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Complex networks have been successfully employed to represent different levels of biological
systems, ranging from gene regulation to protein–protein interactions and metabolism.
Network-based research has mainly focused on identifying unifying structural properties,
such as small average path length, large clustering coefficient, heavy-tail degree distribution
and hierarchical organization, viewed as requirements for efficient and robust system architect-
ures. However, for biological networks, it is unclear to what extent these properties reflect the
evolutionary history of the represented systems. Here, we show that the salient structural prop-
erties of six metabolic networks from all kingdoms of life may be inherently related to the
evolution and functional organization of metabolism by employing network randomization
under mass balance constraints. Contrary to the results from the common Markov-chain
switching algorithm, our findings suggest the evolutionary importance of the small-world
hypothesis as a fundamental design principle of complex networks. The approach may help
us to determine the biologically meaningful properties that result from evolutionary pressure
imposed on metabolism, such as the global impact of local reaction knockouts. Moreover,
the approach can be applied to test to what extent novel structural properties can be used to
draw biologically meaningful hypothesis or predictions from structure alone.

Keywords: metabolic networks; significance; randomization; null model;
centrality
1. INTRODUCTION

The central findings in network-based research suggest
that there exist simple mechanisms directing the evol-
ution of both engineered and natural networks [1–10].
However, the relation between the functions of a bio-
logical system and its network properties is hardly
understood. Therefore, the advantage of using network
representations for positing meaningful hypotheses
about biological systems remains largely debatable [11].

Properties of biological systems arise from two fun-
damental origins: physical principles, universally
constraining the feasibility of biochemical processes,
and evolutionary pressure, bearing the specific func-
tional abilities required for an organism’s vitality [12].
The former comprise well-understood physical laws,
such as mass balance and thermodynamics, which
constitute the basic requirements imposed on all living
systems. In contrast, evolution depends on the interplay
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of complex phenomena, such as adaptation to environ-
mental changes, symbiosis and biodiversity of
populations [13,14], leading to diverse cellular func-
tions. Consequently, the unique properties related to
the functions of a biological system are a result of its
evolutionary history.

Explaining cellular behaviour through network rep-
resentations and their properties is a key challenge of
modern biology. While many structural properties of
metabolic networks are similar to those of other complex
networks [10], it is unclear whether they are a conse-
quence of the evolutionary history or merely arise as a
result of general physical principles. Here, we apply a ran-
domization method to determine which properties of
metabolic networks, represented as bipartite metabolite-
reaction graphs, may result from evolutionary pressure.
This is an essential step in understanding the relation
between the functional characteristics of biological systems
and their network representations.

The common approach for estimating the relevance
of a network property is to determine the statistical
significance ( p-value) by comparing the value of
the property in the investigated network with those in
This journal is q 2011 The Royal Society
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the null-model distribution obtained from randomized
networks [15]. Clearly, the significance of a property
strongly depends on the chosen null model, which
should be constrained to preserve universal network
properties [16,17]. Since the p-value is the probability
that the value of a property originates from the null-
model distribution, a statistically significant property
is likely to have emerged from some non-arbitrary pro-
cess influencing network evolution independently of
the imposed constraints.

In virtually all network-based studies [18–24], a
Markov-chain switching algorithm, switch randomiz-
ation, has been employed to determine the
significance of network properties by generating ran-
domized networks with preserved degree sequence. Its
motivation stems from the finding that heavy-tail
degree distributions are a universal feature of complex
networks. This generic null model can be applied to
any type of network, and guarantees the independence
of an identified property from vertex degrees. We
demonstrate how switch randomization affects the
citric acid (TCA) cycle, a central respiratory metabolic
pathway of outstanding importance for aerobic organ-
isms (figure 1a): two reactions substrate1! product1

and substrate2! product2 are substituted with new
reactions substrate1! product2 and substrate2!
product1, ensuring that the vertex degrees remain
unchanged (figure 1b). Since chemical feasibility is dis-
regarded, a reaction that converts a-ketoglutarate into
succinyl-CoA may be generated, where several atoms
are created out of nothing. Hence, it remains hypothe-
tical to what extent the properties, identified as
significant with this method, relate to the function of
the network, as they could well result from universal
physical constraints imposed during network evolution.
2. RESULTS

2.1. Measuring evolutionary significance

To identify the properties that originate from evolution-
ary pressure, a network should be compared with
random networks that evolved free of evolutionary
pressure, but persistently satisfy all relevant physical
constraints. As this is practically impossible to simulate,
we apply our recent method for randomizing metabolic
networks while preserving mass balance of the bio-
chemical reactions [25]. A reaction r with substrate set
S and product set P is mass balanced if the number of
substrate atoms equals the number of product atoms:

X

s[S

as;r �ms ¼
X

p[P

ap;r �mp: ð2:1Þ

where ms, mp are the vectors of sum formulas of s and p,
respectively, and as,r, ap,r their stoichiometric coef-
ficients (see §4). The mass-balanced randomization of
the TCA cycle does not violate this basic physical
constraint, as shown in figure 1c.

