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Abstract: Low-cost sensors based on the optical particle counter (OPC) are increasingly being used
to collect particulate matter (PM) data at high space and time resolution. In spite of their huge
explorative potential, practical guidelines and recommendations for their use are still limited. In this
work, we outline a few best practices for the optimal use of PM low-cost sensors based on the results
of an intensive field campaign performed in Bologna (44◦30′ N, 11◦21′ E; Italy) under different
weather conditions. Briefly, the performances of a series of sensors were evaluated against a calibrated
mainstream OPC with a heated inlet, using a robust approach based on a suite of statistical indexes
capable of evaluating both correlations and biases in respect to the reference sensor. Our results
show that the sensor performance is sensibly affected by both time resolution and weather with
biases maximized at high time resolution and high relative humidity. Optimization of PM data
obtained is therefore achievable by lowering time resolution and applying suitable correction factors
for hygroscopic growth based on the inherent particle size distribution.

Keywords: low-cost sensors; air quality; particulate matter; optical particle counter; particle mass
concentration; PM10; PM2.5; PM1; particle size distribution

1. Introduction

The assessment of high-resolution air quality data in highly inhomogeneous areas such as the
urban environment is a major requirement for the understanding of the complex physico-chemical
processes behind the accumulation of atmospheric pollutants. This is especially true for airborne
particulate matter (PM), a pollutant characterized by multiple emission sources simultaneously active
at a single place; complex chemical phenomenology affects both composition and particle size, strongly
affected not only by local advection pattern but also by local turbulence.

In order to comply with governmental air quality standards, monitoring stations are deployed
and managed by regional environmental protection agencies which collect systematic and routine data
of particle and gaseous pollutants using highly reliable but costly, large and usually static certified
reference instruments, according to the environmental prescription and regulations [1]. Due to the
high costs of the installation and maintenance of reference monitoring stations in terms of economic
and human resources, this approach is limited to a few sparse stations over single urban areas.
The urban canopy is highly complex in terms of spatial patterns [2], topography, dispersion and
deposition conditions [3], and emission profiles, which induce localized gradients in ground-level
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concentrations of air pollutants [4]. Therefore, the available monitoring stations, though satisfying
the legislative requirements, are hardly representative of the whole urban surface, preventing an
accurate assessment of spatially resolved environmental conditions and the inherent risks for the
population. Environmental protection agencies usually complement air quality monitoring from static
monitoring stations with mobile monitoring stations sampling additional local sites not covered by
the reference network for fixed periods [1]. Mobile laboratories use the same instrumentation as the
permanent monitoring stations, and therefore suffer the same high maintenance and calibration costs.
In addition, though data collected from mobile laboratories are precious in terms of accuracy and for
specific purposes under intensive field campaigns, they are affected by significant temporal limitations,
not representative of the whole annual and interannual variability. For this reason, the deployment
of low-cost sensors networks is becoming increasingly popular, allowing not only integration of the
environmental information at a high space and time resolution but also raising citizen awareness [1,5]
and involvement in the management of environmental issues [6]. In addition, recent approaches
to complement data from low-cost sensors in air quality models have been proposed to increase
spatial and temporal resolution and reduce biases and systematic errors [7–9]. The success of these
initiatives within the broader framework of IoT (Internet of Things) is very promising; however,
from a metrological standpoint, one of the main drawbacks of this approach is the lack of a suitable
evaluation of the consistency and reliability of the experimental data collected with low cost sensors,
a non-negligible aspect for the subsequent data elaborations and deductions.

In the case of PM sensors, many factors should be accounted for, owing to a series of intrinsic and
extrinsic factors. On the global scale, PM metrics included in the air quality networks rely on the official
method (EN 12341:2014), which consists of the collection of PM10 and PM2.5 usually on quartz fiber
filters by sequential certified samplers and successive gravimetric analysis, or by continuous detection
based on beta-attenuation technique or tapered element oscillating microbalance (TEOM) [10,11].
However, scientists widely agree that a more informative and accurate approach should also include
the assessment of the corresponding size distribution closely related to PM atmospheric residence time,
transport and health effects [12–14]. In this framework, the use of optical particle counters (OPCs) is
highly valued since they allow for the collection of information on particle size distributions and for the
conversion of number densities obtained with the aid of suitable parameterizations and assumptions
usually based on empirical data into mass concentration data easily interpretable as a function of air
quality standards.

While OPCs are widely used instruments in atmospheric research, they are not routinely employed
in air quality networks. Therefore standardization protocols are not widely applied, even if recently the
ISO 21501 (and in particular the recent Part 4:2018 Determination of particle size distribution—single
particle light interaction methods—light scattering airborne particle counter for clean spaces) has
been made available after the dismission of ASTM F 328-98(2003). This standard method is usually
carried out by the manufacturer. As a result, owing to the need for special experimental facilities,
even research-oriented instruments usually rely solely on calibration procedures carried out at the
manufacturers with a frequency dictated by a single laboratory’s responsibility and awareness.

Therefore, even research-based instrumentation poses some fundamental questions in terms of
PM data quality and assimilation to be employed in whatever environmental application.

Low-cost PM sensors are based on the same technology. In order to obtain reliable data, it is
necessary to evaluate their uncertainties, performance and accuracy with laboratory tests and field
comparisons with reference instruments [15].

Further sources of uncertainty in PM data assessments arise from the meteorological variability,
since different weather and dispersion conditions may change the physico-chemical nature of the
particles observed at the receptor site over time. In particular, the variability of wind circulation
and boundary layer mixing affect the ventilation, dilution and upwind emission sources [16].
Temperature and relative humidity conditions affect the stability of aerosol components, such as
NH4NO3 and several carbonaceous components, and the kinds and rates of chemical reactions, leading
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to the formation of secondary inorganic and organic aerosols [17–19]. In addition, atmospheric
fluctuations in relative humidity (RH) which in turn depend not only on the air masses transiting
over a given place but also on the setting of different thermodynamic and microphysical conditions,
are capable of modifying the particle size distribution sensibly as a result of aerosol hygroscopicity [20].

Recently, several papers focusing on the evaluation of the affordability of low-cost sensors from
laboratory tests and experimental field campaigns have been published [21–30]. However, previous
studies often failed in deriving practical guidelines and recommendations for the best practices with
which to use low-cost sensors in terms of time resolution and different weather conditions. In this
work, we present the results of an intercomparison exercise performed during a long-term (more
than six months of monitoring) experimental field campaign aimed at assessing the performance of a
series of low-cost sensors in terms of accuracy and reproducibility under different time resolution and
weather conditions.

As such, this work aims to:

• Characterize the performances and reproducibility of different brands of low sensors in comparison
to reference instruments;

• Assess instrument variability using batches of the same kind of low-cost sensors from the
same producer;

• Perform a comparative analysis of the various OPCs under different meteorological conditions
capable of sensibly affecting the PM size distribution, and consequently, the estimated mass
concentration data.

This work is organized as follows. Following the Introduction section, Section 2 presents the
material and methods used in this work, including the site where the experimental field campaign
was performed, the instrumentation adopted, the algorithm used to convert number densities to mass
concentration and the statistical parameters used to evaluate the performances of low-cost sensors.
Section 3 presents and discusses the results in terms of particulate matter concentrations and particle
number densities, and finally, Section 4 draws the main conclusions of the work.

2. Materials and Methods

In this work, we evaluated the performances of a set of different low-cost and research-oriented
laser particle counters in outdoor ambient conditions during two distinct experimental field campaigns
performed during the periods June 6th 2019–August 4th 2019 and September 23rd 2019–February
12th 2020 in Bologna (44◦30′ N, 11◦21′ E; Northern Italy), a city located in the Po Valley, a region
representing one of the major pollution hotspots in Europe (e.g., [31,32]). The study periods included
a range of different meteorological conditions, well representative of the typical weather conditions
affecting the city and the surrounding region in the warm and cold seasons.

Bologna is characterized by a humid temperate climate (Cfa following Köppen climate
classification), with quite cold, humid and damp winters and hot and muggy summers. Humidity is
generally quite high during both summer and winter periods, while the wind circulation is characterized
by frequent stagnation conditions under calm and breeze regimes. Precipitation is moderate and quite
well distributed over the seasons, with two peaks in spring and autumn and relative minima in winter
and summer.

