yp

e 
3 

(n
 =

 4
)

Ent
er

ot
yp

e 
4 

(n
 =

 4
)

Ent
er

ot
yp

e 
1 

(n
 =

 5
)

Ent
er

ot
yp

e 
2 

(n
 =

 5
)

Ent
er

ot
yp

e 
3 

(n
 =

 4
)

Ent
er

ot
yp

e 
4 

(n
 =

 4
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
ve

ra
ge

 %
 a

bu
nd

an
ce

Methanoregulaceae
Methanococcaceae
Methanosarcinaceae
Methanobacteriaceae
Methanocellaceae
Methanocorpusculaceae
Methanosaetaceae
Methanocullaceae
Methanocaldococcaceae
Methanomicrobiaceae
Methanothermaceae
Methanospirillaceae
Methanopyraceae

Ent
er

ot
yp

e 
1 

(n
 =

 5
)

Ent
er

ot
yp

e 
2 

(n
 =

 5
)

Ent
er

ot
yp

e 
3 

(n
 =

 4
)

Ent
er

ot
yp

e 
4 

(n
 =

 4
)

a b

c d

Fig. 9 Shotgun metagenomic sequencing reveals differences in methanogenic archaea and fecal dietary plant taxa among WLG enterotypes. Stacked bar
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that this metagenomic-based analysis captured many dominant
plant taxa in WLG diets.

Interestingly, frugivory-associated Prevotella-abundant enter-
otype 3 samples had significantly lower relative abundance of
these staple plants than WLGs from the other enterotypes
(Fig. 9b–c). Instead, Annonaceae and Urticaceae were the most
abundant plant families detected in enterotype 3 samples, and
their cumulative relative abundance was higher in enterotype
3 samples compared to the other enterotypes (Fig. 9b, d).
Duguetia spp., Duguetia confinis and Duguetia staudtii, were the
most abundant Annonaceae detected (Supplementary Data 9).
Fruits and flowers of Annonaceae are consumed seasonally by
WLGs40. Duguetia confinis and Duguetia staudtii are native to
West Africa, including the Republic of the Congo, where they
typically develop fruit from July–September, consistent with the
frugivory period of WLGs in this area41. At the La Begique
research site in southeast Cameroon, WLGs have been found to
play an important role in fruit seed dispersal of Duguetia
staudtii42. Solibacillus/Staphylococcus-abundant enterotype 4 sam-
ples had the highest relative abundance of Moraceae sequences,
predominately from the genus Ficus. These results support the
notion that differences in diet are the driving factor behind
enterotypes, especially for samples that have a high-relative
abundance of Prevotella from which staple/fallback plants
represent a lower proportion of the diet (for additional
discussion, see Supplementary Note 7).

Discussion
Gorillas and chimpanzees are endangered species and our closest
living relatives. Here we have investigated sympatric WLG
and chimpanzee gut microbiota in comparison to other NHPs
and extant humans. Our findings show that microbiotas of
humans differ from those of wild African great apes. We further
demonstrate temporal shifts in composition of WLG and chim-
panzee microbiota across months and seasons defined by rainfall
and fruit availability. These findings are consistent with a model
wherein dietary plasticity in WLGs and likely other primates
appears to be facilitated, at least in part, by a highly adaptable
microbiota that reorganizes its composition in response to a
shifting environment and seasonal feeding behaviors.

Our findings demonstrate that enterotype groupings can be
highly dependent on shifting dietary patterns associated with
seasonal availability of resources. This is consistent with previous
studies that have demonstrated enterotype switching in individual
habituated chimpanzees and, more recently, in baboons and
gorillas13–15. In humans, it has been suggested that enterotypes
are representative of “long-term dietary patterns”8. Though many
humans enjoy a highly diverse and fluctuating diet, whether and
how frequently dietary changes can lead to enterotype switching
is unclear.

The relative abundances of bacterial taxa that define enterotype
clusters are not only fluctuant but also appear to exist as relatively
smooth gradients across a population rather than as bi- or multi-
modal distributions. Further, though these taxa have both high
and variable relative abundances across a population, variations
in their relative abundances that drive cluster separation are not
necessarily reflective of variations in underlying microbial com-
munities43. While there has been some controversy surrounding
enterotyping, our findings are in agreement with the position that
despite limitations of enterotyping, it can provide useful infor-
mation on some aspects of community variation across a popu-
lation and underlying factors driving such variation (here
seasonality), particularly when combined with other methods10.
However, our findings also suggest that caution should be applied
when interpreting enterotyping results as enterotype assignment

within an individual or enterotype prevalence within a population
may be dependent on factors such as seasonality and diet.