Thermodynamic properties, reflecting the energy
change of reactions, constitute another important phys-
ical requirement for metabolic networks. As shown in
figure 2, the reactions generated by mass-balanced ran-
domization of the Escherichia coli network are
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characterized by plausible Gibbs-free energy changes
under standard conditions (pH ¼ 7, T ¼ 298.15 K, see
the electronic supplementary material) [26]. In con-
trast, switch randomization results in unrealistic
energy ranges. By preserving mass balance and thermo-
dynamic properties during randomization, our null
model imposes realistic physical constraints on the gen-
erated randomized networks. This ensures that the
significant properties are independent of the fundamen-
tal physical requirements, and instead are likely to
result from evolutionary pressure. Therefore, we refer
to the statistically significant properties under the pro-
posed null model as evolutionary significant.

For illustration, consider a landscape formed by the
values of any given property over all randomized net-
works (figure 3). The constrained networks, obtained
by mass-balanced randomization, carve out a region in
the vicinity of the original network that is embedded in
the region of unconstrained networks resulting from
switch randomization. As these regions exhibit different
distributions of values, illustrated by different magni-
tudes of the peaks, an evolutionary significant property
may only be identified when comparing the property of
the original network with the constrained region.

2.2. Biosynthetic capabilities

To verify our approach, first we determine the
evolutionary significance of the scope size distribution
in the genome-scale metabolic networks of six
model organisms: Bacillus subtilis, E. coli (bacteria),
Saccharomyces cerevisiae (fungi), Chlamydomonas
reinhardtii (protista), Arabidopsis thaliana (plantae)
and Homo sapiens (animalia; see §4). The scope rep-
resents the set of compounds that can be produced in
a metabolic network from a given set of initial nutrients
[27]. We determine the scope size distribution of each
network by repeatedly calculating the scope for 5000
randomly chosen sets of nutrient compounds, one set
at a time, according to the following procedure: (i)
from the initial set of nutrients, determine the reactions
for which all substrates are contained in the nutrient
set; (ii) add the products of these reactions; and (iii)
repeat the procedure, until no more products can be
added (see electronic supplementary material, §1.3).

The scope size distribution characterizes the biosyn-
thetic capability of a network and has been shown
to exhibit a strong correlation with the evolutionary
history of organisms [28,29]. After applying mass-
balanced randomization to the six networks, we
compare the scope size distributions of each organism
and its randomized network ensemble, and determine
p-values using the Kolmogorov–Smirnov test (see §4).
We find the scope size distributions to be evolutionary
significant for all studied organisms (p-values ,10249;
electronic supplementary material, table S4 and figure
S1), which demonstrates that our method correctly
identifies the interdependence of the network property
and its evolutionary background.

2.3. Small-world property

In the following, we focus on determining the evolution-
ary significance of salient network properties that have
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Figure 1. Illustration of how switch and mass-balanced randomization of the genome-scale metabolic network of Escherichia coli
affect the TCA cycle. (a) The TCA cycle in Escherichia coli, consisting of eight reactions and 22 compounds. Compound names
are shown with corresponding sum formulas, irreversible reactions are represented by solid squares and reversible reactions are
denoted by blank squares. Internally, a reversible reaction is represented by one vertex for each direction, in order to adequately
model the substrate–product relationships (see §4). (b) Reactions involving metabolites from the TCA cycle (bold arrows and
names) after applying switch randomization. The degrees of compounds and reactions are preserved, but the generated reactions
violate fundamental physical constraints (see inlay). Note that the reactions shown are obtained from randomization of the
entire network of Escherichia coli; the degrees therefore do not correspond to those shown in (a). (c) All reactions obtained
by mass-balanced randomization are chemically feasible owing to balanced atom masses and realistic thermodynamic energy
ranges, as indicated by the sum formulas and stoichiometric coefficients (thermodynamic data not shown).
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been extensively studied in complex network research
and are prominently applied in biological studies. In par-
ticular, we analyse the small-world property [30], defined
by a large clustering coefficient in conjunction with
small average path length, and the metabolite degree
distribution [8] (electronic supplementary material,
table S2). We find that the clustering coefficient is sig-
nificant in all species ( p-values , 1025), regardless of
the applied null model. On the other hand, the average
path length is evolutionary significant with p-values ,