2.1. Instrumentation

For the purpose of investigating and comparing the performances of the sensors in measuring
particle size distributions and particle mass concentrations, they were co-located on the rooftop of the
Department of Physics and Astronomy of the University of Bologna. Optical sensors included:
one Profiler Model 212 (MetOne Instruments, Inc., Grants Pass, OR 97526, USA), a couple of
OPC-N2 low-cost sensors (Alphasense Ltd., Braintree CM77 7AA, UK; price around 300–400 €),
a couple of iSCAPE Citizen Kits (SCK, Fab Lab Barcelona 08002, Barcelona, Spain; based on the Smart
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Citizen Kit 2.0 and PMS 7003 particle sensors, price around 100–200 €) low-cost sensors and one LOAC
(light optical aerosol counter; MeteoModem, 77760 Ury, France).

All the sensors utilized in this work are optical particle monitors that use laser beams to detect
and count particles, thereby evaluating the scattering signal from suspended particulate to provide
a semi-continuous real-time measurement of airborne particulate as a function of size. In particular,
the MetOne Profiler 212 is a robust mainstream optical particle counter widely employed in air
monitoring (see for example [33,34]), regularly re-calibrated on an annual basis and employed in
this work as a reference instrument; i.e., following a heating step causing particle dehydration and
classification of particles based on their dry diameters.

The OPC-N2 and the SCK sensors are low-cost sensors characterized by a low price, extreme
portability and small weight (e.g., [22,29,30]). According to [35], the low-cost sensors herein evaluated
can be classified respectively as OEM (original equipment manufacturers) and SSys (sensor systems); i.e.,
equipment based on low-cost sensors mounted by the customers or already available in a “ready-to-use”
format. The Alphasense OPC-N2 sensors were mounted at our lab in a waterproof case together
with other meteorological and gaseous pollutant sensors not treated in this work; the whole system
(ABBA; Arduino Board Based Air quality monitoring system) was designed and built within the team
authoring this paper.

Finally, the LOAC is a versatile optical particle counter characterized by low weight and extreme
compactness, which enables it to perform measurements not only at the surface but dynamic applications
such as balloon platforms in the troposphere and the stratosphere [36,37].

The optical counters used in this work are characterized by different size ranges, flow rates,
time resolution, scattering angles and laser wavelengths; all the devices use a mirror to ensure the
photodetector collects efficiently all scattered light. In the case of LOAC, the size distribution is
estimated from two scattering angles: one around 12◦ almost insensitive to the refractive index of the
particles and one around 60◦ strongly sensitive to the refractive index of the particles [36]. This enables
the sensor to determine not only the size distribution but also the typology of the dominant aerosol
(droplets, carbonaceous, salts and mineral particles). An important characteristic of an optical particle
counter is the counting efficiency; i.e., the maximum number of particles or maximum concentration of
particles that can be detected by the sensor [38]. The counting efficiency of the sensors used in this
work is quite variable and also depends on the diameter and meteorological conditions for the LOAC.
Table 1 summarizes the main technical specifications of the sensors used in this work.

Table 1. Technical specifications of the MetOne Profiler-212, OPC-N2 from Alphasense, Smart Citizen
Kit (SCK), and LOAC (Light Optical Aerosol Counter) optical particle counters.

Instrument MetOne Profiler-212 OPC-N2 SCK LOAC

Size (cm) 114.3 × 190.5 + 30.5 for inlet tube 7.5 × 6 × 6.4 6 × 6 × 2 20 × 10 × 5

Weight (g) 1200 <105 65 300

Size range (µm) 0.3–10 0.38–16 0.3–10 0.2–50

Size bins 8 (selectable) 16 3 19

Flow rate (L min−1) 1 1.2 ≈0.1 ≈2

Measurement frequency (s) 1–60 1–5 30 1–60

Laser wavelength (nm) 808 658 680 650

Scattering angle (◦) 90 30 90 12 and 60

The measurement time resolution of the MetOne Profiler 212 (hereafter MetOne), OPC-N2 and
LOAC sensors was set to 60 s. Instead, the SCKs made measurements integrated over 30 s, which were
averaged to the same time resolution of the other sensors for the sake of homogeneity.
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Observations of meteorological variables (atmospheric pressure, air temperature, air relative
humidity, wind speed and wind direction) were collected by a Davis Vantage Pro2 (Davis Instruments,
Hayward, CA 94545, USA) on a 10-min time basis.

2.2. Number Concentration to Mass Conversion

Optical particle counters are typically based on light scattering by aerosol particles in a flow cell
(e.g., [39–41]). As a result, this broad family of instruments is designed to assess particle number
densities as a function of particle size bins based on suitable scattering parameterization. Particle number
density is, therefore, a fundamental metric to integrate efficiently aerosol gravimetry-based metrics.
The MetOne herein used as a reference provides, therefore, the number densities in the particle size
intervals previously detailed. In order to make all the data comparable, signals from the MetOne were
converted into mass concentration (µg m−3).

Conversely, as previously described, the OPC-N2 and the SCK sensors estimate PM1, PM2.5 and
PM10 mass concentrations from count measurements using embedded proprietary algorithms not yet
disclosed to the public. Similarly, the LOAC sensor estimates PM2.5 and PM10 mass concentrations
from count measurements. In general, the algorithms used by the optical sensors assume a default
particle density (1650 kg m−3 in the case of OPC-N2; unknown for the SCKs); a volume-weighting
factor (default set to 1) to account for errors in sizing due to differences in the refractive index of
particles used for calibration and those being measured [42]; and for SCK, an atmospheric correction
factor used in field evaluation whose details are not available from the manufacturer.

Number density data obtained by the MetOne was therefore subjected to a suitable inversion
procedure for the planned comparison with the other devices. The following computation was used
based on the assumptions of spherical particles with uniform density, a standard approximation,
though actually not complying with real ambient aerosol particles [43].

For each size bin of the instrument, a weighted volume diameter was computed according to [43]:

D = LB
[

1
4

(
1 +

(UB
LB

)2)(
1 +

UB
LB

)]1/3

(1)

where LB and UB are respectively the lower and upper boundaries of each size bin. The particle
volume (Vp) and mass are then calculated as follows:

Vp =
πD3n

6
(2)

m = ρVp (3)

where n is the particle count and ρ is the particle density in g cm−3. According to [44,45], the value of
particle density was assumed equal to 1.65 g cm−3, a widely accepted approximation well representative
of urban average particle mixture [43,45]. The particle mass is eventually divided by the sampled air
volume to provide aerosol mass concentration per unit air volume. Note that in the case of the LOAC
instrument, m is not the particle mass, but it is already the volume mass concentration.

Particle mass concentrations for the MetOne (PM1, PM2.5, and PM10) and the LOAC (PM1) were
finally estimated by summing the concentration masses in the various size bins fitting to the respective
aerosol cutoff.

2.3. Sensor Performance Metrics

For the purpose of investigating the performances of the OPC-N2, SCK and LOAC particle
sensors, their measurements were compared to those obtained from the co-located MetOne instrument.
In particular, the choice to use the measurements retrieved from the MetOne as the reference values
derived from the fact that this instrument is widely used internationally and therefore fairly well
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characterized, at least compared to the others (e.g., [33,46–50]). This instrument is endowed with a
humidity sensor and an inlet heater to prevent moisture from being sampled as particulate mass.

In order to detect and remove outliers from the 1-min time series recorded by all the sensors,
we used the Hampel filter based on the calculation of the median and the standard deviation expressed
as median absolute deviation (MAD) over a sliding window [51,52]. The filter identifies as outliers
values differing from the window median by more than x standard deviations and substitutes them
with the median. The filter has two configurable parameters; namely, the size of the sliding window
and the number of standard deviations which identify the outlier (x). In this case, we selected a sliding
window of 7 observations (given observation and the 2 × 7 surrounding elements) and a value of 2 ×
MAD to detect outliers.