Only one of the four WLG enterotypes, the Prevotella enter-
otype, was shared among WLGs, chimpanzees, and humans,
although deeper sampling of chimpanzees might reveal additional
enterotypes. Humans from industrialized cultures, such as the US,
have largely lost this enterotype in favor of the Bacteroides
enterotype, while Prevotella remains dominant in rural commu-
nities around the world44, 45. Prevotella enterotypes are associated
with plant-based diets high in carbohydrates8. Their scarcity in
humans in industrialized cultures is likely a reflection of wes-
ternized diets high in protein and animal fat that emerged from
our domestication and husbandry of animals ~10,000 years ago46.
Indeed, diets consumed by industrialized nations today are widely
disparate from ancestral plant-based diets to which anthropoids
have adapted over millions of years47. Prevotella enterotype
prevalence in WLGs was significantly elevated in dry months, and
higher Prevotella relative abundance was associated with dry
season 1 and HF, with similar results found in sympatric chim-
panzees. This suggests that short-term dietary changes can
influence Prevotella relative abundance and hence enterotype
clustering at least in WLGs and chimpanzees. A recent study by
Smits et al.1, provides the first evidence for seasonal changes in
microbiomes of human Hadza hunter-gatherers from Tanzania,
wherein Prevotellaceae and Spirochaetaceae were found to be two
of the most seasonally variable taxa, and Prevotellaceae declined
in the wet season1. Concordance of these findings with ours
provides evidence for a relationship between seasonal fluctuations
and gut microbiome fluctuations that predates the emergence of
Homininae.

Prevotella spp. are able to degrade hemicellulose, pectin, and
simple carbohydrates, such as those found in fruits48. Based on
bacterial metagenomic pathway analysis, WLG Prevotella enter-
otype was associated with carbohydrate degradation. However,
ripe fruits are typically rich in soluble sugars that are readily
digested and absorbed in the small intestine, and lower in fibers
that reach the large intestine where the majority of bacterial
fermentation occurs. We found enrichment of plant markers for
fruit-bearing Annonaceae, as well as Urticaceae, in WLG Pre-
votella-abundant enterotype 3 samples and deficiency in plant
markers for high-fiber staple and fallback foods. Thus, the fru-
givory period in WLGs may represent a period of relative fiber
deficiency, during which the microbiome may alter its composi-
tion to favor a mucolytic phenotype. Indeed, our findings suggest
enrichment for pathways and genes associated with bacterial
growth on mucus glycans in the WLG Prevotella enterotype. The
dichotomy between a microbiome with enhanced mucin
degrading capacity and a microbiome enriched in plant fiber
degrading capacity is evident in comparisons of human micro-
biomes from industrialized countries and hunter-gatherers1.
However, our finding in WLGs is in opposition to our current
understanding of Prevotella variance observed in humans, where
high-relative abundance is associated with plant-based diets,
presumably high in plant fibers, suggesting that our under-
standing of Prevotella variance in humans is incomplete and/or
the metabolic functions of Prevotella spp. in WLGs are widely
disparate from human-associated Prevotella spp. (see Supple-
mentary Discussion).

Treponema relative abundance fluctuates seasonally and
defines a distinct, seasonally responsive enterotype in WLGs.
While Treponema prevalence is high in chimpanzees, relative
abundance is low compared to WLGs, possibly reflecting the
persistent ripe fruit specialization of chimpanzees27. Chimpan-
zees instead have a different Spirochaete-associated enterotype,
defined by Sphaerochaeta, which, similar to WLGs, appears to
fluctuate seasonally. Thus, microbiomes of primates, including
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WLGs, may have some inherent specificity, allowing each primate
to carefully balance dietary activity budgets with energy acquisi-
tion20. While prevalence and mean Treponema relative abun-
dance in the US and Mongolian humans evaluated in this study
are very low, there are a few known human populations that
harbor substantial Treponema, including BaAka hunter-gatherers
from the Central African Republic49, Matses people from the
Peruvian Amazon50, Tunapuco people from the Andean high-
lands50, and Hadza hunter-gathers from Tanzania44, whose diets
are high in fiber-rich plant foods. Thus, a greater understanding is
needed to fully appreciate factors that have contributed to and
consequences of the absence or loss of Spirochaetes from some
human populations around the world, including westernized
societies.

In support of a role for Treponema in plant fiber digestion in
WLGs, Treponema abundance and the Treponema enterotype
were significantly associated with wet periods, as well as the LF
season, when WLGs rely heavily on fiber-rich fallback foods.
Metagenomes of WLG Treponema enterotype samples were
enriched in pathways and genes involved in fermentation and the
degradation of plant fibers, including cellulose, hemicellulose,
lignin, and xyloglucans. However, bacterial fermentation pro-
duces large amounts of hydrogen gas (H2), which inhibits
fermentative processes. Thus, for efficient fermentation to
occur, a balance must be achieved between H2-producing fer-
mentative bacteria (hydrogenogenic) and H2-consuming
(hydrogenotrophic) microbes34. In WLGs, bacterial fermentation
of plant fibers may be optimized via syntrophic relationships with
H2-scavenging methanogenic archaea, which were highly diverse
in WLGs and reached the highest relative abundance in Trepo-
nema enterotype samples. Gut microbiomes of humans harbor
relatively low abundance and diversity of hydrogenotrophic
archaea compared to great apes37, which could limit our capacity
to efficiently ferment plant fibers. Together, these results suggest
that seasonal fluctuation in Treponema and Prevotella relative
abundance and enterotype distribution in WLGs may reflect
oscillations in colonic capacity for plant fiber fermentation, with
Treponema and fermentation dominating when fiber intake is
maximized (i.e., the LF period) and Prevotella and colonic
mucolysis dominating when fiber intake is minimized (i.e., the
HF period)40.