0.025 in all species (electronic supplementary
material, table S4). With switch randomization, this
property is significant ( p-values , 1025) in all but
S. cerevisiae ( p-value ¼0.77; electronic supplementary
material, table S5).
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More importantly, we may now assess the impor-
tance of the small-world phenomenon by determining
whether this property is more pronounced in the
analysed networks when compared with their random-
ized variants. Interestingly, in each species we find that
the average path length is smaller and the clustering
coefficient is greater than the values of the respective
properties obtained from mass-balanced randomization
(figure 4). This finding indicates that the small-
world property is independent of physical constraints,
and thus likely to be of evolutionary importance for
metabolic networks. By contrast, when comparing
the networks with their switch randomized ensem-
bles, we arrive at a contrary conclusion—larger
average path lengths and smaller clustering coefficients
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Figure 2. Distributions of Gibbs-free energy changes under standard conditions (DrG
0 ) in Escherichia coli (black), and averaged

over 104 mass-balanced (blue) and switch randomized (red) networks. Energy changes in E. coli have a mean of 7.5 and standard
deviation 15.1; mass-balanced randomized networks have a similar mean of 6.5 and standard deviation 53.5. In contrast, switch
randomization generates implausible energy ranges with a mean of 32.5 and standard deviation 847.3.
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are prominent in real-world metabolic networks.
Therefore, the results from switch randomization
suggest that metabolic networks are the opposite of
small worlds, disproving the small-world hypothesis.
Moreover, this finding hints at two major hazards
of network null models: (i) the results obtained cru-
cially depend on the model chosen, and (ii) the
application of a generic null model that provides an
unrealistically constrained environment may lead to
counterintuitive results.
2.4. Degree distributions

Next, we analyse the metabolite degree distributions,
where the degree of a metabolite is the number of reac-
tions it is involved in either as a substrate or a product.
The degree can be interpreted as metabolite specificity,
with highly specific metabolites occurring in only
few reactions. To our knowledge, the significance of
degree distributions was never studied, since switch
randomization is unsuited for this task. The degree
distributions of all six organisms are evolutionary sig-
nificant ( p-values , 10217; electronic supplementary
material, table S4 and figure S3), suggesting that the
patterns of metabolite specificities across different
organisms emerge as a consequence of their evolution-
ary history, and not from the imposed physical
constraints. This finding complements the well-known
evolutionary requirement of a network architecture
J. R. Soc. Interface (2012)
that is robust to random errors, as exhibited by the
heavy-tail degree distributions [8].
2.5. Reaction centrality

Finally, we propose a measure for determining the
global importance of individual reactions, which is
based on a centrality index previously used in sociologi-
cal studies [31] (also referred to as Hubbell Index). For
two reactions ri and rj , we define the dependence of rj

on ri as the largest ratio by which ri contributes to the
overall production of an intermediary c (i.e. a com-
pound that is produced by ri and consumed by rj ): v
(ri, rj ) ¼ maxcdin(c)

21, where din(c) is the in-degree
of c, which is the total number of reactions producing
c. Note that this definition corresponds to the strength
of impact of a knockout of ri on rj , where v (ri, rj ) ¼ 1,
if rj becomes inoperable upon knockout of ri (e.g. if ri

and rj are neighbours in a linear chain of reactions),
and v(ri, rj ) � 0, if the intermediaries required by rj

can be produced by many other reactions in the
network.

The global impact of the knockout of a reaction on
the entire network, which we call reaction centrality, is

nðriÞ ¼
X

rj[R

nðrjÞ � vðri; rjÞ; ð2:2Þ

where R is the set of all reactions in the network, and
v(ri, rj) ¼ 0, if ri and rj do not share any intermediary
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Figure 4. Characteristic path lengths (L) and clustering coeffi-
cients (C) of the six investigated metabolic networks (black
dots) and averaged values of their mass-balanced (blue tri-
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Compared with the mass-balanced null model, characteristic
path lengths are small and clustering coefficients large in all
six organisms, confirming the small world hypothesis. Con-
trarily, in comparison to the switch based null model,
characteristic path lengths are large and clustering coeffi-
cients small. The standard deviation is below 0.02 for each
randomized distribution.
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compound (i.e. ri and rj are not directly connected).
This measure accounts for the direct dependencies
between reactions through their intermediary com-
pounds, as well as the global importance of the
affected reactions: a knockout may affect only few
other reactions directly, but can still have a large
impact on the network, if an important reaction is
affected indirectly (e.g. the knockout of a reaction at
the beginning of a linear chain that leads to a reaction
producing many important compounds).