In particular, besides visual comparisons of the time series, scatterplots and histograms produced
with the “psych” package [53] for the R language, version 3.6.1 [54] and density scatter plots built
using “ksdensity” Matlab function, a set of statistical indexes was calculated. Indexes include widely
used metrics (e.g., [55]), such as the mean bias error (MBE), the mean absolute error (MAE), the root
mean square error (RMSE), the correlation coefficient (r), the coefficient of determination (R2) and the
t-score (t). In addition, normalized values were also calculated for MBE, MAE and RMSE, using the
observation range (NMBE, NMAE and NRMSE) or the observation average (CVMBE, CVMAE and
CVRMSE) as a factor for normalizations. Calculations were performed using the “tdr” package [56]
for the R language. Formulas are provided in Appendix A. Our approach, using a combination of
qualitative and quantitative analyses including statistical parameters such as the bias, the RMSE
and the MAE, besides the correlation coefficient, is very robust and complete for characterizing the
performances of the sensors completely [35].

3. Results and Discussion

In this study, we evaluated the performances of a suite of particle sensors in terms of mass
concentrations and particle number densities, as evaluated from the comparison with a co-located
reference instrument under different sampling conditions. This section presents and discusses the
main results of this intercomparison exercise, focusing firstly on mass concentrations and secondly on
particle number densities to better understand the reasons for the different behaviors.

3.1. Particle Mass Concentrations

3.1.1. Effect of Seasonal Variability

Figures 1 and 2 present the time series of hourly particle mass concentrations (PM10, PM2.5 and
PM10) observed by the two SCKs (4E59 and BC60), the two OPC-N2s (ABBA1 and ABBA2), the LOAC
(during autumn) and the MetOne during the summer, autumn and winter experimental campaigns.
Notwithstanding the application of the Hampel filter, as detailed in Section 2, Figures 1 and 2 highlight
clearly that data collected from low-cost sensors in both seasons and from the LOAC during autumn
are characterized by evident spikes in mass concentrations, usually not observed or at least less evident
in the observations from the MetOne instrument. In addition, biases between the two types of low-cost
sensors and the reference instrument are larger during the summer season (Figure 1) than during
autumn (Figure 2). During both seasons, the most significant biases affect PM1, while biases seem to
be reduced for PM10. Finally, Figures 1 and 2 highlight that the two couples of SCKs and OPC-N2s are
characterized by high correlations and very similar temporal patterns.
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Figure 1. Comparison of hourly PM10 (a), PM2.5 (b) and PM1 (c) (µg m−3) mass concentrations from
the co-located particle sensors during the summer measurement period. 4E59 (black line) and BC60
(red line) are the two SCK (Smart Citizen Kit) sensors; ABBA1 (blue line) and ABBA2 (pink line) are the
two OPC-N2 sensors from Alphasense. MetOne (thick green line) is the reference instrument.
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Figure 2. Comparison of hourly PM10 (a), PM2.5 (b) and PM1 (c) (µg m−3) mass concentrations from
the co-located particle sensors during the autumn measurement period. 4E59 (black line) and BC60
(red line) are the two SCK sensors; ABBA1 (blue line) and ABBA2 (pink line) are the two OPC-N2s
sensors. LOAC (Light Optical Aerosols Counter) is the light green line. MetOne (thick olive green line)
is the reference instrument.
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Comparisons of hourly observations of PM2.5/PM10 and PM1/PM2.5 concentration ratios are
reported in Appendix B. The hourly resolution of these time series has been chosen with respect to the
10-min resolution to improve the graphic representation of the long-term time series. This comparison
highlights that, in general, the two SCKs are characterized by very high concentration ratios with
respect to the MetOne, while observations from the OPC-N2s show a better agreement with those from
MetOne, particularly as far as the PM2.5/PM10 ratio is concerned. The very high ratios observed by the
two SCKs might derive from the reduced particle-size selectivity of the Plantower PMS5003 particle
sensor of the SCKs, as evidenced by [25].

A better understanding of how data collected from different particle sensors are related derives
from the visual inspection of density plots, scatterplots and histograms of 1-min observations during
the two measurement campaigns (Figures 3 and 4 and Appendix C).
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Figure 3. Density scatter plot for of 1-min PM10 (a), PM2.5 (b) and PM1 (c) (µg m−3) mass concentrations
from the co-located particle sensors during the summer measurement period. Points are colored based
on data density ranging from dark red (high density) to dark blue (low density). N obs is the number
of measurements for each pair of sensors.

The comparison of summer data (Figure 3 and Appendix C) highlights even more some patterns
previously observed: observations of the two SCKs are very well correlated (R = 0.98, 0.99 and
0.99 respectively for PM10, PM2.5 and PM1) and similarly distributed, while observations from the two
OPC-N2s, even though similarly well correlated between each other (R = 0.91, 0.99 and 0.99 respectively
for PM10, PM2.5 and PM1) seem to slightly deviate from a linear regression line, indicating some
biases between the two sensors though of the same type.

When comparing observations from SCKs and OPC-N2s with those from the MetOne during
summer (Figure 3), the density scatterplots show a better agreement for the PM2.5 cut-off. At the same
time, lower correlations are observed for PM1 and even worse for PM10. Indeed, low-cost sensors
present evident tails in their populations, a feature particularly marked for the two SCKs (4E59 and
BC60), in spite of their better correlation with respect to OPC-N2s (ABBA1 and ABBA2) for PM10 and
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PM2.5. These tails are likely caused by the occurrence of instrumental spikes not removed by the
Hampel filter, as observed by data clusters departing from the main data clouds in the scatter plots.
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The comparison of autumn data (Figure 4 and Appendix C) shows again that data from the two
couples of low-cost sensors are reciprocally well correlated, particularly in the case of the two SCKs
(R = 0.91, 0.95 and 0.98 respectively for PM10, PM2.5 and PM1), but also in the case of OPC-N2s for
PM2.5. The comparison with observations from the MetOne highlights higher correlations with respect
to the summer season for PM1 and PM2.5 for both kinds of low-cost sensors and especially for the
OPC-N2s, while for PM10 autumn correlations are higher than the summer ones only for OPC-N2s.
Biases and tails are evidenced in the histograms and scatterplots for both types of low-cost sensors,
even though clear clusters emerge in the case of the two SCKs. Moreover, all the data are mostly
positioned above the bisector, suggesting that owing to the generally higher relative humidity of the
autumn season at this latitude and the heating inlet of the MetOne, particle size measured by the
sensors is different; the MetOne does not show the effect of the hygroscopic growth, as seen in detail
later on. The observations from LOAC, instead, show a different behavior, showing a general tendency
to underestimate aerosol mass concentration with respect to the MetOne.

3.1.2. Effect of Time Resolution

Figure 5 presents the evaluation of the performances of the sensors through the RMSE and the r
correlation coefficient at different time resolutions (from 1 min to 1 day) during the two measurement
periods, while the complete series of the statistical indicators is presented in Appendix D. During both
measurement periods, the values highlight a tendency for the performance of the low-cost sensors to
improve with lower time resolutions, as evidenced by the increasingly higher correlation coefficients
and the lower biases. The comparison of the summer and autumn values shows that as previously
observed, the agreement of the sensors is higher during autumn, though also accompanied by higher
biases in this season. The performances of the two couples of low-cost sensors within the brand type
are very similar. In general, during both measurement periods, the SCKs are more consistent with
MetOne than the OPC-N2s in the case of PM10 concentrations, while OPC-N2s reveal lower biases for
PM2.5 and PM1. In addition, the MBE values confirm the SCKs’ tendency to overestimate compared
to MetOne; conversely, the OPC-N2s tend to underestimate PM2.5 and PM10 observations during
summer. As previously described, the LOAC shows reduced correlations for all size fractions at high
time resolution, while correlations greatly improve at lower time resolutions. Finally, the bias for
the LOAC is particularly low for PM1, which might indicate its better counting efficiency for the
smaller particles.
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Figure 5. RMSE (root mean square error) (a) and r Pearson’s correlation coefficient (b) of the optical
sensors in measuring PM1, PM2.5 and PM10 mass concentrations under varying time resolution
(1 min, 10 min, 30 min, 1 h and 1 day) using the MetOne as the reference sensor and during the
two-measurement periods (summer in the upper panel, autumn in the lower panel).
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3.1.3. Effects of Meteorological Conditions

As reported in Section 2, the measurement period included different meteorological conditions
typical of the warm and cold seasons in the measurement site. Specifically, with the aim of understanding
the effects of different weather conditions on the performances of the optical sensors, we investigated
the effects of the prevailing weather conditions based on the meteorological variables observed in situ
from the co-located meteorological station and a WMO (World Meteorological Organization) synoptic
meteorological station located at the Bologna airport; synoptic weather charts; atmospheric vertical
soundings at a nearby meteorological station; drop size distribution observations obtained from a
co-located OTT-Parsivel disdrometer, OTT Hydromet GmbH, 87437 Kempten, Germany; and maps
of dust transport over the Mediterranean region, as simulated by the BSC-DREAM 8b model from
the Barcelona Supercomputing Center (https://ess.bsc.es/bsc-dust-daily-forecast). Briefly, the weather
conditions observed were the following:

• Thunderstorm on 9th July 2019;
• Saharan dust transport on 10th July 2019;
• Rain on 7th October 2019;
• Mist on 14th October 2019;
• Fair weather on 20th October 2019;
• Cloudy conditions on 23rd October 2019;
• Fog on 25th October 2019;
• Drizzle on 1st November 2019.