The remaining two enterotypes were defined by under-
characterized bacterial genera (Chloroflexi genus SHD-231 and
Solibacillus/Staphylococcus). SHD-231 enterotype samples fell
between seasonally fluctuant Treponema and Prevotella enter-
otypes along PC1, based on PCoA analysis, and SHD-231 enter-
otype samples collected during the HF season were enriched in
HF-associated bacterial taxa (including Prevotella), while SHD-
231 enterotype samples collected during the LF period were
enriched in Treponema. Together these findings suggest that the
SHD-231 enterotype may represent the gradient between
extremes of seasonal fluctuation in Prevotella and Treponema
relative abundance, similar to gradients reported in humans
between extremes of Prevotella and Bacteroides22. On the other
hand, WLGs harboring the Solibacillus-Staphylococcus enterotype
may reflect atypical feeding behavior in a small number of indi-
viduals (see Supplementary Discussion).

Early primates evolved in an arboreal environment much like
those now inhabited by extant apes, where their survival was
dependent on adaptation to dietary challenges. Such dietary
pressures likely had large impacts on evolutionary trajectories of
primates47, 51. Major events in hominin evolution have been
ascribed to seasonality, including periods of moist-dry varia-
bility51. In this respect, seasonality of the tropics and feeding
behaviors that extant NHPs exploit to adapt to seasonal shifts
in resources may serve to expand our understanding of

environmental and behavioral factors that drove human evolu-
tion52. While seasonality in diet is apparent in many extant pri-
mates, including isolated human populations, WLG may
represent an extreme model for seasonal dietary shifts. As NHPs
favor a plant-based diet, it may seem surprising that apes and
humans do not encode enzymes required for efficient degradation
of complex carbohydrates and plant fiber. However, these
enzymes are encoded by intestinal bacterial symbionts with which
primates co-evolved. The microbiome also plays a vital role in
mammalian physiology, and thus, the genetic information enco-
ded by symbiotic microbes is a requisite for host fitness and the
foundation of the hologenomic theory of evolution53, 54. When, in
the course of human evolution, rapid environmental changes
occurred, genomic changes to hominins may not have been
sufficiently rapid to maintain fitness and survival. However,
changes in symbiotic microbes in response to external stimuli,
including diet, can occur over days or months rather than over
generations8. In this sense, the fitness of a species may be viewed
in terms of an inherent level of adaptability that is reliant on the
composition and malleability of the microbiome and its capacity
to provide animals with dietary derived energy and nutrients.

Much can be gained from studies of wild animal microbiomes.
From a biocentric perspective, and perhaps of greatest urgency,
health monitoring in endangered wild primate populations is
typically accomplished indirectly by population surveys or with
invasive sampling. As microbiome studies have changed our
collective thinking about the role of microbes in human health,
defining microbial signatures and their inextricable relationship
to the environment in wild animal populations provides a veri-
table microbial snapshot in time that can inform future microbial
studies aimed at monitoring the health of threatened populations
in response to potentially deleterious forces, such as human
encroachment, habitat destruction, disease, and climate change.
Indeed, impacts of these forces on microbiomes, health, and
environments of NHPs is already evident18, 55–57.

From an anthropocentric viewpoint, the microbiomes of wild
primates may hold keys to both our evolutionary past, as well as
our future health. As we continue to eliminate diversity of our
contemporary microbiome with the use of antimicrobials and
westernized diets, an era may arrive when we must search for
probiotics outside of our current human-derived repertoire. The
undercharacterized, highly diverse group of microbes inhabiting
the intestinal tracts of our closest living relatives may possess an
untapped potential to cross the species barrier into Homo sapiens
and reset the ancestral fermentative, immunostimulatory, and
metabolic capacity that modern humans may no longer harbor.

Methods
Study population and data collection. Fecal samples (n= 166) from free-ranging
wild western lowland gorillas (Gorilla gorilla gorilla) and central chimpanzees (Pan
troglodytes troglodytes) were collected during 35 reconnaissance surveys conducted
by the Wildlife Conservation Society (WCS) from 2006 to 2010 across a region
spanning over 5500 km2, located to the east of Odzala-Kokoua National Park in the
Republic of the Congo. Non-invasive fecal sampling was undertaken with per-
mission of the Congolese Ministry of Scientific Research (permit Nos. 003/MRS/
DGRST/DMAST and 014/MRS/DGRST/DMAST) and in compliance with the
American Society of Primatologists’ Principles for the Ethical Treatment of NHPs.
The species origin of fecal source was provisionally characterized by evaluating
fecal morphology, which includes odor, color, and amount of fiber, as previously
described58 and later confirmed with genetic analyses (see below). Freshness was
determined by physical appearance using previously described methods59. GPS
coordinates were recorded for each fecal sample upon collection. Samples were
immediately preserved in RNAlater® and were subsequently shipped to the Bronx
Zoo, New York and the Center for Infection and Immunity, Columbia University,
New York, where samples were maintained at −80 °C until processing.

