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Structure and properties of an inorganic perovskite Cs2SnI6 demonstrated its potential

as a light-harvester or electron-hole transport material; however, its optoelectronic

properties are poorer than those of lead-based perovskites. Here, we report the way of

light tuning of absorption and transport properties of cesium iodostannate(IV) Cs2SnI6 via

partial heterovalent substitution of tin for indium. Light absorption and optical bandgaps

of materials have been investigated by UV-vis absorption and photoluminescent

spectroscopies. Low-temperature electron paramagnetic resonance spectroscopy was

used to study the kind of paramagnetic centers in materials.

Keywords: perovskite photovoltaics, cesium iodostannate(IV), solid solution, Raman spectroscopy, optical
characteristics

INTRODUCTION

The efficiency of third-generation solar cells (SCs) based on materials with a perovskite structure is
growing every year (Elumalai et al., 2016; Li et al., 2016; Powalla et al., 2018; Sani et al., 2018; Ajay
et al., 2019). Such rapid success of using these materials in various fields of solar photovoltaics is
due to their unique optoelectronic properties. Today, lead-based perovskite materials (APbX3) are
the most efficient in terms of converting solar radiation into electricity (Brandt et al., 2015; Dimesso
et al., 2017; Yang et al., 2017; Zhu Z. et al., 2019), and it is caused by low binding energy of excitons,
charge carrier mobility, long diffusion length, high absorption coefficient, and direct bandgap (Xiao
and Yan, 2017; Deng et al., 2019). The theoretically calculated highest power conversion efficiency
(PCE) (Shockley–Queisser limit) achieved by lead-based perovskite is 31.4% for CH3NH3PbI3
(Wan-Jian et al., 2015) and the experimental efficiency (light converting efficiency) of SCs with this
compound has exceeded 25% (Yang et al., 2017; Jeon et al., 2018; Powalla et al., 2018). However, the
chemical and thermal stability of lead perovskites are not sufficiently well; moreover, lead is a toxic
element (Kulbak et al., 2016; Wu Y. et al., 2017; Pisanu et al., 2019). These problems motivate
finding new alternatives among lead-free materials with optimal optoelectronic characteristics
(Hoefler et al., 2017; Fu, 2019; Pisanu et al., 2019). Instead of lead perovskites, materials with general
formulas of ABX3 [where A = CH3NH

+

3 , HC(NH2)
+

2 , or Cs
+, Rb+, K+; B = divalent inorganic

cation; X = Cl, Br, I] and A2BX6 (where A and X the same cations and anions as in the case of
ABX3; B = tetravalent inorganic cations) are in focus for investigations (Huang and Lambrecht,
2013; Stoumpos et al., 2016; Cai et al., 2017; Ju et al., 2017). Among all lead-free compounds with
the ABX3 formula, cesium triiodostannate CsSnI3 turned out to be the most promising material
with good optoelectronic performance (Kumar et al., 2014, 2017; da Silva et al., 2015; Stoumpos
et al., 2016). The first SCs based on Sn2+ perovskites had a very low efficiency (3 × 10−4%−2%)
(Chen et al., 2012; Kumar et al., 2014). Nevertheless, CsSnI3 has excellent properties [optimal
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bandgap of 1.4 eV, higher theoretical short-circuit photocurrent
(JSC) density of 34.3mA cm−2, highest hole mobility ∼585 cm2

V−1 s−1 among p-type materials] for photovoltaic application
as light harvesting or p-type semiconductor (Chung et al., 2012;
Stoumpos et al., 2013). Thereby, the CsSnI3 phase is still being
actively studied (Song et al., 2018; Wijesekara et al., 2018; Pisanu
et al., 2019) and the PCE of SCs based on it has achieved 5.03%
(Wang Y. et al., 2019), but these results are still less satisfactory
than those of MAPbI3.

Another type of compounds are double perovskites, which are
obtained by replacing the tetravalent cation B4+ and a vacancy
in A2BX6 with the B+/B3+ pair (where B+ = Cu, Ag, Ga,
In, Tl, etc.; B3+ = Sb, Bi etc.) so that the charge neutrality is
preserved (Yin et al., 2019). According to Savory et al. (2016),
the theoretical calculations show a PCE limit <8% for the
double perovskite compound Cs2AgBiX6; however, higher PCE
and suitable bandgaps have been predicted for other materials
such as Cs2InSbCl6, Cs2AgInBr6, Rb2AgInBr6, and Rb2CuInCl6
(Zhao et al., 2017a,b). According to Xiao et al. (2019), the most
promising double perovskites are based on cations such as Ag,
In, Bi, and Sb (Greul et al., 2017; Wu C. et al., 2017; Gao et al.,
2018; Liang and Gao, 2018; Fan et al., 2019; Igbari et al., 2019).