Equation (2.2) can be written in matrix form as
An ¼ n, where Ai,j ¼ v(ri, rj). In order to solve this
eigenvalue problem, we need to ensure that the inverse
of A exists, which can be achieved by the PageRank
transformation [32]. In particular, the transformed
matrix A0 is obtained by normalizing the columns of
A and applying a damping factor d:

A0i;j ¼
d �Ai;jP

i Ai;j þ ð1� dÞ=jRj ;

which yields the Markov chain represented by A0

ergodic, as the corresponding network is strongly con-
nected, and ensures that the largest eigenvalue is
1. In order to minimize the diluting effect of the damp-
ing factor on the topology of A, we choose d ¼ 0.99.
The eigenvector n corresponding to the eigenvalue 1
of A0 then contains the global centrality values of the
reactions in the network, where n(i) corresponds to
the reaction centrality of the ith reaction. The calcu-
lation for large networks is tractable using a Fortran
implementation of the Implicitly Restarted Arnoldi
Method [33].

We determine a p-value for each reaction by compar-
ing its centrality value in the original network with
those obtained from mass-balanced randomized net-
works while preserving the reaction itself. In order to
J. R. Soc. Interface (2012)
estimate the effect of evolutionary pressure towards
high centrality values, we apply a one-sided test with
the null hypothesis that the values obtained from ran-
domization are at least as large as the values of the
original reactions (see §4).

Table 1 shows the reactions that have a significant
centrality ( p-value � 0.025) in at least three of the ana-
lysed species (see the electronic supplementary material,
table S7 for a complete list). The references provide evi-
dence that each reaction is of outstanding importance
for metabolism, as demonstrated by their evolutionary
ubiquity, severity of knockout or inhibition effects, and



Table 1. Enzymes catalysing the reactions with highly significant centrality across species. All reactions with centrality
p-values ,0.025 in at least three of the following species: Bacillus subtilis (BS), Escherichia coli (EC), Saccharomyces
cerevisiae (SC), Chlamydomonas reinhardtii (CR), Arabidopsis thaliana (AT) and Homo sapiens (HS). A checkmark indicates
that the reaction catalysed by the enzyme has a significant centrality in the corresponding species; a hyphen indicates not
significant; n.a. indicates the corresponding enzyme is not annotated for the species.

enzyme EC no. BS EC SC CR AT HS references

catalase 1.11.1.6 3 3 3 — 3 n.a. [34,35]
superoxide dismutase 1.15.1.1 3 3 n.a. — 3 3 [36–38]
carbonic anhydrase 4.2.1.1 3 — 3 3 3 n.a. [39–45]
L-arabinose isomerase 5.3.1.4 3 3 n.a. n.a. n.a. 3 [46,47]
phosphoglycerate mutase 5.4.2.1 3 — 3 — — 3 [48–51]
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clinical applications. For instance, catalase (EC 1.11.1.6)
inactivation was shown to have severe effects on the life-
span of S. cerevisiae cells [34]. Superoxide dismutase
(EC 1.15.1.1) is essential for defense against oxygen
toxicity and aerobic growth in eukaryotes [36,37], and
is involved in a multitude of diseases [38]. Carbonic
anhydrase (EC 4.2.1.1) fulfil diverse metabolic functions
in organelles, tissues and membranes of virtually all
species, is used as a drug target for various diseases
and is one of the evolutionary oldest enzymes [39–45].
The numerous experimental corroborations suggest
that the proposed centrality index, in conjunction with
the evolutionary significance determined by using our
null model, could be used to predict enzymes responsible
for maintaining organismal viability solely from the
network structure.

