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Abstract: Cardiology and oncology are two fields dedicated to the study of various types of
oncological and cardiac diseases, but when they collide, a new specialty is born, i.e., cardio-oncology.
Continuous research on cancer therapy has brought into the clinic novel therapeutics that have
significantly improved patient survival. However, these therapies have also been associated with
adverse effects that can impede the proper management of oncological patients through the necessity
of drug discontinuation due to life-threatening or long-term morbidity risks. Cardiovascular toxicity
from oncological therapies is the main issue that needs to be solved. Proper knowledge, interpretation,
and management of new drugs are key elements for developing the best therapeutic strategies for
oncological patients. Upon continuous investigations, the profile of cardiotoxicity events has been
enlarged with the inclusion of myocarditis upon administration of immune checkpoint inhibitors
and cardiac dysfunction in the context of cytokine release syndrome with chimeric antigen receptor
T cell therapy. Affinity enhanced and chimeric antigen receptor T cells have both been associated
with hypotension, arrhythmia, and left ventricular dysfunction, typically in the setting of cytokine
release syndrome. Therefore, the cardiologist must adhere to the progressing field of cancer therapy
and become familiar with the adverse effects of novel drugs, and not only the ones of standard care,
such as anthracycline, trastuzumab, and radiation therapy. The present review provides essential
information summarized from the latest studies from cardiology, oncology, and hematology to bring
together the three specialties and offers proper management options for oncological patients.
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1. Introduction

Cardiovascular diseases and cancer are the best-known causes of mortality worldwide,
cumulating 46.1% of the total number of deaths. Evidence-based studies have shown that the incidence
of cancer-related diseases has grown and the cancer-related mortality has decreased, demonstrated by
the expansion of the number of survivors of cancer since the 1990s [? ? ]. The survival of patients is
not only dependent on the tumor inhibitory efficiency of the treatments but also on knowledge about
the adverse effects of neoplastic treatments that have a major role in the therapeutic management of

Biomedicines 2020, 8, 496; doi:10.3390/biomedicines8110496 www.mdpi.com/journal/biomedicines

http://www.mdpi.com/journal/biomedicines
http://www.mdpi.com
https://orcid.org/0000-0003-0483-0178
https://orcid.org/0000-0002-3030-8626
http://www.mdpi.com/2227-9059/8/11/496?type=check_update&version=1
http://dx.doi.org/10.3390/biomedicines8110496
http://www.mdpi.com/journal/biomedicines


Biomedicines 2020, 8, 496 2 of ??

patients, especially in the establishment of proper dosages. Pre-existing cardiovascular diseases can
drastically influence therapy and can lead to the ending of cancer therapy. Cancer therapeutic-related
dysfunctions were first discovered over 50 years ago, when scientists studied the risk of cardiomyopathy
development in response to anthracyclines [? ]. Since then, cancer therapies, from anthracyclines
to immunotherapies and radiotherapy, have been associated with myocyte damage, left ventricular
systolic and diastolic dysfunctions, congestive heart failure, cardiac arrhythmias, thrombosis, pericardial
disease, hypertension, vasospasm, and myocardial ischemia [? ? ]. Therefore, the evaluation and
management of potential cardiovascular-related adverse effects in cancer patients receiving therapy is
equally important as the therapeutic itself.

In this review, we describe three types of cardiomyopathy, i.e., primary (toxic) cardiomyopathy,
referred to as cancer therapy-related type I and characterized by direct cardiomyocyte damage;
secondary cardiomyopathy, referred to as cancer therapy-related type II in respect to alterations
in perfusion, innervation, or modifications at the hormonal level; and type III cardiomyopathy,
simply known as myocarditis that describes inflammatory cell infiltration in the myocardial cells.