Figure 6 presents the performances of the optical sensors during these different weather conditions
as evaluated from the calculations of MAE, MBE and RMSE indexes, and correlation coefficients using
the MetOne sensor as a reference instrument.

https://ess.bsc.es/bsc-dust-daily-forecast
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Figure 6. Evaluation of the performances of the different optical sensors in measuring PM1, PM2.5 and
PM10 mass concentrations under varying weather conditions (thunderstorm = td, Saharan dust
transport = SD, rain, mist, fair weather, cloudy, fog, drizzle) using the MetOne as the reference sensor by
calculating the following indexes: (a) MAE (mean absolute error); (b) MBE (mean bias error); (c) RMSE
(root mean square error); (d) r (Pearson’s correlation coefficient).

As seen in Figure 6, the performances of all the sensors are the highest during fair weather
conditions, when the lowest values of the MAE, MBE and RMSE are reported, associated with high
correlation coefficients (>0.80) for all size fractions. Conversely, the performances of the sensors
sensibly worsen under mist, cloudy and fog conditions, as expected given the hygroscopic behavior of
aerosols. The comparison among the different sensors shows the higher performance of the OPC-N2s
and the LOAC in capturing PM1 concentrations under fair weather, while the SCKs perform better for
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PM2.5 and particularly for PM10 concentrations. Figure 6 shows how the SCKs present a satisfactory,
even though never exceptional performance under all weather conditions, while the OPC-N2s and the
LOAC reveal very variable behaviors ranging from the excellent performance with fair weather down
to fairly biased and poorly correlated under mist, cloudy and fog conditions. The OPC-N2s present
high average correlations (>0.6) for most weather conditions except for the Saharan dust transport and
rain events. The differentiated behavior of the other sensors may stem from several factors differently
affecting particle counts in the various size bins and how they are used in PM assessment. One of the
primary factors is basically the different particle size bins and the overall size intervals of each model,
leading to an approximation in the instrumental comparison. Secondly, as previously reported, optical
sensors are characterized by distinct particle size-selectivity [25]. Thirdly, the use of a constant density
factor across the various size ranges to convert number densities to mass concentrations is likely
an oversimplification, owing to the intrinsic complexity of PM composition highly inhomogeneous
across the size distribution and to the direct and indirect influence of meteorology on particle size and
composition [57]. In fact, the enhanced bias among the various sensors observed during the Saharan
dust transport should be ascribed to the use of a density factor unsuitable for capturing the prevailing
mineral component of the particles associated with this kind of transport. All the other biases instead
are attributable mainly to the influence of relative humidity on particle size as a result of variable
hygroscopic growth leading to an overestimation of particle mass by the optical sensors with respect to
the MetOne sensor endowed with the inlet heater.

The effect of relative humidity can be better assessed by observing the scatter plots of the aerosol
masses obtained for the various devices. Figures 7–9 report the comparison of 10-min averaged PM1,
PM2.5 and PM10 concentrations of the MetOne vs. those obtained from all the others with different
color tones as a function of relative humidity and temperature, during the autumn measurement
period (results for the summer measurement period are reported in Appendix E).
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Figure 7. Comparison of 10-min PM1 mass concentrations observed by the MetOne and the other
optical sensors: (a,b) the two SCKs (4E59 and BC60); (c,d) are the two OPC-N2s (ABBA1 and ABBA2);
(e) is the LOAC during the autumn measurement period. The color scale indicates the relative humidity
(%) value at the time of the measurements, while the size of the marker is proportional to the value of
temperature at the time of the measurements.
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Figure 8. Comparison of 10-min PM2.5 mass concentrations observed by the MetOne and the other
optical sensors: (a,b) are the two SCKs (4E59 and BC60), (c,d) are the two OPC-N2s (ABBA1 and
ABBA2) and (e) is the LOAC during the autumn measurement period. The color scale indicates the
relative humidity (%) value at the time of the measurements, while the size of the marker is proportional
to the value of temperature at the time of the measurements.
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Figure 9. Comparison of 10-min PM10 mass concentrations observed by the MetOne and the other
optical sensors: (a,b) are the two SCKs (4E59 and BC60), (c,d) are the two OPC-N2s (ABBA1 and
ABBA2) and (e) is the LOAC during the autumn measurement period. The color scale indicates the
relative humidity (%) value at the time of the measurements, while the size of the marker is proportional
to the value of temperature at the time of the measurements.
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During the autumn measurement period, the temperature in Bologna varied between 5 and
28 ◦C, while relative humidity varied in the range 43–96%. Overall, Figures 5–7 highlight the effects
of relative humidity conditions on PM concentrations observed by all the optical particle counters.
In particular, OPC-N2 sensors tend to overestimate particulate matter concentrations under high
relative humidity conditions, while they seem to underestimate PM concentrations under low relative
humidity, especially for PM2.5 and PM10. The behavior of the two SCKs seems more coherent and
less affected by humidity conditions than that of the OPC-N2s, while the PM10 readings from this
sensor type present also the effect of temperature conditions, possibly associated with the protective
case used to house the two sensors. The more significant effect of relative humidity conditions on
PM2.5 and PM10 concentrations, related with the condensation of water vapor and hygroscopic growth
of particles [58], is in agreement with the previous results on the dependence of hygroscopicity on
particle size, previously observed by [59]. The hygroscopic growth of particles inevitably affects the
response of all the particle counters, resulting in a possible overestimation of the mass because of the
reduced molecular mass of water [60]. The differences against the MetOne reference instrument can be
ascribed to the thermal dehydration of particles within the instrument body, leading to a decrease in
particle size, and therefore, to a shift in the size distribution in this instrument. Since size distribution
affects the retrieved mass data through the application of the conversion previously described in the
experimental section, the bias between instruments might be larger at higher relative humidity values
owing to enhanced hygroscopic growth.

Figure 10 presents a focus of the PM10 concentrations and of relative humidity values observed on
the week of 7–14 October 2019, enlightening the occurrence of a bias among the sensors. In particular,
an overestimation of mass concentrations was observed in the data from low-cost sensors and by the
LOAC, when relative humidity was higher than 70–80%, and under fog conditions, in agreement with
previous observations [57,61,62], likely due to the use of an inadequate density factor in these conditions.
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Figure 10. Time series of 10-min PM10 mass concentrations observed by the various optical sensors
and relative humidity values during the week of 7–14 October 2019.

Under these circumstances of high relative-humidity conditions, we tested the use of the
hygroscopic growth factor developed by [45] based on the k-Köhler theory. Specifically, the particle
diameters of the OPC-N2 and of the LOAC sensors (as reported previously, the SCKs do not provide
particle counts explicitly in the various size bins and therefore cannot be subjected to this correction)
were corrected by a hygroscopic growth factor [48] to take into account the changes in particle size due
to water uptake:

g(RH) =
(
1 + κ

RH
100−RH

)1/3
(4)
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Dwet = D·g(RH) (5)

where RH is the relative humidity obtained by the weather station, and κis a parameter that describes
the particle hygroscopicity and is assumed to be 0.62, an optimized value for a mixture of organic and
inorganic particles in polluted environments fitting Bologna airshed characteristics. “Corrected” particle
mass concentrations were then estimated by summing the concentration masses in the various size bins
fitting to the respective aerosol cutoff. Figure 11 reports the scatterplots for the PM10 mass concentrations
observed by one of the two OPC-N2s (the ABBA2) and the LOAC vs. those observed by the MetOne
during October 2019, both with and without the use of the correction with the hygroscopic growth factor.
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Figure 11. Comparison of 10-min PM10 mass concentrations observed by the MetOne, by one of the
two OPC-N2 (ABBA2) and by the LOAC during October 2019, both without (left panels, a,c) and with
(right panels, b,d) the correction with the hygroscopic growth factor. The color scale indicates the
relative humidity (%) value at the time of the measurements.