Nucleic acid extraction. DNA was extracted from all 166 fecal samples collected
by WCS using a modified protocol of the QIAmp DNA Stool Mini Kit (Qiagen Inc;
Valencia CA, USA). The ease with which samples can be contaminated with

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04204-w

14 NATURE COMMUNICATIONS |  (2018) 9:1786 | DOI: 10.1038/s41467-018-04204-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


bacterial DNA is well recognized. Thus, we have applied every precaution to
prevent and monitor any introduction of bacterial DNA from nucleic acid
extractions to downstream PCR reactions. For each set of DNA extractions, two
empty 2 mL tubes were taken through every step of the extraction to serve as
negative controls for downstream 16S rDNA PCR. Such extraction reagent controls
are essential to confirm that contaminating bacterial 16S rDNA has not been
introduced from extraction reagents. A total of 22 extraction controls were pre-
pared from 12 sets of extractions. Prior to extraction, all tubes, columns, 0.1 mm
glass beads and 0.5 mm glass beads (MoBio Laboratories) were UV irradiated twice
at a distance of 1 inch from UV bulbs and at a setting of 3000 × 100 μJ/cm2 in a
SpectroLinker XL-1500 UV crosslinker (Spectronics Corporation). All kit extrac-
tion reagents (liquid) were aliquoted into 2 mL tubes in a UV hood at a volume not
exceeding 1 ml and were UV irradiated as above. For each fecal sample, 220 mg of
feces was centrifuged at 6000 r.p.m. for 5 min to pellet fecal material and bacteria,
RNAlater was removed, and fecal pellets were resuspended in Buffer ASL (QIAgen,
1.4 mL) and transferred to UV irradiated 2 mL Safe-Lock tubes (Eppendorf) con-
taining UV irradiated beads: one 5 mm steel bead (QIAgen) and 0.1 mm and 0.5
mm glass beads (MoBio Laboratories). In order to optimally lyse Gram-positive
bacteria, samples were further disrupted with bead beating in a TissueLyser
(QIAgen) for 5 min at 30 Hz and incubated for 5 min at 95 °C. The remaining steps
for extraction followed the manufacturer’s protocol and were performed in a
UV hood. DNA concentration and purity were determined using a NanoDrop
ND-100 spectrophotometer (NanoDrop Technnologies, Wilmington, DE) and
stored at −80 °C.

Genotyping, microsatellite analysis, and sex determination. Genomic DNA
from fecal samples was genotyped by amplifying the nearly 500 bp D-loop region
of mitochondrial DNA to confirm species origin as described previously60. A subset
of samples failed to yield efficient amplification of the D-loop region. For these
samples, a 386 bp region of the mitochondrial 12S gene was amplified to confirm
species origin as previously described61. The PCR amplification products obtained
by both methods were subjected to Sanger sequencing, and sequences were eval-
uated using the Geneious v5.6.3 software (Biomatters; Auckland, New Zealand).

In order to avoid oversampling from the same individuals, all samples were
subjected to microsatellite analyses via capillary electrophoresis by targeting 8
microsatellite loci: D18S536, D4S243, D10S676, D9S922, D2S1326, D2S1333,
D4S1627, and D9S90560, 62. All microsatellite loci were analyzed twice, and those
with apparent homozygosity were repeated seven times to exclude allelic dropout.
Microsatellite loci were analyzed with Peak Scanner v1.0 (Applied Biosystems).
Where more than one fecal sample was determined to have originated from a single
individual, only one sample was included for downstream analysis. Collectively,
these analyses conclusively identified 87 individual western lowland gorillas
(WLGs) and 18 sympatric central chimpanzees (unbiased probability of identity
«0.001, calculated using GIMLET63) (see Supplementary Data 1). All 87 WLG
and 18 chimpanzee samples were subjected to 454 pyrosequencing of bacterial
16S rDNA.

For gender determination, a region of the amelogenin gene was amplified by
PCR using primers AMEL-F212 (5′-ACCTCATCCTGGGCACCCTGG-3′) and a
fluorescent NED labeled AMEL-R212 (NED- 5′-
AGGCTTGAGGCCAACCATCAG-3′) that generate a 212 bp fragment from the X
chromosome and a 218 bp fragment from the Y chromosome62. Size
discrimination for amelogenin-based gender typing was determined via capillary
electrophoresis. Samples for which gender could not be successfully determined
based on the amelogenin gene were further evaluated by size discrimination on
agarose gels of the ubiquitously transcribed tetratricopeptide repeat protein gene
(UTX/UTY) as previously described64. The amelogenin and UTX/UTY assays
allowed for gender determination for 82 of the 87 (94%) WLG fecal samples and
13/18 (72%) chimpanzee fecal samples. We do not have age information for any of
the animals as these samples were collected from wild, non-habituated WLGs, and
chimpanzees.

Barcoded pyrosequencing of bacterial 16S rDNA. Amplification of the V1–V3
region of bacterial 16S rDNA for pyrosequencing was performed on all 87 WLG
and 18 chimpanzee samples (representing 87 individual gorillas and 18 chim-
panzees, respectively, as determined by mitochondrial and microsatellite analysis)
using 16S rDNA composite primers, consisting of FLX Titanium adapters, a sample
barcode, and bacterial 16S rDNA-specific V1 (27 F) and V3 (534R) primer
sequences as previously described65. Plate caps, 96-well PCR plates, 2 mL micro-
centrifuge tubes and Ultra Clean water (MOBIO) were UV irradiated in a Spec-
troLinker XL-1500 UV crosslinker (3000 × 100 μj/cm2) prior to PCR setup in a UV
hood. Each 20 μL PCR reaction consisted of 1× Accuprime Buffer II, 0.75 units of
Accuprime Taq DNA Polymerase High Fidelity (Life Technologies), 2.5 units of
Sau3AI restriction enzyme, 200 nM of each primer and 100 ng of sample DNA.
Before addition of primers, the PCR master mix was UV-irradiated to reduce
downstream amplification of any potential contaminant DNA in reagents. Subse-
quently, the master mix was aliquoted into 96-well plates, and barcoded primers
were added to each reaction. The 96-well plate was then incubated at 37 °C for 30
min to facilitate Sau3AI digestion of any remaining double-stranded DNA con-
taminants. After digestion, the plate was incubated on ice for 5 min, and sample
DNA was then added to each reaction and immediately placed in the thermal