2. Primary Cardiomyopathies

Cancer therapy-related type I cardiomyopathies can be observed in many forms of neoplastic
treatments. These adverse effects intervene due to the direct toxic events caused by cancer treatment
regimens on the myocardium and are the most frequent form of toxic cardiomyopathies [? ].
Standard chemotherapeutics are compounds designed to target malignant cells and inhibit their
viability by interfering with their mitotic activity. Among these, anthracyclines are one of the most
recognized examples that inhibit DNA or RNA synthesis by direct interruption of DNA and RNA base
pairs strands [? ]. The mechanisms of anthracycline-related cardiotoxicity have a special characteristic.
For example, anthracycline drugs inhibit topoisomerase IIα and target mitochondria in cardiomyocytes.
Typical pathological changes in the heart include vacuolar degeneration of the sarcoplasmic reticulum,
swelling and disruption of the mitochondria, and myofilament degeneration [? ]. There is also evidence
of myocyte loss. Pathologic evidences include early studies showing chromatin condensation, as can be
seen in apoptotic cells in the myocardium of anthracycline-treated patients [? ]. Mitochondrial injury
is the main result of anthracycline-related cardiotoxicity [? ]. There are also preclinical hypotheses
that account ion dysregulation and changes in the cardiac profile of gene expression to be responsible
for installation of cardiotoxicity upon chemotherapy [? ]. The identification of specific molecular
alterations that mediate the cardiotoxic events could sustain the future development of targeted drugs
able to prevent the installation of such events. For example, iron chelators are among the first used
cardioprotective agents for limitation of anthracyclines-induced oxidative stress through restoration of
iron balance at the cellular level or through elimination of redox-active iron [? ].

Cardiotoxicity, the disease caused mainly by dose-adverse effects to different types of therapies,
including neoplastic therapies, is divided in two pathological forms, i.e., acute and chronic. The acute
form is associated with more secondary effects than the chronic form, with ECG changes such as
arrhythmias (up to 20–30% of patients), sinus tachycardia, supraventricular tachycardia, heart block,
and ventricular arrhythmias (up to 3% of patients). Another major symptom that can appear is dyspnea
with acute heart failure. Nevertheless, some patients can develop chest pain before shortness of breath
or pericarditis [? ? ? ].

Another example is trastuzumab, which is a humanized antibody directed against HER2
(also known as ERBB2) and which is overexpressed in 15–20% of breast cancers. On the one hand,
HER2 signaling increases the development of tumors such as cell proliferation, tumor growth, and
metastatic spread. On the other hand, inhibition of the HER2 pathway concludes in clinical success [? ?
? ]. As in the case of anthracycline-related cardiotoxicity, cardiac function and heart failure are adverse
effects which have been recognized in approximately 30% of patients in early clinical trials [? ]. However,
not long after the attempt of HER2 manipulation for the treatment of breast cancer, it was also discovered
that HER2 signaling was also vital for cardiac physiology. This was highlighted by the installation of
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synergistic cardiac dysfunction effects in patients receiving trastuzumab or trastuzumab combined with
doxorubicin [? ]. Anthracyclines can induce myocardial oxidative stress, which can lead to myocardial
damage. Trastuzumab increased myofibrillar disarray in anthracycline-treated rat cardiomyocytes,
suggesting that trastuzumab enhanced the susceptibility of cardiomyocytes to anthracycline-induced
oxidative stress [? ]. Studies have concluded, on the one hand, that trastuzumab-related cardiotoxicity
intervened in around 15–20% of patients, where heart failure incidence was under 5%. On the other
hand, it has been shown that patients who received trastuzumab had increased levels of cardiac
troponin in their blood and that it was associated with a higher risk of irreversible cardiac function [? ?
? ]. Nevertheless, other HER2-directed therapies, such as pertuzumab, trastuzumab-emtansine, and
lapatinib, are related to a lower risk of cardiac toxicity than trastuzumab. Studies have shown that
combined therapy with trastuzumab and pertuzumab did not increase the risk of cardiotoxicity as
compared with trastuzumab in monotherapy [? ? ? ].