The comparison of the regression for corrected and uncorrected mass concentrations indicates that
the correction performs well and improves the agreement with the MetOne reference instrument, even
though in the case of the OPC-N2 sensor seems to lower also the values observed under moderate or
low relative humidity conditions. Therefore, it seems useful to adopt a threshold value of RH (Relative
Humidity) beyond which the correction can be applied.

3.2. Particle Number Densities and Particle Size Distributions

The correlations of particle number densities observed by the instruments were evaluated over
three weeks, considering in particular, two periods of weak synoptic forcing respectively in summer
(19–24 July 2019) and in winter (5–11 February 2020), characterized by constant high atmospheric
pressure, low wind speeds and absence of precipitation, and one in autumn (19–26 October 2019) was
characterized by the presence of frequent fog and cloudy conditions. These analyses were carried
out by comparing the particle number densities retrieved by the two OPC-N2s and by the LOAC
with those collected by the MetOne. In this framework, the SCKs, which might be classified as
SSys ready-to-use out of the box systems according to [35], do not provide particle number densities
explicitly, and therefore, could not be evaluated against the other ones. Moreover, during the summer
week, only one of the OPC-N2 (ABBA1) and the MetOne were operating.

The correlations were evaluated by estimating seven fractions, obtained by summing the proper
bins of each instrument: “fr0.5” (considered as the fraction 0.3–0.5 µm), “fr0.7” (0.5–0.7 µm), “fr1”
(0.7–1.0 µm), “fr1_2” (1.0–2.0 µm, not present for LOAC), “fr1_3” (1.0–3.0 µm), “fr5” (3.0–5.0 µm) and
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“fr10” (5.0–10.0 µm). All data were mediated over 10 min, and the Hampel filter presented in the
experimental section was applied to remove outliers.

Table 2 summarizes the results in terms of the coefficient of determination (R2) and Pearson and
Spearman correlation coefficients.

Table 2. Comparison of the particle sensors evaluated by determination coefficients (R2), Pearson
and Spearman correlation indexes, with respect to the MetOne reference instrument, during the three
considered weeks.

19–24 July 2019 ABBA1

R2 Pearson Spearman
fr0.5 0.481 0.694 0.785
fr0.7 0.480 0.693 0.850
fr1 0.381 0.617 0.688

fr1_2 0.344 0.587 0.617
fr1_3 0.348 0.590 0.632
fr5 0.107 0.328 0.415

fr10 0.0007 0.027 0.041

19–26 October 2019 ABBA1 ABBA2 LOAC

R2 Pearson Spearman R2 Pearson Spearman R2 Pearson Spearman
fr0.5 0.860 0.927 0.971 0.877 0.936 0.966 0.491 0.701 0.866
fr0.7 0.867 0.931 0.990 0.812 0.901 0.985 0.723 0.850 0.947
fr1 0.769 0.877 0.963 0.651 0.807 0.944 0.557 0.747 0.939

fr1_2 0.844 0.919 0.935 0.580 0.762 0.861 – – –
fr1_3 0.758 0.870 0.893 0.487 0.698 0.803 0.254 0.504 0.803
fr5 0.818 0.905 0.833 0.126 0.351 0.776 0.016 0.128 0.724

fr10 0.976 0.988 0.651 0.076 0.276 0.571 0.011 0.103 0.713

5–11 February 2020 ABBA1 ABBA2 LOAC

R2 Pearson Spearman R2 Pearson Spearman R2 Pearson Spearman
fr0.5 0.819 0.905 0.986 0.752 0.867 0.985 0.460 0.678 0.887
fr0.7 0.778 0.882 0.987 0.771 0.878 0.978 0.610 0.781 0.934
fr1 0.500 0.707 0.920 0.462 0.680 0.908 0.593 0.770 0.958

fr1_2 0.066 0.507 0.966 0.209 0.457 0.953 – – –
fr1_3 0.252 0.502 0.944 0.203 0.451 0.920 0.130 0.360 0.941
fr5 0.803 0.896 0.585 0.841 0.917 0.581 0.328 0.572 0.780

fr10 0.931 0.965 0.203 0.843 0.918 0.278 0.533 0.730 0.651

The lower fractions (fr0.5, fr0.7 and fr1) show, in general, higher correlations than the higher
ones, as shown by the low R2 and correlation coefficients. This is ascribed to the higher mass
contribution of the coarse fraction to PM10 in the warm and substantially drier season, but also to the
influence of gravity and therefore to the remarkable stochasticity of suspended coarse particles [17,63].
Similar results were reported in other papers focusing on OPC comparison (see for example, [61]).

In the summer week, poor R2 and Pearson correlations were observed between MetOne and ABBA1,
while the Spearman correlations were higher, in agreement with the non-normal distribution. During the
autumn and winter weeks, instead, high (>0.6 and even >0.9 in most cases) Spearman correlation coefficients
were observed between all instruments against the MetOne for almost all fractions. The LOAC sensor
presents the lowest correlations with the MetOne in terms of R2 and Pearson indexes. This is attributed to
the frequent spikes present in LOAC data (even if partially removed by the application of the Hampel filter)
in all the size classes simultaneously possibly due to electronic noise during the experiment. The Spearman
coefficient, indeed, being a non-parametric alternative for evaluating the correlation, shows a better skill
in evaluating it in the presence of spikes. ABBA1 and ABBA2 are both strongly correlated to MetOne,
particularly considering the Spearman indexes. Moreover, the correlation coefficients between these two
OPCs are always higher than 0.9 for all fractions (data not shown), suggesting, as reported before, that
instruments of the same manufacturer tend to behave similarly.

Figure 12 shows the time series of particle counts in the different size fractions observed by the
two OPC-N2s, the LOAC and the MetOne, together with the corresponding values of relative humidity,
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during the week of October characterized by frequent fog and cloudy conditions (22–26 October 2019).
Particle counts observed by the two OPC-N2s were corrected with the previously cited hygroscopic
growth factor. The plots evidence interesting features of the instruments: first of all, the MetOne and
the LOAC sensors observe regularly more particles in the smallest size fraction, in agreement with
the lower instrumental limit of these two instruments with respect to the OPC-N2 low-cost sensors;
secondly, during fog (24th of October) and rain events (24–25 October) and with values of relative
humidity close to saturation (95%), the MetOne observes more particles in the second bin than the
other sensors; in the coarsest fractions, the LOAC greatly overestimates the number of particles during
rain events, but not during fog events, while on the contrary MetOne and ABBA1 seem to perform
better under fog than under rainy conditions.
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The comparison of particle size distributions observed by the MetOne and one of the two OPC-N2s
during the same week of October (Figure 13) shows very clearly that under high relative humidity
conditions the disagreement between the two instruments is due to the higher counts of the OPC-N2 in
the 1–3 µm size fraction.
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4. Conclusions

This work describes and discusses the results of an intercomparison exercise that aimed at
evaluating the performances of a series of OPCs representative of both research and low-cost devices,
the latter becoming extremely popular and extensively used at all scientific levels.

To that end, an intensive long-term experimental field campaign was carried out. The performances
of the sensors were evaluated through a robust comprehensive approach considering a mainstream
OPC with a heated inlet as the reference instrument, and calculating a series of statistical parameters to
capture not only the correlation but also the biases from the reference OPC.

The results of this study indicate that low-cost sensors, and all OPCs, are affected by relevant
biases and low correlations when working at elevated time resolution, while the performance improves
when lowering the time resolution to hourly or daily averages.

Other biases that emerged from our work are tightly connected with aerosol complexity, and as
such, cannot be ignored, since the PM data might be seriously misleading if not considered and
suitably corrected. In particular the main deviations were observed using flat density correction factors
when converting particle number densities into mass, suggesting a post field campaign reassessment
and post-processing of data. This is especially important in countries/areas affected by mineral
dust outbreaks whose properties and size distribution spectrum are significantly different from the
urban background.