cycler. Extraction reagent controls and PCR reagent controls were included to
control for any bacterial DNA contamination. The PCR cycling conditions were as
follows: 95 °C for 5 min, 35 cycles of 95 °C for 20 s, 56 °C for 30 s and 72 °C for
5 min. All PCR products were run on 1% agarose gels stained with ethidium
bromide, and products were purified using the QIAgen Gel Extraction kit. PCR
products were further purified using Ampure magnetic purification beads
(Beckman Coulter Genomics). Ampure purified products were quantified with the
Quanti-iT PicoGreen dsDNA Assay Kit (Invitrogen). Equimolar ratios of each
sample were combined to create DNA pools of barcoded libraries.

Shotgun metagenomics. Shotgun metagenomic sequencing was performed on 19
representative WLG samples. Samples were chosen from each enterotype by their
separation from samples of other WLG enterotypes by PCoA based on BC, as well
as their high-relative abundance of SHD-231 (n= 5; SHD-231 relative abundance
avg.= 44.2%, std. dev.= 8.1%), Treponema (n= 5; Treponema relative abundance
avg.= 43.5%, std. dev.= 9.8%), Prevotella (n= 5; Prevotella relative abundance
avg.= 27.3%, std. dev.= 5.0%), or Solibacillus/Staphylococcus (n= 4; Solibacillus+
Staphylococcus relative abundance avg.= 61.2%, std. dev.= 14.2%). For Illumina
library preparation, genomic DNA was sheared to a total of 200-bp average frag-
ment length using a Covaris E210 focused ultrasonicator. Sheared DNA was
purified and used for Illumina library construction using the KAPA Hyper Prep kit
(KK8504, Kapa Biosystems). Sequencing libraries were quantified using an Agilent
Bioanalyzer 2100. Sequencing was carried out on the Illumina HiSeq 2500 platform
(Illumina, San Diego, CA, USA), yielding ≈530 million single-end reads of 100
nucleotides in length (Average reads per sample= 28 million; range= 12–42
million). Raw shotgun metagenomic sequences were deposited in the Sequence
Read Archive (SRA) under PRJNA382701.

Bioinformatic analysis. 16S rRNA gene sequences were analyzed using the open
source software package QIIME (Quantitative Insights Into Microbial Ecology:
http://qiime.org/) v1.7 and v1.8. Sequences from each run were de-multiplexed and
quality filtered based on the following criteria: (1) length outside bounds of 200 and
1000 nucleotides, (2) number of ambiguous bases exceeds limit of six, (3) missing
quality score, (4) mean quality score below a minimum of 25, (5) maximum
homopolymer run exceeds a limit of six, (6) number of mismatches in the primer
exceeds the limit of zero, (7) include sequences without a discernible reverse pri-
mer. Sequencing data were further denoised using flowgram clustering with
QIIME’s built in Denoiser. Reverse primers were removed using fine-tuned
BLASTing, as well as positional criteria. In order to eliminate 454 inter-plate bias,
quality of sequences was evaluated using the QIIME quality_scores_plot.py script.
Differences in sequence quality were apparent at the 3′ end of sequences that
exceeded 400 bp in length between different 454 runs. As this type of bias can
inflate the number of OTUs and prevent downstream comparison between dif-
ferent 454 runs, we trimmed only sequences with length exceeding 400 bp to
exactly 400 bp from each plate run. No plate effect was apparent based on alpha
and beta diversity metrics after applying this sequence trimming criteria. Chimeric
sequences were identified using usearch61, which uses a combination of de novo
and reference-based chimera detection algorithms66. The 13.5 release of the
Greengenes dataset was used as the reference dataset. Identified chimeric sequences
were removed. De-multiplexed, trimmed, and quality-filtered sequences were
deposited in the MG-RAST database (http://metagenomics.anl.gov) under the
project ID 10912.

Open-reference OTU picking was carried out with usearch61_ref, using
Greengenes as the reference dataset at a similarity threshold of 97% (roughly
corresponding to species-level OTUs). Representative sequences from the OTUs
were aligned to a pre-aligned database of sequences (the Greengenes core set) using
PyNAST with quality thresholds set with a minimum sequence length of 150
nucleotides and a minimum percent identity of 75%. PyNAST alignment failures
were investigated by blasting all sequences that failed to align. Taxonomies were
assigned to OTUs using the RDP Classifier trained on the Greengenes 13.5 dataset.
The 87 WLG and 18 chimpanzees were distributed across the sequential years 2008
(33 WLG and 6 chimpanzee individuals), 2009 (39 WLG and 7 chimpanzee
individuals), and 2010 (15 WLG and 5 chimpanzee individuals). Alpha diversity
metrics (including chao1, observed species, and Shannon) were calculated and
rarefaction plotted to investigate differences between groups for diversity within
samples based on the abundance of various taxa within a community. No
differences in any of the alpha diversity metrics were observed among years of
sampling (2008 vs. 2009 vs. 2010) for WLG and chimpanzee groups, suggesting
that length of time for storage of older samples did not adversely impact diversity
in our samples (Supplementary Fig. 15).