Tyrosine-kinase inhibitors (TKIs) have a major role in cancer treatments and they represent the
second most important group of targeted therapies. TKIs impair the addition of a phosphate group to
a tyrosine residue within a specific protein. This transfer is actually the main factor in cellular signaling
that mediates the cellular functions, survival, and proliferation [? ]. Imatinib is a recognized example
of TKIs that intervenes with the structure and function of BCR-ABL1 fusion protein. BCR-ABL1 is
actually the molecular fingerprint of the Philadelphia chromosome in hematological malignancies,
as in the case of chronic myeloid leukemia [? ]. The mechanism of toxic action of imatinib upon
cardiomyocytes is described as follows: The activation of endoplasmic reticulum stress response,
which is continued with the dysfunction of the membrane potential of mitochondria, cytochrome C
releasement within the cytosol, and limitation of the ATP cellular level, that finally concludes with
cardiomyocyte death [? ]. Studies have shown that cardiomyopathy and heart failure produced by
imatinib therapy had an incidence under 1% [? ? ]. Erlotibin, an inhibitor of epidermal growth
factor receptor (EGFR) tyrosine kinase, is recognized as a safer kinase inhibitor in terms of cardiac
toxicity. In vivo studies have shown that this reduced risk was attributed to the activation of STAT3
signaling in the heart of mice, as the simultaneous administration of STAT3 inhibitor and erlotinib
diminished cardiomyocyte fatty acid oxidation and contractility of the heart, associated with a low risk
of cardiotoxicity. Erlotinib cardio-related effects have also been compared with sunitinib and sorafenib
that have been recognized for their cardiotoxic adverse effects. The initial supposition upon this
difference in adverse effects was associated with the degree of selectivity of the TKIs, where erlotinib
was more targeted than the other two compounds. However, it has been demonstrated that the
adverse effects on the cardiac system were not related to the selectivity of the treatment, where erlotinib
produced more dramatic changes in the kinome and transcriptome of cells [? ]. Paradoxically,
STAT3 activation in tumors is actually a mechanism of treatment resistance to EGFR inhibitors, for
example, pancreatic cancer [? ] and non-small cell lung cancer [? ? ]. According to this, it has been
proposed (and also demonstrated) that the inclusion of a STAT3 inhibitor to a EGFR targeted therapy
could enhance the therapeutic potential of the EGFR inhibitor [? ? ]. However, taking into account
that the specific STAT3 activation is among the cardioprotective signaling element of therapies such
erlotinib, these forms of treatments should be closely monitored by a cardiologist.

Guidelines recommend that before administering any potentially cardiotoxic therapeutic,
patients must be evaluated by a cardiologist for cardiac function by conducting a 12 lead ECG,
followed by a three-dimensional (3D) echocardiography examination or at least a two-dimensional
(2D) echocardiography, global longitudinal strain (GLS), and cTn measurement.

All these investigations are helpful for determining any potential cardiovascular disease,
risk factors, and optimal control of any of the cardiovascular modifications (as shown in Figure ??) [? ].
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Figure 1. Risk factors that can induce cardiomyopathies.

Studies have shown that cardiovascular events such as heart failure and arrhythmias were
determined by repeated measurement of cTn levels at one-month follow-up of patients receiving
anthracycline treatment. Cardiac dysfunction is defined as a 15% change of global longitudinal strain
and 10% less of left ventricular ejection fraction from baseline of the treatment evaluation to < 53% per
total [? ? ].

There are a considerable number of β-blockers, diuretics, and statins, which can have a protective
role against anthracycline-related cardiomyopathy such as carvedilol and nebivolol, spironolactone,
and statins [? ]. Scientists have been developing a new generation of drugs that includes erythropoietin,
which will influence the progenitor cell pool. Two trials on bisoprolol with perindopril and another
one with candesartan are ongoing for trastuzumab-induced cardiomyopathy and they have not yet
meet their primary end points [? ? ? ? ? ].