In addition, the performance of a sensor is highly impacted by the prevailing weather conditions,
suggesting particular caution in their use for estimating PM concentrations at high relative humidity
conditions, such as rain and fog events. Conversely, their performances under conditions of weak
synoptic forcing and prevailing anticyclonic conditions were in general characterized by low biases and
elevated correlation coefficients. The detailed analysis of the effect of relative humidity suggests/shows
that the application of a hygroscopic growth factor to account for the condensation of water vapor
on aerosol particles can improve the agreement; however, this approach requires some caution as it
may lead to artefacts and shifts in the size distribution which may ultimately result in errors in the
estimated PM concentrations.

To conclude, our results show that whatever the application of OPCs is, and the adoption of either
research, or in particular, of low-cost PM sensors, the intelligent use of the data is advised based on the
following recommendations:

• Data from these devices are precious and extremely informative;
• They can be used reasonably confidently in fair weather conditions and with low time resolution;
• Careful data treatment and evaluation are required in two main cases: airsheds affected by mineral

dust, and more generally, during relatively high humidity conditions, rain and fog are observed.

Our results may be extended using longer time series comprehensive of different seasons and
analyzing more specifically the effect of PM size and chemical composition on the estimate of PM
concentrations from OPCs, taking advantage of the use of ancillary data collected with the suite of
co-located instruments. Future research studies focusing on how to automatically adjust data from
low-cost sensors under conditions such as high relative humidity or transportation of mineral dust,
affecting the observations from optical particle counters may greatly benefit from our results.
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Appendix A

Here we provide details about and formulas for the statistical parameters used to evaluate the
performance of the sensors.

The mean bias error (MBE) is used to estimate the average bias in the sensor with respect to the
reference instrument and is calculated as:

MBE =
1
n

n∑
i=1

(Pi −Oi) (A1)

where Oi is the observation value from the reference sensor (here, MetOne) and Pi is the observation
value from the other sensor. A positive bias means that the sensor tends to overestimate the observations
from the reference sensor. Conversely, underestimation results in negative biases.

The mean absolute error (MAE) measures the average magnitude of the errors in the observations
from the sensors with respect to the reference sensor, without considering their direction. It is the
average over the test sample of the absolute differences between prediction and actual observation
where all individual differences have equal weight, calculated as:

MAE =
1
n

n∑
i=1

|Pi −Oi| (A2)

The root mean square error (RMSE) is a quadratic scoring rule measuring the average magnitude
of the error as the MBE and is the square root of the average of squared differences between prediction
and actual observation:

RMSE =

√√
1
n

n∑
i=1

(Pi −Oi)
2 (A3)

Appendix B

Here we present the comparison of hourly observations of PM2.5/PM10 and PM2.5/PM10 ratios
recorded by the two SCKs (4E59 and BC60), the two OPC-N2 (ABBA1 and ABBA2), the LOAC and the
MetOne reference sensor during the summer and autumn measurement periods.
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Figure A1. Comparison of hourly PM2.5/PM10 (a), and PM1/PM2.5 ratios (b) from the co-located
particle sensors during the summer measurement period. 4E59 (black line) and BC60 (red line) are the
two SCK sensors; ABBA1 (blue line) and ABBA2 (pink line) are the two OPC-N2s sensors. MetOne (thick
green line) is the reference instrument.
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Figure A2. Comparison of hourly PM2.5/PM10 (a) and PM1/PM2.5 (b) ratios from the co-located
particle sensors during the autumn measurement period. 4E59 (black line) and BC60 (red line) are the
two SCK sensors; ABBA1 (blue line) and ABBA2 (pink line) are the two OPC-N2s sensors. LOAC is the
light green line. MetOne (thick olive green line) is the reference instrument.
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Appendix C

Here we present frequency distributions for 1-min particulate matter concentrations observed
by the two SCKs (4E59 and BC60), the two OPC-N2 (ABBA1 and ABBA2) and the LOAC during the
summer and autumn measurement periods.
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Figure A4. Frequency distributions of 1-min PM1 (a), PM2.5 (b) and PM10 (c) mass concentrations
observed by the MetOne (grey bars) and the other optical sensors; i.e., the two SCKs (4E59 and BC60,
respectively blue and red bars), the two OPC-N2 (ABBA1 and ABBA2, respectively green and purple
bars) and the LOAC (black bars) during the autumn measurement period.
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Appendix D

Here we present tables for the performance of the sensors at varying time resolution and during
the two measurement periods, as evaluated by the comparison with the observations from the MetOne
reference sensor.

Table A1. Performances of the particle sensors as evaluated from the comparison with the
observations with MetOne reference sensor and from the calculation of a set of statistical parameters
(MBE = mean bias error; MAE = mean absolute error; RMSE = root mean square error; NMBE, NMAE
and NRMSE are MBE, MAE and RMSE normalized over the observation range, while CVMBE, CVMAE
and CVRMSE are normalized over the observation average), at varying time resolution during the
summer measurement period.

PM1 PM2.5 PM10
1min 4E59 BC60 ABBA1 4E59 BC60 ABBA1 4E59 BC60 ABBA1

mbe 7.94 7.46 0.49 6.09 4.61 −2.64 −2.33 −4.80 −11.01
mae 8.44 8.01 3.42 8.36 7.34 6.70 8.84 8.86 14.26
rmse 9.80 9.27 8.30 11.25 10.05 11.16 11.79 11.53 17.17
nmbe 0.32 0.30 0.02 0.10 0.08 −0.05 −0.01 −0.02 −0.04
cvmbe 1.92 1.80 0.12 0.64 0.49 −0.28 −0.11 −0.23 −0.54
nmae 0.34 0.33 0.14 0.14 0.13 0.12 0.03 0.03 0.05
cvmae 2.04 1.93 0.83 0.88 0.78 0.71 0.43 0.43 0.70
nrmse 0.40 0.38 0.34 0.19 0.17 0.19 0.04 0.04 0.06
cvrmse 2.36 2.24 2.00 1.19 1.06 1.18 0.58 0.56 0.84
pearson 0.65 0.64 0.66 0.70 0.70 0.69 0.63 0.63 0.53

Spearman 0.71 0.70 0.80 0.73 0.73 0.79 0.69 0.69 0.67

PM1 PM2.5 PM10
10min 4E59 BC60 ABBA1 4E59 BC60 ABBA1 4E59 BC60 ABBA1

mbe 7.96 7.49 0.48 6.10 4.63 −2.66 −2.38 −4.83 −11.04
mae 8.44 8.02 3.39 8.31 7.29 6.65 8.57 8.62 14.18
rmse 9.77 9.24 8.13 11.13 9.93 10.91 11.45 11.25 16.83
nmbe 0.34 0.32 0.02 0.11 0.08 −0.05 −0.01 −0.02 −0.04
cvmbe 1.92 1.81 0.12 0.64 0.49 −0.28 −0.12 −0.24 −0.54
nmae 0.36 0.34 0.14 0.15 0.13 0.12 0.03 0.03 0.05
cvmae 2.04 1.93 0.82 0.88 0.77 0.70 0.42 0.42 0.69
nrmse 0.41 0.39 0.34 0.20 0.18 0.20 0.04 0.04 0.06
cvrmse 2.36 2.23 1.96 1.18 1.05 1.15 0.56 0.55 0.82
pearson 0.65 0.64 0.67 0.71 0.70 0.70 0.64 0.64 0.55

Spearman 0.71 0.70 0.81 0.74 0.73 0.81 0.71 0.70 0.71

PM1 PM2.5 PM10
30min 4E59 BC60 ABBA1 4E59 BC60 ABBA1 4E59 BC60 ABBA1

mbe 7.97 7.51 0.45 6.09 4.63 −2.72 −2.55 −4.97 −11.14
mae 8.43 8.01 3.34 8.25 7.23 6.60 8.44 8.53 14.19
rmse 9.71 9.20 7.96 10.94 9.74 10.70 11.26 11.12 16.67
nmbe 0.34 0.32 0.02 0.11 0.09 −0.05 −0.01 −0.02 −0.04
cvmbe 1.92 1.81 0.11 0.64 0.49 −0.29 −0.12 −0.24 −0.54
nmae 0.36 0.34 0.14 0.15 0.13 0.12 0.03 0.03 0.06
cvmae 2.03 1.93 0.81 0.87 0.76 0.70 0.41 0.42 0.69
nrmse 0.41 0.39 0.34 0.20 0.18 0.20 0.04 0.04 0.07
cvrmse 2.34 2.22 1.92 1.15 1.03 1.13 0.55 0.54 0.81
pearson 0.66 0.65 0.68 0.71 0.71 0.70 0.65 0.65 0.55

Spearman 0.71 0.70 0.81 0.74 0.73 0.81 0.71 0.71 0.72
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Table A1. Cont.