US human sequences from the Human Microbiome Project QIIME community
profiling (HMPQCP) dataset were downloaded. Only stool samples sequenced over
the V1–V3 region of bacterial 16S rDNA were selected for analysis (175 individual
human stool samples). Bacterial 16S sequences from the Mongolian humans were
obtained from MG-RAST (project no. 8437), while bacterial 16S sequences from
the Old World monkeys were obtained from personal correspondence with
Suleyman Yildirim (red-tailed guenons, black-and-white colobi, and red colobi20)
and Martin Wu (baboons15). For the baboon dataset, samples from infant baboons
were excluded. Sequences from all great ape, human, and Old World monkey
datasets were combined, and QIIME was used to pick OTUs with usearch61 and
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taxonomy was assigned using the RDP classifier trained on Greengenes 13.5 dataset
as described above. Alpha diversity was calculated between these samples using
chao1, observed species, and Shannon metrics. In order to compare bacterial
communities based on their composition between individuals and groups, root
Jensen-Shannon divergence, Bray–Curtis dissimilarity, and unweighted UniFrac
were assessed and visualized with unsupervised principal coordinate analysis
(PCoA) and distance histograms. The HMP, Mongolian, baboon, black-and-white
colobus, red colobus, and red-tailed guenon datasets were generated using the same
V1–V3 region primers as were used in our study of the WLG and sympatric
chimpanzee microbiota, and all samples were sequenced on the same platform
(Roche/454) to limit the impact of technical variation when comparing across
studies. Different extraction methods were employed between studies, which may
introduce minor artifacts. However, others have demonstrated that in comparisons
among groups with large effect sizes (i.e., geographically distinct human groups or
humans and other species), bacterial compositional differences outweigh technical
variation21, 67. Furthermore, inter-individual subject variability is shown to
outweigh the small proportion of variation associated with DNA extraction
methods used to generate each of the datasets in our study, and the different
extraction methods have been shown to have little impact on diversity metrics68, 69.

For shotgun metagenomic sequences, host subtraction using Bowtie 270 was
performed against the WLG, human, PhiX and mouse genomes to remove host and
any contaminant sequences. The de-multiplexed reads were trimmed to remove
primers and adaptors and filtered to exclude short reads and those with low
complexity regions (Prinseq v0.20.271, minimum quality mean= 30, max Ns= 20).
A total of 512 million reads remained in the dataset after host subtraction and
quality filtering (Average reads per sample= 27 million; range= 12–40 million).
HUMAnN2 v0.5.0 (http://huttenhower.sph.harvard.edu/humann2) was used with
the UniPathway database for functional metagenomic profiling of filtered, host-
subtracted metagenomic reads. Gene families were normalized to counts per
million (cpm) prior to superpathway- and pathway-level annotation using the
UniPathway database. LEfSe25 was used to assess differences in superpathway and
pathway functions (based on HUMAnN2) among samples from the four different
WLG enterotypes and the two seasonally fluctuant enterotypes. MetaPhlAn272 was
run on the host-subtracted, quality-filtered reads to assess archaeal taxonomic
composition in each sample.

The identification of plant content in fecal samples was performed on shotgun
metagenomic sequences using a previously described approach39. Briefly, following
quality filtering and host subtraction, reads from WLG samples were separately
aligned to three pre-built plant reference barcode databases (rbcL, matK, and trnL-
F). MEGABLAST was used to select reads with a minimum of 98% identity and a
minimum of 50 bp overlap with plant sequences in these databases. Alignments
with incomplete overlaps were further excluded. Readsidentifier (v 1.0)73 was then
used to classify the remaining aligned reads to the lowest identifiable taxonomic
levels in the databases. All sequence reads that met these alignment criteria in any
of the three plant marker gene databases were included for downstream analyses.

Satellite rainfall and vegetation analysis. High-temporal resolution precipitation
measurements of the satellite-borne Tropical Rainfall Measuring Mission (TRMM:
http://trmm.gsfc.nasa.gov/) covering the period 1 January 1998–31 October 2013
were downloaded for the project from NASA (http://disc2.nascom.nasa.gov/daac-
bin/OTF/HTTP_services.cgi?SERVICE=TRMM_ASCII&BBOX=-6.25,29.75,-
6.00,30.00&TIME=1998-01-01T12:00:00%2F2013-10-
31T12:00:00&FLAGS=3B42_V7_Daily,Time&-
SHORTNAME=3B42_V7_Daily&VARIABLES=Rain). The data coverage extend
from latitude 0.25–1.50 deg. N and longitude 15.25–16.50 deg. E. Three-hourly
rainfall data from the 25 individual 0.25 × 0.25 degree latitude-longitude grid cells
(~27 × 27 km) enclosed within the 1.25 × 1.25 degree box were averaged and used
as the basis for computing daily rainfall means and other quantities using Microsoft
Excel software.

Images generated by monthly Terra/MODIS satellite data based on the
enhanced vegetation indices for the region of sample collection (0.42–1.50 deg. N
and 15.33–16.52 deg. E) from 2008 to 2010 were downloaded from NASA’s Earth
Observing System Data and Information System (http://reverb.echo.nasa.gov).