3. Secondary Cardiomyopathies

Type II cardiomyopathy evaluates other factors than a direct toxic effect on cardiomyocytes,
which influences the turn down in cardiac function. Knowing these causes can shift the balance in
favor of patients’ algorithms for diagnosis and treatment.

Studies have shown that cardiotoxicity was met in up to 30% of the patients who were following
schemes with 5-fluorouracil (5-FU) and capecitabine, as shown in Table ?? [? ]. The mechanisms
of cardiotoxicity are not yet completely understood; however there are studies suggesting that
vasoconstriction in coronary microcirculation during 5-FU and capecitabine cures are related to
the cardiotoxic events, especially in patients with Takotsubo syndrome [? ? ? ]. Other patients
can develop vasospasm-related myocardial infarction through the influence of oxidative stress and
metabolic disorders in cardiac muscle cells [? ]. 5-FU-related cardiotoxicity can be decreased with
the prodrug tegafur in combination with uracil which mediates the delivery of 5-fluoropyrimidine,
while intercepting with the generation of toxic metabolites [? ].

Targeted therapies, such as bevacizumab, have a low risk of cardiac toxicity as compared with
5-FU or with anthracyclines [? ]. It has been discovered that heart conditions, such as coronary artery
disease (CAD) and hypertension (HTA), which are two main risk factors for cardiomyopathy induced
by VEGF inhibitors, had the same mechanism as inhibition of the VEGF pathway, underlining the
importance of CAD and HTA as main risk factors [? ]. Insulin receptor pathway and platelet-derived
growth factor subunit-β pathway are two main pathways that influence sunitinb-related cardiotoxicity.
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The major role of sunitinib on the heart is to reduce contractility of the heart by reducing the coronary
flow reserve [? ? ].

Table 1. Therapies that can induce arrythmias.

Chemotherapeutic Agent Risk for Arrythmia

ALK inhibitors *

Doxorubicin high risk

Epirubicin high risk

Idarubicin high risk

Mitoxantrone high risk

Alkylating agents

Busulfan high risk

Cyclophosphamide A low risk

Ifosfamide no risk

Melphalan medium risk

CDK4/CDK6 inhibitors ** Ribociclib medium risk

Immune checkpoint inhibitors

Ipilimumab (anti-CTLA4) low risk

Nivolumab (anti-PD1) low risk

Pembrolizumab (anti-PD1) low risk

Microtubule-binding agents

Docetaxel medium risk

Paclitaxel low risk

Vinblastine no risk

Vincristine no risk

* ALK (anaplastic lymphoma kinase) inhibitors; ** CDK4/CDK6 (cyclin-dependent kinase 4 and 6) inhibitors.

Immunotherapies are drugs that are qualified to aim at specific immune cells with the intention
of killing malignant cells. One type of cancer immunotherapy, known as chimeric antigen receptor
T cell (CAR-T cell) therapy has the role of modulating T cell in recognition of unique signature surface
antigens on cancer cells [? ]. The first generation of CAR-T cell therapy was associated with a high
risk of cardiotoxicity with severe symptoms such as acute respiratory failure, shock, and, in the
end, cardiac arrest within 12 h of evolution of the condition. At the autopsy, systemic hemorrhagic
microangiopathy and multiorgan ischemia was discovered in the patients [? ].

Cytokine release syndrome (CRS) is a condition characterized by tachycardia (in mild forms
of CRS), hypotension, arrhythmias, and, in severe form of the condition, reduced left ventricular
ejection fraction (LVEF) [? ]. In sepsis, there are two major cytokines responsible for LVEF decrease,
known as tumor necrosis factor (TNF) and IL-1β and the result of LVEF drop is cardiac remodeling
with ventricular dilatation [? ]. To prevent this, studies have shown that usage of β-blockers and
dobutamine in patients with septic shock improved LVEF [? ].