For comparison, when repeating the analysis using
switch randomization, the picture is less clear. In
S. cerevisiae, A. thaliana and H. sapiens, 89, 27
and 14 per cent of the reactions have a p-value of
0.0099, rendering the analysis useless at least for the
first two species. Five reactions have a significant cen-
trality in at least two of the remaining three analysed
species (electronic supplementary material, tables S6
and S8). We omit a detailed statistical analysis of
these initial results, which will be necessary to draw
further conclusions.
3. DISCUSSION

To conclude, we proposed a novel method to reveal the
relation between network properties and their evol-
utionary background by preserving the universal
physical principles that constrain the design of meta-
bolic networks. Any property that originates from
evolutionary pressure, and thus relates to an important
biological function, should not be observed in artificial
metabolic networks, which evolved free of evolutionary
pressure, but satisfy all relevant physical constraints.
This should even hold for properties evolved from com-
plex time-dependent phenomena, if they are reflected in
the ultimately observed network.

We recognize that the proposed method only preserves
mass balance and thermodynamic constraints, while
other physical principles, such as electric charges, may
also be relevant for metabolic network properties. Never-
theless, the considered physical constraints are the most
fundamental and ubiquitous ones. Therefore, we believe
that the method is a reasonable first approach to extract
J. R. Soc. Interface (2012)
the biological importance of metabolic network proper-
ties. Accounting for additional physical constraints is
complicated by the lack of reliable data for genome-scale
metabolic networks; however, we expect such extensions
to become possible in the future, which should further
improve the biological relevance of the significance
measure and the accuracy of the resulting predictions.

In contrast to the commonly applied switch rando-
mization, our approach provides a realistic network
background, and attributes an important evolutionary
role to the small-world property and heavy-tail degree dis-
tributions. Our findings shed new light on the conclusions
of previous studies, and suggest that the salient network
properties are indeed a product of evolutionary pressure.
Therefore, these properties carry important biological
information, and can be justifiably used to generate
meaningful hypotheses for experimental research.

We demonstrate that the proposed centrality index is
one such network property that determines reactions
important for viability of organisms. The method
could therefore be used to identify candidate reactions
for metabolic engineering and drug development. The
results provide an impetus for addressing the long-
standing doubts concerning the biological relevance of
network properties. In addition, the proposed null
model could be employed to verify the evolutionary
assumptions in constraint-based approaches [52] and
to provide an interface to synthetic biology studies.

Finally, we envision that, similar to the proposed
approach for metabolic networks, specifically designed
null models will be developed for other physically con-
strained systems, represented by gene-regulatory,
protein–protein interaction and signalling networks.
For instance, transcription factors depend on cis-
elements and DNA-binding domains, which constrain
the sequence of genes by which they are encoded. Like-
wise, protein interactions and signalling interactions
depend on functional domains and binding sites. Devel-
opment of null models which integrate the governing
physical constraints of such systems will likely stimulate
novel insights into the structure–function relationship
in complex biological networks.
4. METHODS

4.1. Genome-scale metabolic networks

We conduct our analyses on the most widely used
genome-scale metabolic networks of six model
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organisms from all kingdoms of life: B. subtilis [53],
E. coli [26], S. cerevisiae [54], C. reinhardtii [55],
A. thaliana [56] and H. sapiens [57]. The sizes of the
networks vary according to the complexity of the
represented organisms, ranging from 855 reactions
and 766 compounds (B. subtilis) to 2819 reactions
and 2691 compounds (H. sapiens). Resulting from the
bipartite graph reconstruction, detailed in §4.2, the
number of vertices and edges varies accordingly, from
1877 vertices and 5368 edges (B. subtilis) to 7059
vertices and 19651 edges (H. sapiens). The networks
further differ in their quality regarding mass balance
of reactions, availability of information on reversible
reactions, and the number of (strongly) connected com-
ponents (electronic supplementary material, table S3):
only the network of E. coli is fully balanced and consists
of one connected component.
4.2. Mass-balanced randomization

To estimate the evolutionary significance of network
properties, we generated 104 mass-balanced randomized
networks for each of the six analysed genome-
scale metabolic networks. A metabolic network is rep-
resented as a directed bipartite graph G ¼ (Vc < Vr,
E), where Vc is the set of compound vertices, Vr the
set of reaction vertices and E # ðVc � VrÞ< ðVr � VcÞ
is the set of directed edges denoting substrate–reaction
and product–reaction relationships. For a compound c
[ Vc, we denote by mc [ Nn its mass vector, i.e. the
vector representation of c over n chemical elements.
Here, we consider only the six most abundant elements
in biological systems [58]: carbon (C), hydrogen (H),
nitrogen (N), oxygen (O), phosphorus (P) and sulphur
(S). The mass vector of water is then (0,2,0,1,0,0) .
(C,H,N,O,P,S)T. Reversible reactions are represented
by one reaction vertex for each direction: rþ and r2,
such that rin

þ ¼ rout
2 and rout

þ ¼ rin
2.