A promising lead-free non-toxic and stable perovskite-like
material with a face-centered cubic cell is A2SnX6, where the
tin atom is strongly covalently bonded and stabilizes the crystal
lattice. Among all compounds in the A2SnX6 group, the Cs2SnI6
phase turned out to be a suitable material for photovoltaics (Cai
et al., 2017; Maughan et al., 2018). Cesium iodostannate(IV)
has promising optoelectronic properties (electron mobility up
to 509 cm2 V−1 s−1; Guo et al., 2017; JSC = 13.97mA cm−2;
VOC = 0.58V; Eg = ∼1.2 eV) (Kaltzoglou et al., 2016), which
makes it a candidate as a light-harvesting material in SCs. Mixed
cations A+((AxA1−x)2BX6) (Ganesan et al., 2019) and anions
X−(A2B(X’xX1−x)6) (Lee et al., 2017; Ke et al., 2018; Yuan et al.,
2019; Zhu W. et al., 2019) were considered to improve stability
and properties of Cs2SnX6. Upon replacement of Cl− by I−, the
optical absorption coefficient increases, the bandgap decreases,
stability decreases, and the materials color changes from pale
yellow (or white) to black. The Cs2SnI6 phase is also used as
photodetectors (Han et al., 2019), for photoelectrochemical water
splitting (Dang et al., 2019), as photocatalysts (Wang X.-D. et
al., 2019), and the efficiency of the SCs based on it has reached
∼11.2%. In this work, we have demonstrated the preparation
of solid solutions based on Cs2SnI6 by doping with indium.
Heterovalent substitution of tin (Sn4+ ionic radii 0.69 Å, Pauling
electronegativity = 1.96) in the structure of Cs2SnI6 by indium
(In3+ ionic radii 0.74 Å, Pauling electronegativity= 1.78) leads to
the formation of solid solutions with improved optical properties.
Here, for the In3+ → Sn4+ substitution, the difference in
electronegativities of cations is 0.18 and the difference in ion
sizes is 7.24%, which corresponds well to the Goldschmidt rule
(Goldschmidt, 1926).

Recently, the new wave of enthusiasm among researchers
has arrived from coming perspectives of nanocrystalline Cs2SnI6
phase and its derivatives for optoelectronics (Wang et al.,
2016; Veronese et al., 2020). Because of this, development
of nanochemistry of complex halides requires preliminary

fundamental studies of phase equilibrium and analysis of optical
and transport characteristics in polycrystalline materials.

EXPERIMENTAL SECTION

Syntheses of Materials
The sintering was carried out by solid-state sintering method
in evacuated quartz ampules (RT pressure of 1.6 · 10−2 Torr).
The compositions were prepared by grinding cesium iodide CsI
(Sigma-Aldrich 99.99%), tin iodide SnI4 [direct synthesis from
elementary tin (“Ruschim,” 99.90+, O-1) and iodine in CCl4
(purum, “Irea2000”) with further purification by sublimation
at 270◦C], and elementary iodine (purum, “Reachim”) and
metallic indium (“Ruschim,” 99.999%) with the stoichiometric
mass ratios. The pristine Cs2SnI6 phase was obtained with the
stoichiometric mass of CsI and SnI4 (2:1). The mixtures were
sealed in preliminarily dried quartz ampoules and heated with
the rate of ∼0.2◦C/min to 300◦C and then annealed at this
temperature for 48 h. All samples were kept in double closed
zip-lock bags in nitrogen.

All materials were characterized with powder XRD method
for phase composition definition. We assumed that the obtaining
materials have the composition related to the solid solutions
Cs2−xSn1−xInxI6−2x based on Cs2SnI6 or CsInI4 phases. The
following chemical equation shows the phase composition and
yield of the reaction products.

(2− x)CsI+ (1− x)SnI4 + (x)In+ (1.5x)I2 →

Cs2−xSn1−xInxI6−2x (1)

Characterization Methods
The ampoules with samples were open right before the following
analyses. The samples were transferred to the closely packed cells
for further storing. XRD, Raman, andUV-vis measurements were
performed in air for 15 min.

X-ray diffraction measurements (XRD) were performed on
a Rigaku D/MAX 2500 diffractometer equipped with a rotating
copper anode (Cu-Kα radiation) and operated at 45 kV and
250mA from 5◦ to 80◦ in 22; at the continuous scanning speed
5◦ min−1 with a measuring step of 0.02◦. The experimental data
were analyzed using WinXPow (database PDF2) to define the
phase composition, and Jana2006 software was used for unit cell
parameter calculations.