It has been discovered that a second type of T cell-directed immunotherapy, known as bispecific
T cell engager therapy (BiTE therapy), could influence heart structure as the first form of therapy, but in
a milder version [? ]. Other types of immunotherapies include one known as immune checkpoint
inhibitors (ICIs). These drugs can influence the heart functions and produce severe conditions such
as myocarditis, Takotsubo syndrome, and global cardiomyopathies. ICIs are drugs that aim at T cell
inhibition pathways, such as the cytotoxic T lymphocyte antigen 4 (CTLA 4) and programmed cell
death 1 (PD1) pathways [? ? ? ].

Radiation therapy is one of the most important links in the chain of cancer therapy. The mechanism
of this treatment is based on DNA damage that leads to cell aging and cell death. Myocardial fibrosis
is produced by infiltration of the leukocytes in the microvascular endothelium of the coronary arteries,
which ultimately leads to ischemia and cardiomyocyte necrosis with fibrosis replacement [? ? ? ? ].
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In type II cardiomyopathy, it is essential to recognize and prevent risk factors. Guidelines recommend
reducing cancer therapies that have a major role in increasing the chance of cardiotoxicity. Specifically,
the administration of these drugs should be decreased until cardiac function is recovered or until
associated factors are controlled. Regarding 5-FU-induced or capecitabine-induced cardiotoxicity,
vasodilator drugs are the key treatments, such as nitrates and calcium-channel blockers [? ? ]. Scientists
have discovered that patients with renal insufficiency and older than 55 years were at higher risk
for developing 5-FU-induced cardiotoxicity and this drug should be administrated with caution [?
]. Vasodilator therapies should include nitrates and calcium-channel blockers (such as diltiazem).
Clinicians should investigate the cardiac rhythm by continuous ECG monitoring. In addition,
measurement of BNP (brain-natriuretic peptide) levels and echocardiography might be useful in this
group of subjects. In VEGF-inhibitor therapy, proper management of hypertension is a key assessment
for this group of patients. One of the main studies in the area, entitled SPRINT, recommends a target
of 130/80 mmHg or below for this group of subjects [? ? ]. Patients with severe decompensation
such as CRS grade III or higher who are following CAR-T cell therapy, should receive prednisone,
an anti-inflammatory glucocorticoid and for patients in shock, vasopressors and hemodynamic support
is recommended [? ]. Patients following radiation therapy are unprotected against harmful radiations
and the first measure that is necessary is a reduction in the exposure dose. Experimental studies have
shown that a combination of statin and angiotensin-converting enzyme had positive results and should
be taken into consideration in this group of patients, but there have been no clinical results so far.
The European Society of Cardiovascular Imaging and the Society for Cardiovascular Angiography and
Interventions are developing new algorithms for preventing the cardiac consequences of radiation
therapy [? ? ].

4. Type III Cardiomyopathies

Type III cardiomyopathies are described in multiple forms of cancer treatments such as conventional
chemotherapies, targeted cancer therapies, and immunotherapies and can lead to various forms of
cardiac diseases. Cyclophosphamide is one of the classic examples of conventional chemotherapy
that can lead to hemorrhagic myocarditis if the dose is higher than 270 mg/kg for one to four days
of usage and also can induce acute heart failure if the dose is over 150 mg/kg [? ? ]. This drug
can induce various forms of cardiac injury from hemorrhage and thrombosis, to tachyarrhythmia,
to pericardial effusion and tamponade. Studies have shown that 2 to 17% of patients treated with
cyclophosphamide-based therapy died from myocarditis [? ]. Sorafenib is the only TKI associated with
fulminant acute myocarditis with cardiogenic shock and the only TKI which has the most atrocious
result [? ]. The mechanism of action of sorafenib is described by blocking the actions of VEGFR
which stops angiogenesis and vasodilator processes, leading to an increase in vascular resistance,
hypertension, compensatory hypertrophy, and finally heart failure [? ].