In order to uniformly randomize a network while pre-
serving mass balance, each possible mass-balanced
network has to be generated with equal probability.
This requires enumeration of all possible sets of sub-
strates and products, for which equation (2.1) is
satisfied. As this problem is a special case of the
Knapsack problem [59], the number of possible mass-
balanced networks is at least exponential in the
number of compounds.

We approach the complexity of the general problem
by applying a new method for mass-balanced
randomization, introduced in Basler et al. [25]. The
set of possible solutions to equation (2.1) is restricted
twofold: (i) the in- and out-degrees of reactions are
preserved and (ii) the substitution of compounds is
limited to certain subsets, as detailed later, which
allows to easily find a solution for equation (2.1).
The first restriction is in line with the observation
that reaction degrees are biochemically constrained
by the number of interacting compounds. The second
allows to divide the randomization procedure into a
precalculation step and an actual randomization. As
a result, the generation of a large set of mass-balanced
randomized networks becomes computationally
feasible.
J. R. Soc. Interface (2012)
The randomization procedure consists of two steps:
In the first step, for a given metabolic network G, we
determine the classes of mass equivalent compounds
and pairs of compounds from Vc(G). Two compounds
are called mass equivalent, if the mass vector of one
compound is a multiple of the other (e.g. CO2 and
C2O4). Two pairs of compounds are called mass equiv-
alent, if the sum of mass vectors of one pair is a multiple
of the sum of mass vectors of the other pair (e.g.
(CH2O, CO2 ) and (C4H2O4, H2O2 )). This definition
ensures that the mass vectors of two compounds
(and the sums of the mass vectors of two pairs of
compounds) from the same mass equivalence class
differ only by rational factors (e.g. 2CH2O þ 2CO2 ¼

C4H2O4 þ H2O2 ). The precalculation of mass equival-
ent compounds is to be executed only once for all
subsequent randomizations of the same network and
renders the generation of large sets of mass-balanced
randomized networks computationally feasible (see
supplementary table S1 in [25] for a performance
comparison to switch randomization).

In the second step, the reactions of G are randomized
while preserving mass balance. To randomize a reaction
chosen uniformly at random from Vr (G), its substrates
and products are replaced by randomly chosen substi-
tutes from their corresponding mass equivalence
classes. When substituting an individual substrate or
product, the stoichiometric coefficients of the new reac-
tion are obtained by multiplying the corresponding
previous coefficients with the earlier mentioned factor,
such that equation (2.1) is satisfied. For the substi-
tution of a pair of substrates or products, the
stoichiometric coefficients satisfying equation (2.1) are
determined by solving a system of n linear equations
with two unknowns (electronic supplementary material,
table S1 for examples). In case there is no solution, the
substitution is not carried out. The output from this
step is an (almost) uniformly randomized network in
which stoichiometric coefficients are changed, edges
are replaced and, consequently, the degrees of the
compounds are altered [25]. The approach is in line
with the observation that some fundamental properties
should be fixed while carrying out the randomization—
here, these are the degrees of the reaction vertices and
mass balance.
4.3. Calculation of p-values

The analysed properties are calculated in the original
metabolic network and in each of the 104 randomized
networks. For the average path length and cluster-
ing coefficient, we derive a z-score, z ¼ ðx � yÞ=s,
from the original value x, the average randomized
value y, and the standard deviation of randomi-
zed values s. The two-sided p-value is determined as
p ¼ 2

Ð
jzj
1 N(0,1).

For comparing the metabolite degree and scope
size distributions of the metabolic networks with
their randomized versions, we apply the two-sample
Kolmogorov–Smirnov test. From the cumulative distri-
bution Fn of the property in the original network, and
the joint cumulative distribution Fn0 of the randomized
networks, a test statistic is derived as dn,n0 ¼ supx



Significant metabolic network properties G. Basler et al. 1175
jFn(x) 2 Fn0(x)j, where n and n0 are the number of
values in the original, respectively the joint randomized
distributions. The p-value is p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nn0=ðn þ n0Þ

p
dn;n0 .

For each reaction vertex r, we determine its central-
ity, n(r), in the original network and in 100 randomized
networks, which are obtained by preserving r and ran-
domizing the remaining reactions. The p-value of r is
pr ¼ ðq0rþ1Þ=ðn0 þ 1Þ, where q 0r is the number of ran-
domized networks, in which the centrality of r is at
least as large as in the original network, and n0 ¼ 100.
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