To analyze the optical properties, the samples were studied
by diffuse reflection spectroscopy. One gram of each compound
was placed in the cell of the spectrophotometer and pressed
tightly with a quartz glass and then measured in the range
of 1,400–200 nm with a scan step of 1 nm. UV-vis diffuse
reflectance spectra were collected using a UV-vis spectrometer
Lambda 950 (PerkinElmer). All measurements were performed
at 298K with a scanning rate of 2 nm/s using quartz glass as a
reference. Reflectance (R) was converted to absorption (α) data in
accordance with the Kubelka–Munkmodel: α/S= (1 – R)2/(2·R).
The optical energy bandgap (Eg) was acquired using a Tauc plot,
the dependence of (αhν)2 on energy (hν).
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FIGURE 1 | (A) Powder XRD data for Cs2−xSn1−x Inx I6−2x (x = 0.01–0.1) compounds. (B) XRD data of Cs2−xSn1−x Inx I6−2x with high substitution rate x (x = 0.9 – 1).

All unmarked reflections belong to the CsInI4 phase. (C) XRD data of three samples with x = 0.01, 0.05, 0.1 ratio after a year of storage in air. “+” denotes Cs2SnI6
reflections, and “*” indicates reflections of CsInI4.

TABLE 1 | XRD data for Cs2−xSn1−x Inx I6−2x compositions.

Sample composition Substitution rate x Cell parameter a, Å Unit cell volume V, Å3 Rp RI

Cs1.99Sn0.99 In0.01 I5.98 0.01 11.6505 (6) 1581.4 (1) 13.66 5.52

Cs1.95Sn0.95 In0.05 I5.9 0.05 11.6541 (6) 1582.8 (1) 14.34 5.80

Cs1.9Sn0.9 In0.1 I5.8 0.10 11.6548 (3) 1583.1 (1) 15.91 6.32

Emission spectra were collected with a multichannel
spectrometer S2000 (Ocean Optics) with a nitrogen LGI-21
(λex = 337 nm) as an excitation source at 293K and 77K. All
spectra were corrected for the wavelength response of the system.
Additionally, the photoluminescence emission spectra of the
sample CsInI4 was investigated with a diode source of 365 nm.

EPR spectra were recorded using a X-band JES-FA200 (JEOL)
spectrometer at the temperature of 294–4.2 K. The modulation
frequency is 100 kHz and microwave frequencies are around 9.00

GHz. The samples are put in a quartz tube with an upper glass
part, then purged by Ar gas and vacuum three times, and finally
sealed in vacuum (about 20 Pa).

RESULTS AND DISCUSSION

As shown in Figure 1A, about 10% of tin atoms in the structure
of Cs2SnI6 can be substituted by indium atoms. All reflections
on the corresponding XRD patterns belong to the Cs2SnI6
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with a cubic structure and space group Fm-3m(225) (PDF2
file #73-330). Diffraction patterns for the compositions with
x from 0 to 0.15 display a shift of the reflections toward
lower 2θ upon increasing the substitution rate. The increase
of the unit cell parameter a compared to pure Cs2SnI6 phase
indicates a slight increase of the unit cell volume. According
to the fact that the ionic radius of the In3+ (0.74 Å) is
slightly larger than that of Sn4+ (0.69 Å), the cell volume
increases. At higher substitution rates, x of 0.3 and 0.5,
reflections of the CsInI4 phase (PDF2 file #76-2101) with a
monoclinic structure [P21/c (14) space group] are observed on
diffraction patterns of the respective samples. The estimated
cell parameters of the F-centered cubic Cs2SnI6 are given

FIGURE 2 | Raman spectra of samples Cs2−xSn1−x Inx I6−2x (x = 0.01–0.3)

and their optical microscopy data.

in Table 1. Such gentle change of the unit cell parameters
is probably due to the formation of iodine vacancies in the
anion sublattice.

Samples (polycrystalline powders) were stored in air under
laboratory conditions for 1 year and investigated by powder
XRD repeatedly during this period. According to the XRD
results (Figure 1), the indium-substituted samples remain single-
phase with the cubic Cs2SnI6 structure, while the pristine
Cs2SnI6 phase (without doping) decomposed already after a
month of storage into CsI and volatile SnI4, which turned
into SnO2 as a result of hydrolysis. The stability of the
substituted samples is probably due to the fact that indium
with iodine form stronger ionic bonds than tin; therefore,
the lattice of solid solutions is more stable than the pure
phase lattice. At the same time, the sample with x = 0.10
has very weak reflections of admixture at 18.77◦, 22.65◦,
and 23.66◦ in this XRD pattern. These reflections most
probably belong to the CsInI4 phase. For comparison, the
strongest reflections of cesium iodide CsI should be at 22.87◦,
32.56◦, and 52.63◦. The impurity is probably a result of the
segregation process.