Immunotherapies are the most spectacular forms of treatment, with high expectations in cancer
therapies, but with fewer studies related to adverse effects than the consecrated drugs. So far,
it is known that CTLA4 inhibition has fewer immune-related adverse effects than a combination
of CTLA4 and PDL1 [? ]. In the literature, conditions such as colitis, dermatitis, and pneumonitis
have an incidence of 10% or higher. Most recent studies have shown that myocarditis had the
highest mortality among patients (up to 40%) [? ]. As in type II cardiotoxicity, immunotherapies
affect the heart by decompensation of heart failure, cardiogenic shock, and sudden cardiac death.
Pathological studies have shown that ICIs produced structural modifications of the heart with
myocardial edema and apical ballooning, heart conditions that have been described in 33% of the
patients and in 14% of the patients, respectively [? ]. Immunotherapies-related cardiotoxicity has been
described multiple ways but has mainly been evaluated through measurement of amino-terminal
pro-BNP levels, troponin levels, ECG changes, and echocardiography evaluation. Regarding the
circulatory biomarkers, BNP and amino-terminal pro-BNP levels are more superior in detection of
cardiomyopathies than troponin levels. The LVEF remains almost normal despite installation of
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fulminant myocarditis in patients using immunotherapies [? ? ]. Proper guidance and prevention are
two essential steps in the management of immunotherapies-related cardiotoxicity. The management
of severe or fulminant myocarditis includes supportive care, such as inotropic therapy, mechanical
circulatory support (or extracorporeal membrane oxygenation) [? ? ], as well as 12-lead ECG is
recommended. This investigation can detect a decline in the R-wave amplitude which is suggestive
of pericardial effusion and reduced myocardial mass. In addition, ECG can detect PR prolongation,
heart block, bradycardia, ventricular ectopy, and ventricular tachycardia. Coronary angiography
and cardiac positron emission tomography are recommended as a secondary evaluation of the heart,
but they are not frequently used, especially because of the cost and their time-consuming character
as compared with echocardiography which is cheaper, easier, and faster [? ? ]. Immunosuppressive
therapies are associated with all forms of myocarditis. Drugs such as immunoglobulin, antithymocyte
globulin, infliximab, mycophelonate mofenil, and tacrolimus have shown positive results regarding an
effective life-threatening treatment against all forms of myocarditis [? ]. New studies have shown that
plasmapheresis was more efficient than drugs mentioned earlier, because ICIs have a half-live greater
than other chemotherapeutics known until now, for example, 14.5 days for ipilimumab, 25.0 days for
pembrolizumab, 26.7 days for nivolumab, and 27.0 days for atezolizumab [? ].

5. Arrhythmias Related to Neoplastic Treatment

As previously mentioned, there are numerous cardiac conditions caused by cancer therapies,
but the most important among them are arrhythmias. As shown in Table ??, the grade of risk is variable
between subgroups of cancer treatments. In general, when we refer to arrhythmias, there are two
major subgroups differenciated by heartbeats, bradycardia, and tachycardia (with atrial fibrillation,
as the most representative pathology).

5.1. Bradycardia

The first bradycardia case in connection to cancer treatment was related to paclitaxel, a conventional
chemotherapeutic drug, where almost 30% of the patients receiving this form of therapy had
bradycardia-induced episodes, but most of them were asymptomatic [? ]. Thalidomide is another
classic drug that produces bradycardia in almost 50% of the patients treated for myeloma [? ].

Targeted cancer therapies are another group of cancer therapeutics that can induce bradycardia,
especially sinus bradycardia. Pazopanib is the main representative drug of this group with a chance
of 2–19% of inducing bradycardia, but there are also other cancer therapies that produce a low pulse
such as sunitinib, crizotinib, and ceritinib [? ]. Ibrutinib is another TKI but with more devastating
consequences on the heart, such as atrial sinoatrial arrest and asystole, followed by death [? ].

ICIs can produce different forms of bradycardia, up to atrioventricular block grade III, which is
a pacemaker implantation condition [? ? ]. In addition, patients receiving ICI therapy can manifest
conduction diseases, which evolve with death in almost 50% of the cases [? ].