PM1 PM2.5 PM10
1hour 4E59 BC60 ABBA1 4E59 BC60 ABBA1 4E59 BC60 ABBA1

mbe 7.97 7.53 0.42 6.05 4.60 −2.77 −2.68 −5.07 −11.22
mae 8.34 7.94 3.28 8.16 7.12 6.50 8.25 8.25 14.02
rmse 9.58 9.10 7.58 10.62 9.42 10.16 10.96 10.89 16.27
nmbe 0.35 0.33 0.02 0.13 0.10 −0.06 −0.01 −0.02 −0.05
cvmbe 1.92 1.82 0.10 0.64 0.49 −0.29 −0.13 −0.25 −0.55
nmae 0.37 0.35 0.14 0.18 0.16 0.14 0.04 0.04 0.07
cvmae 2.01 1.91 0.79 0.86 0.75 0.68 0.40 0.40 0.68
nrmse 0.42 0.40 0.33 0.24 0.21 0.22 0.05 0.05 0.08
cvrmse 2.31 2.19 1.83 1.12 0.99 1.07 0.53 0.53 0.79
pearson 0.68 0.66 0.71 0.72 0.72 0.73 0.66 0.65 0.58

Spearman 0.71 0.69 0.82 0.73 0.73 0.81 0.70 0.69 0.73

PM1 PM2.5 PM10
1day 4E59 BC60 ABBA1 4E59 BC60 ABBA1 4E59 BC60 ABBA1

mbe 7.77 7.57 −0.22 5.91 4.78 −3.87 −4.62 −6.49 −12.99
mae 7.77 7.57 1.96 5.91 4.78 4.36 5.08 6.58 12.99
rmse 8.16 7.97 2.74 6.58 5.58 4.86 6.62 7.96 14.35
nmbe 0.91 0.89 −0.03 0.30 0.25 −0.20 −0.18 −0.25 −0.50
cvmbe 1.88 1.83 −0.05 0.62 0.50 −0.40 −0.22 −0.31 −0.62
nmae 0.91 0.89 0.23 0.30 0.25 0.22 0.20 0.26 0.50
cvmae 1.88 1.83 0.48 0.62 0.50 0.46 0.24 0.32 0.62
nrmse 0.96 0.93 0.32 0.34 0.29 0.25 0.26 0.31 0.56
cvrmse 1.98 1.93 0.67 0.69 0.58 0.51 0.32 0.38 0.69
pearson 0.80 0.76 0.87 0.89 0.88 0.89 0.79 0.79 0.64

Spearman 0.80 0.80 0.90 0.83 0.78 0.83 0.73 0.70 0.60

Table A2. Performances of the particle sensors as evaluated from the comparison with the observations
with the MetOne reference sensor and from the calculation of a set of statistical parameters (MBE =

mean bias error; MAE = mean absolute error; RMSE = root mean square error; NMBE, NMAE and
NRMSE are MBE, MAE and RMSE normalized over the observation range, while CVMBE, CVMAE
and CVRMSE are normalized over the observation average), at varying time resolution during the
autumn measurement period.

PM1 PM2.5 PM10
1min 4E59 BC60 ABBA1 ABBA2 LOAC 4E59 BC60 ABBA1 ABBA2 LOAC 4E59 BC60 ABBA1 ABBA2 LOAC

mbe 9.23 6.53 24.63 26.97 −3.73 17.84 14.93 34.14 39.73 19.55 15.30 9.08 34.42 34.99 19.23
mae 9.95 8.07 24.83 27.13 6.05 19.77 17.05 37.04 43.15 23.98 22.38 18.13 41.29 44.49 28.28
rmse 12.30 10.12 41.21 45.02 10.47 26.01 22.30 63.88 74.81 48.45 40.87 36.49 92.58 79.01 60.42
nmbe 0.11 0.08 0.29 0.32 −0.04 0.08 0.07 0.16 0.18 0.09 0.01 0.01 0.02 0.02 0.01
cvmbe 0.67 0.47 1.78 1.95 −0.27 0.79 0.66 1.52 1.77 0.87 0.49 0.29 1.10 1.12 0.61
nmae 0.12 0.10 0.30 0.32 0.07 0.09 0.08 0.17 0.20 0.11 0.01 0.01 0.02 0.03 0.02
cvmae 0.72 0.58 1.79 1.96 0.44 0.88 0.76 1.65 1.92 1.07 0.71 0.58 1.32 1.42 0.90
nrmse 0.15 0.12 0.49 0.54 0.12 0.12 0.10 0.29 0.34 0.22 0.02 0.02 0.06 0.05 0.04
cvrmse 0.89 0.73 2.97 3.25 0.76 1.16 0.99 2.84 3.33 2.15 1.30 1.16 2.95 2.52 1.93
pearson 0.89 0.84 0.92 0.96 0.69 0.85 0.83 0.88 0.91 0.65 0.57 0.52 0.83 0.63 0.44

Spearman 0.96 0.92 0.94 0.98 0.86 0.93 0.91 0.89 0.95 0.84 0.87 0.84 0.83 0.92 0.81

PM1 PM2.5 PM10
10min 4E59 BC60 ABBA1 ABBA2 LOAC 4E59 BC60 ABBA1 ABBA2 LOAC 4E59 BC60 ABBA1 ABBA2 LOAC

mbe 9.23 6.53 24.63 26.96 −3.74 17.83 14.93 34.12 39.72 19.49 15.28 9.08 34.37 34.99 19.14
mae 9.93 8.05 24.80 27.10 5.91 19.72 17.01 37.00 43.11 23.57 22.24 18.01 41.02 44.07 27.70
rmse 12.24 10.08 40.99 44.88 9.62 25.91 22.21 63.41 74.39 46.32 39.28 34.64 84.55 77.07 58.00
nmbe 0.11 0.08 0.30 0.33 −0.05 0.09 0.07 0.17 0.20 0.10 0.01 0.01 0.03 0.03 0.02
cvmbe 0.67 0.47 1.78 1.95 −0.27 0.79 0.66 1.52 1.77 0.87 0.49 0.29 1.10 1.12 0.61
nmae 0.12 0.10 0.30 0.33 0.07 0.10 0.09 0.19 0.22 0.12 0.02 0.02 0.03 0.04 0.02
cvmae 0.72 0.58 1.79 1.96 0.43 0.88 0.76 1.65 1.92 1.05 0.71 0.57 1.31 1.41 0.88
nrmse 0.15 0.12 0.50 0.54 0.12 0.13 0.11 0.32 0.37 0.23 0.03 0.03 0.07 0.07 0.05
cvrmse 0.88 0.73 2.96 3.24 0.69 1.15 0.99 2.82 3.31 2.06 1.25 1.11 2.70 2.46 1.85
pearson 0.90 0.84 0.92 0.96 0.74 0.85 0.84 0.88 0.91 0.68 0.59 0.55 0.90 0.66 0.46

Spearman 0.96 0.92 0.94 0.98 0.87 0.93 0.91 0.89 0.95 0.85 0.88 0.85 0.83 0.93 0.82
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Table A2. Cont.