Statistical analysis. Box-and-whiskers plots and Mann–Whitney U-test: All box-
and-whiskers plots shown in the main and supplementary figures represent the
interquartile ranges (25th through 75th percentiles, boxes), medians (50th per-
centiles, bars within the boxes), the 10th and 90th percentiles (whiskers above and
below the boxes), and outliers beyond the whiskers (closed circles). All statistics
based on data presented in box-and-whiskers plots are two-tailed P-values derived
from Mann–Whitney U-tests.

LEfSe analysis: Differences in the relative abundance of bacteria at all taxonomic
levels, as well as microbial functional metagenomic superpathways and pathways,
were determined with linear discriminant analysis effect size (LEfSe), which
couples tests of statistical significance with measures of effect size to rank the
relevance of differentially abundant taxa25. Thus, the Kruskal–Wallis (or
Mann–Whitney U-test) identifies taxa that are significantly different in relative
abundance among different classes, and the linear discriminant analysis (LDA)
identifies the effect size with which these taxa differentiate the classes. For
each LEfSe analysis, an alpha value of 0.05 for the Kruskal–Wallis test and a

log-transformed LDA score of 2.0 were used as thresholds for significance. LEfSe
analyses were used to evaluate differences among the fecal microbiota of the 87
WLG, 18 chimpanzee, 104 baboon, 3 red-tailed guenon, 3 black-and-white colobus,
3 red colobus, 320 Mongolian human, and 175 US human samples; differences
within the fecal microbiota of the gorillas, chimpanzees, baboons, and humans
among different enterotypes (see below); differences in the fecal microbiota of the
gorillas among different months; differences in the fecal microbiota of the gorillas
and chimpanzees among different seasons; and differences in the fecal microbiota
of male and female gorillas. For the LEfSe analysis on the monthly variations in the
gorilla fecal microbiota, samples collected in January or February, July or August,
and September or October were consolidated into three classes (Jan–Feb, Jul–Aug,
and Sept–Oct) to accommodate the small sample sizes in February, July,
September, and October. Monthly LEfSe analysis was not performed on the 18
chimpanzee samples, as there were too few samples per month. LEfSe analysis on
seasonal variations in the gorilla fecal microbiota was conducted by comparing
bacterial relative abundance among the two wet seasons and two dry seasons
(determined by total rainfall in the month of sample collection from over a 10-year
period [2001–2010]), as well as between more discrete wet and dry periods
(determined by the average daily rainfall over the 30 days prior to sample
collection, >4.23 mm day−1 mm for wet months and <4.23 mm day−1 for dry
months) and between seasons of high-fruit availability (HF) and low-fruit
availability (LF) (July–August vs. other months, respectively). Chimpanzee samples
were also analyzed for seasonal variations in the microbiota using the 30-day
average daily rainfall wet/dry and HF/LF classifications. As with the monthly
analysis, there were too few chimpanzee samples per class to examine differences
among the two wet and two dry seasons determined by decadal rainfall patterns.
The 4.23 mm day−1 cutoff (equivalent to 127 mm total rainfall over a 30 day
period) for wet and dry months was selected based on the highest upper limit of the
standard error of the mean total rainfall for a month in either of the two dry
seasons (August, 126 mm total or 4.07 mm day−1), which did not overlap with the
standard error intervals for total rainfall in any of the months in either wet season
(see Fig. 4a). By dividing samples into wet and dry months using this 4.23 mm day
−1 cutoff, for both WLG and chimpanzee samples, there were 0.77 mm day−1 and
0.76 mm day−1 differences, respectively, in average daily rainfall over the 30 days
prior to sample collection between the sample with the lowest average daily rainfall
in the wet months group and the sample with the highest average daily rainfall in
the dry months group (see Supplementary Fig. 9d).

ANCOVA analysis: ANCOVA analyses were conducted to confirm associations
identified by LEfSe between the relative abundance of bacterial taxa and month
and/or season of sample collection, adjusting for the effects of potentially
confounding variables. As LEfSe has been shown to effectively reduce the false
discovery rate, it serves as a gatekeeping procedure (hierarchical or fixed-sequence
test procedure)74, 75. Therefore, for any given LEfSe-defined bacterial taxa, the
probability of a false rejection of the null hypothesis and the false discovery rate can
only decrease when follow-on adjusted analyses are applied to the LEfSe-defined
bacterial taxa. By definition, the original biomarker cannot be a true discovery if it
is an artifact of confounding. As these follow-on adjusted ANCOVA analyses
neither increase the familywise type I error rate nor the FDR, additional multiple
testing corrections were not applied. In the first set of ANCOVA analyses, month
of sample collection (with June as the base category) was evaluated as a significant
predictor of the Box-Cox-transformed relative abundance of all sampling month-
associated bacterial taxa identified by LEfSe, adjusting for the effects of sex (male as
the base category), year of sample collection (2010 as the base category), latitude of
collection site, and longitude of collection site. In the second set of ANCOVA
analyses, season of sample collection (determined by average total rainfall in the
month of sample collection; wet season 2 as the base category) was evaluated as a
significant predictor of the Box-Cox-transformed relative abundance of all
seasonal-associated bacterial taxa identified by LEfSe, adjusting for the effects of sex
(male as the base category), year of sample collection (2010 as the base category),
latitude of collection site, and longitude of collection site. In the third set of
ANCOVA analyses, season of sample collection (determined by fruit availability;
LF as the base category) was evaluated as a significant predictor of the Box-Cox-
transformed relative abundance of all sampling month-associated bacterial taxa
identified by LEfSe, adjusting for the effects of sex (male as the base category), year
of sample collection (2010 as the base category), latitude of collection site, and
longitude of collection site. In the final set of ANCOVA analyses, average daily
rainfall over the 30 days prior to sample collection was evaluated as a significant
predictor of the Box-Cox-transformed relative abundance of all seasonal-associated
bacterial taxa identified by LEfSe (wet vs. dry months), adjusting for the effects of
sex (male as the base category), year of sample collection (2010 as the base
category), latitude of collection site, and longitude of collection site. All Box-Cox
transformations were performed in XLSTAT version 2014.3.07 based on an
optimized lambda for each taxon. ANCOVA analyses were performed with SPSS
version 21 and XLSTAT version 2014.3.07.