Nevertheless, bradycardia cases have been reported in patients who were on different schemes of
radiation therapy and the dose of radiation used could produce fibrosis in the whole heart, from the
AV nodal area up to the bundle branches [? ].

Regarding the management and treatment of chemotherapy-induced bradycardia, it is
recommended that sustained drug dosages be reduced or complementary medications such as
β-blockers, calcium-channel blockers be avoided. Nevertheless, K+ levels, renal and thyroid function
should be rigorously investigated periodically.

5.2. Atrial Fibrillation in Cancer Therapies

Atrial fibrillation (AF) is another pathology that can influence treatment in many forms of
cancers and can indirectly detect bleeding events in a tumor by anticoagulant usage against AF.
For example, cancer antigen CA125 is used as a predictor of AF in postmenopausal women, as well as
a tumoral marker for ovarian cancer [? ? ]. Symptoms of AF include palpitations, chest discomfort,
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and dyspnea. This heart condition can influence the prognostic of neoplastic patients by evolving into
thromboembolism, myocardial ischemia, and heart failure, conditions that can lead to premature death.

AF is often met in multiple classic chemotherapies, especially in paclitaxel and melphalan.
Eight per cent of patients receiving melphalan have developed AF, and studies have shown that left
atrial enlargement was the main risk factor for developing such conditions [? ? ].

AF has been reported in patients receiving TKIs, especially ibrutinib, where it has been shown
that up to 16% of the patients developed the condition [? ? ].

Studies have shown that patients with cancer and AF had high levels of C-reactive protein (CRP)
in their blood. In addition, patients receiving CAR-T cell therapy have a higher risk of developing AF
than patients receiving other ICIs, and, importantly, AF was also present in young patients receiving
CAR-T cell therapy [? ].

AF is responsible for cardiac conditions such as pericarditis or cardiomyopathies in oncological
patients. Management and prevention of AF in oncological patients have the same goals as in the
general population, with β-blockers such as atenolol and metoprolol used as first-line treatment agents.
In addition, Ca2+ channel blockers and digoxin are recommended for reduction in the heart rate, but it
is known that ibrutinib can increase the plasma levels of carvedilol, verapamil, diltiazem, amiodarone,
and digoxin, and therefore caution is recommended when these drugs are used in combination for AF
management [? ].

Anticoagulants have a benefical and necessary role in AF, but it must be administered with
precautions in patients receiving cancer therapies. Ibrutinib, for example, is associated with a major risk
of bleeding in up to 7% of the patients, by inhibiting the von Willebrand factor and collagen-mediated
platelet activation [? ? ]. A combination of antiplatelet agents and anticoagulation therapy multiplies
the risk of bleeding both in the general population and in the oncological population as well. On
the basis of the CHA2DS2-VASc score and HAS-BLED score, low-molecular-weight heparin or direct
oral anticoagulants such as NOACs are recommended by both cardiologist and oncologist to prevent
complications mentioned before in neoplastic patients [? ? ? ? ].

6. Complementary Investigations for Diagnosing Cardiotoxicity

On a daily basis, it is recommended that the clinical team in oncology should include a cardiologist,
in addition to the oncologists, for early detection of cardiovascular diseases before the oncological
cure is set in motion, with the goal of recommending optimal treatments for neoplastic patients.
Echocardiography is the gold standard and the most used imaging technique for the evaluation of
structural and functional abnormalities of the heart. Other investigations include CMR, biomarkers for
myocardial injury, SPECT, and PET imaging (Figure ??).