The samples of In-substituted Cs2SnI6 were studied by Raman
spectroscopy. As can be seen from optical microscopy (Figure 2),
the samples are homogeneous in appearance and all crystallites
have a similar color. The spectra contain the strongest modes
ν(A1g)—122 cm−1, ν(Eg)—83 cm−1, and δ(F2g)—78 cm−1,
which are related to vibrations of [SnI6]2− octahedra [namely,
ν(A1g) is a symmetric stretching of Sn–X bonds; δ(F2g) is a
X–Sn–X asymmetric bending]. Substitution of Sn4+ with In3+

resulted in shortening of M–I bonds and distortion of [MI6]2−

octahedrons. Since Cs2SnI6 perfectly absorbs the visible part
of the spectrum, the excitation by a green laser (wavelength,
514.4 nm) excites second- and third-order harmonics at 244 and
366 cm−1 due to strong resonance. The relative shift of the lines
relative to the theoretical ones in the direction of smaller or
larger wave numbers is associated with a changing energy and
lengths of the Sn–I bonds in the [SnI6]2− octahedra. Substitution
of tin by indium results in small “left shift” and broadening of
ν(A1g), and δ(F2g) Raman modes show the increase of element–
iodine bond length. Raman spectra of the In-dopedCs2SnI6 differ

FIGURE 3 | (A) Optical absorption spectra of the samples Cs2−xSn1−x Inx I6−2x (x = 0.01–1.0). (B) Tauc plot for Cs2SnI6-based compounds, and (C) scheme of the

electronic band structure of CsInI4.
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FIGURE 4 | Photoluminescence emission spectra of (A) the samples Cs2−xSn1−x Inx I6−2x (x = 0.01–0.15) at 293K, and (B) and (C) PL emission of pure phase CsInI4
at 293 and 77K in visible and infrared (IR) range, respectively.

also from the spectrum reported by Qui et al. for pure Cs2SnI6
(Qiu et al., 2017).

In the Raman spectrum of the two-phase sample x = 0.3, a
band observed at 134 cm−1 corresponds to the vibration of the
[InI4]− tetrahedron. Namely, ν(A1g) is a symmetric stretching
vibration of In–I bonds in [InI4]− tetrahedral in CsInI4 phase.
Other vibration modes of [InI4]− tetrahedra do not appear in
the spectra. It was found that Raman spectrum of the x = 0.15
sample had an additional shoulder at 134 cm−1. The possible
reason for this is a fine and evenly distributed admixture of
CsInI4. Its XRD reflections do not present in diffractograms,
but Raman spectroscopy revealed its presence as the surface
admixture. Eventually, this admixture recrystallizes, leading to
larger crystallites of cesium iodogallate.

The optical absorption spectra shown in Figure 3 consist
of two maxima (at ∼800 nm and at ∼600 nm). The materials
absorb from the near infrared (from 1,000 nm) to ultraviolet
(UV) (380 nm). The first local maximum (∼800 nm) is due to
the transition of the electrons from the maximum of valence
band (which is formed from I 5p orbitals) to the minimum
of conduction band formed by hybridized I 5p–Sn 5s orbitals.
This transition is characteristic for all the samples excluding x =
1. The estimated bandgap energy grows slightly from 1.27 to
1.31 eV for the single-phase samples with x = 0–0.15 according
to the corresponding Tauc plots (Figure 3B). The second peak
in energy is approximately equal to the electron transfer energy
from slightly hybridized I 5p–Sn 5p orbitals localized below the
top of the valence band to hybridized I 5p–Sn 5s orbitals of the
conduction band.

As the indium concentration in the composition of the
materials increases, the content of the CsInI4 phase increases,
as can be seen from the XRD data, and this is manifested in
the absorption spectrum of the sample x = 0.5 (∼370 nm).
This absorption edge is approximately equal to ∼3.0 eV and
relates to transitions in the electronic structure of the CsInI4
phase (Figure 3B), namely, the electron transition from the I 5p
orbitals (top valence band) to the hybridized I 5p–In 5s orbitals
(conduction band bottom). The experimental Eg differs from the
calculated bandgap value presented in Persson (2016).