Identification of enterotype: Enterotypes were identified in both the WLG,
chimpanzee, baboon, US human, and Mongolian human datasets using the
methods described by Arumugam et al.6 (http://enterotype.embl.de/enterotypes.
html). For all datasets, root Jensen-Shannon divergence (rJSD) and Bray–Curtis
(BC) dissimilarity were calculated from genus-level relative abundance profiles in R
as described by Arumugam et al. and Koren et al.6, 76. Only taxa that could be
classified at the genus level was included in the clustering analyses. The optimal
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number of clusters (k) for each dataset was determined for both distance metrics
using the Calinski-Harabasz (CH) index and the average silhouette width
calculated using the clustersim and cluster packages, respectively, in R. Samples
were assigned to k clusters for each dataset and distance metric using the
partitioning around medoids (PAM) algorithm implemented in the cluster package
in R. Defining genera of each cluster, or enterotype, were identified using both
between class analysis (BCA) implemented in the ade4 package77 in R and LEfSe
analysis. Unsupervised PCoA plots were generated using the ade4 package77 in R.
Significance of WLG sample clusters as determined by the PAM algorithm based
on rJSD and BC dissimilarity was assessed by comparing within-cluster weighted
UniFrac distance to between-cluster weighted UniFrac distance through the Monte
Carlo label permutation test as implemented in QIIME with Bonferroni correction
for multiple comparisons. Enterotyping was not performed on the red-tailed
guenon, black-and-white colobus, or red colobus datasets as each dataset only
contained three samples.

Evaluation of seasonal fluctuations in enterotypes: The relationship between
season of WLG and chimpanzee sample collection and the enterotype to which
each sample was assigned by PAM clustering based on rJSD was evaluated by χ2-
and Fisher’s exact tests. χ2-tests were used to evaluate differences in the proportions
of all four WLG enterotypes in wet months/LF seasons vs. the proportions all four
enterotypes in dry months/HF seasons, while Fisher’s exact test was used to
evaluate the differences between the proportion of WLG enterotype 2 in wet
months/LF seasons vs. dry months/HF seasons, the proportion of WLG enterotype
3 in wet months/LF seasons vs. dry months/HF seasons, the proportion of
chimpanzee enterotype 1 in wet months/LF seasons vs. dry months/HF seasons,
and the proportion of chimpanzee enterotype 2 in wet months/LF seasons vs. dry
months/HF seasons. As these tests were confirmatory for the findings in the
seasonal LEfSe analyses, corrections for multiple comparisons were not applied.

Phylogenetic analysis. To examine the phylogenetic relationships between unique
WLG and chimpanzee taxa and related taxa from other hosts, representative
sequences from the top most abundant Treponema, Sphaerochaeta, SHD-231,
Solibacillus, and Staphylococcus 97% OTUs in WLG samples (collectively
accounting for >90% of all Spirochaete, Chloroflexi, Solibacillus, and Staphylococcus
abundance in WLG samples), as well as the top most abundant Sphaerochaeta 97%
OTUs in chimpanzee samples (collectively accounting for >90% of all Spirochaete
abundance in WLG chimpanzee) were combined with sequences of the V1–V3
region of the 16S rRNA gene from GenBank that represent the top NCBI BLAST
hits for each of the sequences, as well as additional sequences from GenBank used
to give context to phylogenetic placement. Each of the sequence sets (Spirochaete,
Chloroflexi, Solibacillus, and Staphylococcus) were aligned using MUSCLE78, and
bootstrapped (1000 replicates) maximum likelihood phylogenies using the general
time reversible substitution model with a gamma distribution and invariant site
correction for rate heterogeneity (GTR+ i+ Γ) were generated using MEGA779.
Phylogenies were annotated using the Interactive Tree of Life80.

Data availability. De-multiplexed, trimmed, and quality-filtered bacterial 16S
rRNA gene sequences from 454 pyrosequencing of WLG and chimpanzee samples
are available from the MG-RAST database (http://metagenomics.anl.gov) under the
project ID 10912. Raw shotgun metagenomic sequences from WLG samples are
available from the Sequence Read Archive (SRA) under PRJNA382701. All addi-
tional relevant data are available in this article and its Supplementary Information
files, or from the corresponding author upon request.
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