Cardiovascular magnetic resonance imaging (CMR) is used to evaluate heart dilatation with
high precession. The major role of CMR is to demonstrate a non-ischemic pattern of late gadolinium
enhancement (LGE) most consistent with a myocarditis. Troponin I is a more specific subunit
than troponin T and it remains detectable longer than troponin T (10–14 days versus 4–7 days).
Troponin subunit levels are both used to evaluate the presence of myocardial injury [? ]. BNP (brain
natriuretic peptide) and its subunit NT-proBNP (N-terminal pro-B-type natriuretic peptide) are used
to evaluate heart failure and myocardial dysfunction in patients using cancer therapies and they are
effective predictors of short- and long-term major adverse events after ischemic heart disease [? ?
]. Single photon emission computed tomography (SPECT) imaging of NSCLC (non-small cell lung
carcinoma) with a 99mTc-labeled sdAb (99mTc-NM-01) that binds in a specific manner to human
PD-L1 is feasible to use in correlation with PD-L1 immunohistochemistry results. This method is a
complementary investigation to evaluate the myocardial perfusion of the heart.

Positron emission tomography/computed tomography (better known as PET-CT or PET/CT) is a
technique of the nuclear medicine spectrum which brings together, in a single gantry, a positron
emission tomography (PET) scanner and an X-ray computed tomography (CT) scanner, to gather
sequential images from both scanners in the same analysis, which are combined into a single superposed
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(co-registered) image. Thus, PET imaging provides key information regarding the spatial distribution
of metabolic or biochemical activity in cancer.
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7. Gender and Age-Related Differences in Chemotherapy-Induced Cardiotoxicity

Cancer therapies must be adjusted differentially for pediatric patients versus elder patients
(older than 65 years old) [? ] because they respond different to the oncological treatment. For example,
breast cancer biology may differ in older patients who receive less intensive treatment and who
have a higher risk of mortality. In this group, tolerance of treatment, as well as life expectancy may
be significantly reduced, are factors that should be considered when new oncological treatment is
recommended [? ? ? ]. Among pediatric patients, studies have shown that cancer therapies had more
positive results. Any cancer types that are discovered at an early age are associated with higher life
expectancy and also a higher tolerance to treatment. Studies have discovered that pediatric patients
have a superior immunity as compared with seniors, because people over 65 years of age develop
different types of diseases (such as diabetes mellitus) which can influence and unbalance the immune
system before any cancer is discovered in this group [? ? ]. Moreover, the risk of developing cardiac
toxicities is more common in elderly patients due to an already susceptible phenotype characterized by
the presence of chronic heart disease.

There are also differences between genders in terms of cancer evolution and how they respond to
treatment. Cardiovascular cells contain functional estrogen (ER) and androgen (AR) receptors and are
targets for sex hormone action, which can influence many physiological and pathological processes,
including vascular and myocardial cell homeostasis. Two ERs, ERα and ERβ, have been described.
17β-estradiol (E2) may have genomic and non-genomic effects. The genomic effects involve binding of
hormones on hormone responsive elements and further regulation of cardiac specific gene expression [?
]. Non-genomic effects involve rapid, within seconds or minutes, signaling effects through activation
of non-nuclear membrane-associated ERs [? ]. The relative importance of genomic and non-genomic
effects of ERα and ERβ in the cardiomyocyte is still a matter of debate [? ? ? ]. In humans, beyond these
biological aspects, differences in lifestyle between women and men such as smoking status, alcohol
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consumption, or dietary habits could also partly explain this sexually dimorphic gene expression,
habits which are known to be associated with the incidence of heart failure [? ].

8. Conclusions

The new era of oncology emerges with new treatment options for malignant diseases that ultimately
lead to low rates of tumor progression and a significant increase in favorable prognostics. However,
one of the most important aspects in terms of obtaining complete clinical success is represented by the
evaluation of secondary conditions and proper management of the entire clinical profile of the patients,
especially cardiologic evaluation.

Cancer therapy has been evolving rapidly on the uprising hill of developing new drugs, from classic
therapies to targeted molecular therapies and especially, with higher expectations and immunotherapies.
Due to the novelty of certain therapies, further studies are needed to consolidate cardiovascular imaging
and new biomarkers to decide when to intervene and stop a potentially cardiotoxic therapy. Together we
can develop a better tomorrow!
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