Figure 4A shows photoluminescence spectra of the samples.
The C2SnI6 perovskite phase demonstrates rather moderate
intensity of luminescence with the 337-nm (3.68 eV) excitation
laser, while its In-doped analog shows an intensive violet
band at 410 ± 10 nm. Its intensity increases with an increase
in the doping level x. Weaker broad maxima in 450–
480 nm regions are observed for the samples with lower
substitution rate.

Most likely, the PL of the solid solutions Cs2−xSn1−xInxI6−2x

(x = [0; 0.1]) corresponds to cascade relaxation of electrons
from the high free levels (anti-bonding derivative of Sn5p0

orbital) to the valence band (Xiao et al., 2015). It has been
demonstrated that decrease of the temperature up to 77K leads
to devolution of the PL process. Such behavior is typical for
materials with a gap slightly larger than the excitation laser
wavelength. The visible photoluminescence in Cs2SnI6 phase
is observed as a result of complex relaxation processes. The
relaxation of the excited electron to the bottom of the conduction
band occurs with visible luminescent process, and the following
transition to the top of the valence band has a much lower
energy than the observed PL process. Participation of deep levels
originated from the point defects (VI) and is another possible
reason for the PL effect in the visible diapason (Maughan et al.,
2018).

For comparison, the gray cesium iodoindate(III) shows
intensive PL bands at 380 ± 10 nm and 400 ± 10 nm
in the visible region and intensive PL process in IR
diapason at 1,170 ± 20 nm (1.16 eV) (Figures 4B,C). The
380-nm (3.26 eV) band correlates with the experimental
band gap transition above while the second maximum
in the visible range probably corresponds to shallow
defects or self-trapped exciton processes. Intensive IR
photoluminescence also originates from self-defect in cesium
iodoindate, but the deep level is attributed to deficiency in
iodine sublattice.

It is remarkable that the electron spin resonance effect is
more significant for the cesium iodostannate(IV) phase with
doped indium than for the pure phase. The ESR spectra for the
Cs2−xSn1−xInxI6−2x (x = 0.01, 0.05, 0.09, 0.9, and 1) shown
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FIGURE 5 | ESR spectra of Cs2−xSn1−x Inx I6−2x (with different ratio of x) at

4.2 K (A) in derivative form and (B) in integrated form.

in Figure 5 demonstrate week shift of the resonance towards
lower field values by the doping of indium from x = 0.01 to
x = 0.9, resulting in the shift of the g-factor from 2.0045 to
2.0065. In the range of x = 0.01 to x = 0.09, the integral
intensity of the ESR spectra grows up with increase of the

TABLE 2 | ESR spectra characteristics.

Sample composition Substitution
rate x

Integration
curve area

g-factor

Cs1.99Sn0.99 In0.01 I5.98 0.01 68.6 2.0045

Cs1.95Sn0.95 In0.05 I5.9 0.05 440.4 2.0051

Cs1.9Sn0.9 In0.1 I5.8 0.09 604.9 2.0054

Cs1.1Sn0.1 In0.9 I4.2 0.9 134 2.0065

CsInI4 1 3.4 2.0029

substitution level x in the solid solution (Table 2), suggesting
increment of the defects. The values of the g-factors and the
areas calculated by the integration are given in Table 2. The
spectra of the two-phase composition with x of 0.9 include
less intensive and broad maximum at 321.2mT. Probably, there
could be an input shoulder related to the tin-doped cesium
tetraiodoindate phase while the largest maximum corresponds to
the spectrum of the solid solution Cs2−xSn1−xInxI6−2x saturated
by In3+. Lower ESR resonance in CsInI4 phase, likely, attributed
to lower defect concentration in cesium tetraiodoindate as
a result of tetrahedral environment of indium and lower
doping level.

CONCLUSIONS

The perovskite-like phase Cs2SnI6 forms substitution solid
solutions, changing tin to indium, forming a substitution solid
solution of about 10 at.% of dopant. Increase of the indium
percentage leads to growth of ESR and photoluminescence
effects for the material. The successful experience in heterovalent
substitution of tin(IV) with elementary indium and iodine
as precursors opens new challenges for “improving” the
characteristics of cesium iodostannate for its application in
photovoltaics or optoelectronic devices. Weak degradation
of doped phase in comparison to pure Cs2SnI6 is a strong
advantage of the new investigated materials. Analysis of
optical properties has shown an increase of absorption
coefficient of the material that originated from growth
of occupancy in the valence band. The intensity of blue
photoluminescence also grows with a substitution rate up
to 15%.
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