PM1 PM2.5 PM10
30min 4E59 BC60 ABBA1 ABBA2 LOAC 4E59 BC60 ABBA1 ABBA2 LOAC 4E59 BC60 ABBA1 ABBA2 LOAC

mbe 9.22 6.52 24.63 26.96 −3.74 17.81 14.92 34.13 39.72 19.50 15.27 9.08 34.43 34.99 19.16
mae 9.91 8.03 24.79 27.09 5.80 19.68 16.97 36.97 43.07 23.25 22.15 17.94 41.01 43.81 27.16
rmse 12.20 10.04 40.86 44.80 8.79 25.83 22.14 63.15 74.21 44.59 37.99 33.17 82.54 75.86 55.40
nmbe 0.11 0.08 0.30 0.33 −0.05 0.09 0.08 0.18 0.21 0.10 0.02 0.01 0.04 0.04 0.02
cvmbe 0.67 0.47 1.78 1.95 −0.27 0.79 0.66 1.52 1.77 0.87 0.49 0.29 1.10 1.12 0.61
nmae 0.12 0.10 0.30 0.33 0.07 0.10 0.09 0.20 0.23 0.12 0.02 0.02 0.05 0.05 0.03
cvmae 0.72 0.58 1.79 1.96 0.42 0.87 0.75 1.64 1.92 1.03 0.71 0.57 1.31 1.40 0.87
nrmse 0.15 0.12 0.50 0.55 0.11 0.14 0.12 0.34 0.40 0.24 0.04 0.04 0.09 0.08 0.06
cvrmse 0.88 0.72 2.95 3.23 0.63 1.15 0.98 2.81 3.30 1.98 1.21 1.06 2.63 2.42 1.77
pearson 0.90 0.84 0.92 0.96 0.79 0.85 0.84 0.88 0.92 0.70 0.61 0.57 0.90 0.69 0.50

Spearman 0.96 0.92 0.94 0.98 0.87 0.93 0.91 0.89 0.95 0.85 0.88 0.85 0.83 0.93 0.83

PM1 PM2.5 PM10
1hour 4E59 BC60 ABBA1 ABBA2 LOAC 4E59 BC60 ABBA1 ABBA2 LOAC 4E59 BC60 ABBA1 ABBA2 LOAC

mbe 9.23 6.53 24.63 26.96 −3.74 17.82 14.91 34.12 39.73 19.49 15.28 9.06 34.41 35.00 19.15
mae 9.90 8.02 24.78 27.08 5.66 19.61 16.90 36.92 43.03 22.96 22.07 17.76 40.90 43.62 26.80
rmse 12.15 9.99 40.67 44.69 8.39 25.74 22.04 62.76 74.02 43.45 36.94 31.99 80.60 75.15 53.73
nmbe 0.12 0.08 0.31 0.34 −0.05 0.10 0.08 0.19 0.22 0.11 0.02 0.01 0.04 0.04 0.02
cvmbe 0.67 0.47 1.78 1.95 −0.27 0.79 0.66 1.52 1.77 0.87 0.49 0.29 1.10 1.12 0.61
nmae 0.12 0.10 0.31 0.34 0.07 0.11 0.09 0.20 0.24 0.13 0.03 0.02 0.05 0.05 0.03
cvmae 0.71 0.58 1.79 1.95 0.41 0.87 0.75 1.64 1.91 1.02 0.70 0.57 1.31 1.39 0.86
nrmse 0.15 0.12 0.51 0.56 0.10 0.14 0.12 0.35 0.41 0.24 0.05 0.04 0.10 0.09 0.07
cvrmse 0.88 0.72 2.94 3.23 0.61 1.14 0.98 2.79 3.29 1.93 1.18 1.02 2.57 2.40 1.71
pearson 0.90 0.85 0.92 0.96 0.81 0.86 0.84 0.89 0.92 0.71 0.62 0.58 0.90 0.70 0.52

Spearman 0.96 0.92 0.94 0.98 0.87 0.93 0.91 0.89 0.95 0.86 0.88 0.85 0.84 0.93 0.83

PM1 PM2.5 PM10
1day 4E59 BC60 ABBA1 ABBA2 LOAC 4E59 BC60 ABBA1 ABBA2 LOAC 4E59 BC60 ABBA1 ABBA2 LOAC

mbe 9.30 6.67 24.62 26.99 −3.73 18.04 15.05 34.11 39.75 19.50 15.73 9.27 34.38 35.00 19.16
mae 9.32 6.99 24.64 26.99 4.32 18.48 15.64 35.45 41.63 20.75 18.54 14.25 38.05 40.16 23.10
rmse 10.80 8.33 34.28 39.74 6.41 23.26 19.34 50.92 64.00 32.33 25.50 18.47 55.65 62.53 36.14
nmbe 0.23 0.17 0.62 0.68 −0.09 0.28 0.23 0.53 0.61 0.30 0.17 0.10 0.36 0.37 0.20
cvmbe 0.67 0.48 1.78 1.95 −0.27 0.80 0.67 1.52 1.77 0.87 0.50 0.30 1.10 1.12 0.61
nmae 0.23 0.17 0.62 0.68 0.11 0.29 0.24 0.55 0.64 0.32 0.20 0.15 0.40 0.42 0.24
cvmae 0.67 0.50 1.78 1.95 0.31 0.82 0.70 1.58 1.85 0.92 0.59 0.45 1.21 1.28 0.74
nrmse 0.27 0.21 0.86 0.99 0.16 0.36 0.30 0.79 0.99 0.50 0.27 0.19 0.59 0.66 0.38
cvrmse 0.78 0.60 2.47 2.87 0.46 1.03 0.86 2.26 2.85 1.44 0.81 0.59 1.78 2.00 1.15
pearson 0.95 0.91 0.94 0.98 0.90 0.92 0.91 0.90 0.97 0.81 0.83 0.81 0.87 0.90 0.75

Spearman 0.96 0.92 0.93 0.99 0.92 0.94 0.93 0.88 0.95 0.85 0.88 0.87 0.82 0.92 0.80

Appendix E

Here we present the comparison of 10-min particulate matter concentrations observed from the
MetOne and from the two SCKs (4E59 and BC60) and one of the two OPC-N2 (ABBA1) as a function of
temperature and relative humidity conditions during the summer measurement period.



Sensors 2020, 20, 3073 29 of 33

Sensors 2020, 20, x FOR PEER REVIEW          30 of 34 

Appendix E 

Here we present the comparison of 10-min particulate matter concentrations observed from the 

MetOne and from the two SCKs (4E59 and BC60) and one of the two OPC-N2 (ABBA1) as a function 

of temperature and relative humidity conditions during the summer measurement period. 

 

Figure A5. Comparison of 10-min PM1 mass concentrations observed by the MetOne and the other 

optical sensors: (a,b) the two SCKs (4E59 and BC60); (c one of the two OPC-N2s (ABBA1) during the 

summer measurement period. The color scale indicates the relative humidity (%) value at the time of 

the measurements, while the size of the marker is proportional to the value of temperature at the time 

of the measurements. 

0 5 10 15 20 25
0

5

10

15

20

25

30

35

0 5 10 15 20 25
0

5

10

15

20

25

30

35

0 5 10 15 20 25

0
10
20
30
40
50
60
70
80

P
M

1
 4

E
5
9
 (


g
 m

-3
)

PM1 MetOne (g m
-3
)

a)

P
M

1
 B

C
6
0
 (


g
 m

-3
)

PM1 MetOne (g m
-3
)

b)

P
M

1
 A

B
B

A
1
 (


g
 m

-3
)

PM1 MetOne (g m
-3
)

c)

30

40

50

60

70

80

90

RH (%)

Figure A5. Comparison of 10-min PM1 mass concentrations observed by the MetOne and the other
optical sensors: (a,b) the two SCKs (4E59 and BC60); (c one of the two OPC-N2s (ABBA1) during the
summer measurement period. The color scale indicates the relative humidity (%) value at the time of
the measurements, while the size of the marker is proportional to the value of temperature at the time
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Figure A6. Comparison of 10-min PM2.5 mass concentrations observed by the MetOne and the other
optical sensors: (a,b) the two SCKs (4E59 and BC60); (c) one of the two OPC-N2s (ABBA1) during the
summer measurement period. The color scale indicates the relative humidity (%) value at the time of
the measurements, while the size of the marker is proportional to the value of temperature at the time
of the measurements.
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Figure A7. Comparison of 10-min PM10 mass concentrations observed by the MetOne and the other
optical sensors: (a,b) the two SCKs (4E59 and BC60); (c) one of the two OPC-N2s (ABBA1 during the
summer measurement period. The color scale indicates the relative humidity (%) value at the time of
the measurements, while the size of the marker is proportional to the value of temperature at the time
of the measurements.
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