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Abstract

The establishment of an expression quantification system that can be easily applied for the

comparison of microRNAs (miRNAs) from biological samples is an important step toward

understanding functional mechanisms in organisms. However, there is lack of attention on

the selection of reference genes for miRNA expression profiling in insect herbivores. Here,

we explored the candidate reference genes in a notorious pest of cruciferous crops, Plutella

xylostella, for normalization of miRNA expression in developmental stages and tissues and

in response to a change of food source from artificial diet to host plant Arabidopsis thaliana.

We first compared the expression levels and stability of eight small RNAs using qRT-PCR,

and found that miR11 was the most suitable reference gene for expression quantification of

the miRNAs. We then confirmed this finding using digital droplet PCR and further validated

with a well-studied cross-kingdom miRNA derived from A. thaliana (ath-miR159a). How-

ever, none of the reference genes was applicable for all experimental conditions, and multi-

ple reference genes were sometimes required within the same experiment. Our work

provides a method for the selection of reference genes for quantification of plant-derived

miRNAs, which paves the way for unveiling their roles in the insect-plant coevolution.

Introduction

MicroRNAs (miRNAs) are a class of single-stranded noncoding RNAs characterized by their

short length ranging from 18 to 24 nucleotides and universally exist across various living

organisms [1]. MiRNAs function at the posttranscriptional level by silencing gene expression

or protein translation and play pivotal roles in many biological processes in insects, such as

cell growth, immune response, and apoptosis [2]. Establishing a quantitative expression profil-

ing platform for the comparison of miRNAs from biological samples is the basis for further

functional studies.

Fluorescence-based quantitative real time reverse transcriptase PCR (qRT-PCR) is widely

used for relative quantification of gene expression [3, 4]. A proper reference gene is required
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for the normalization of gene expression in qRT-PCR experiments to ensure results are com-

parable among the tested samples [5, 6]. This method is also applicable for the quantification

of miRNA expression, in which the U6 snRNA (U6) or 5S rRNA is commonly used as the ref-

erence gene. However, the expression of these two small RNAs may become unstable under

some specific conditions [7, 8]. Further, under the various biotic and abiotic stresses, some

other reference genes have been found suitable for the quantification of corresponding

miRNA expressions [9–11]. Based on screening of high-throughput sequencing data of the

insect pest Helicoverpa armigera, eight miRNAs and two ribosomal RNAs with constitutive

expression patterns were selected as candidate reference genes to normalize qRT-PCR data,

and no single reference gene was suitable for all experimental conditions [12].

In contrast to qRT-PCR, the droplet digital PCR (ddPCR) is used for the absolute quantifica-

tion of gene expression, in which the PCR is performed in discrete and volumetrically defined

water-in-oil droplet partitions, providing more precise and sensitive results and a wider detec-

tion range [13–15]. Sample partitioning mitigates the effects of target competition, making PCR

amplification less sensitive to inhibition and greatly improving the discriminatory capacity of

assays [16]. Importantly, the quantification of gene expression using ddPCR is independent of

the reference gene and standard curves [17] and is especially suitable for measuring low-abun-

dance miRNAs [18, 19]. There are two detection methods for ddPCR based on EvaGreen dye

and TaqMan probe. Studies have shown that these two methods are equally reliable in circulat-

ing miRNA quantification in human plasma and blood [20]. However, ddPCR is relatively

costly and time-consuming, which prevents its wider application compared with qRT-PCR.

The diamondback moth (Plutella xylostella) is a worldwide notorious specialist insect

attacking cruciferous crops [21]. It has the ability to detoxify the glucosinolates of host plants

through a specific sulfatase [22, 23]. Given its capacity to rapidly develop resistance to most

classes of insecticide, biologically-based approaches for its control are increasingly needed [24,

25]. A better understanding of the function of the miRNA-centered gene expression regulation

system in P. xylostella may provide an alternative approach for the management of this insect

pest. However, information on the selection of suitable reference genes for miRNA expression

quantification in P. xylostella remains limited [26]. In this study, we tested eight reference

genes including seven miRNAs and one ribosomal RNA of P. xylostella from small RNA

sequencing data for their application in the qRT-PCR-based miRNA expression quantifica-

tion. Using this system, we successfully detected the well-studied plant-derived miR159a, and

these results were further validated using ddPCR. The work provided a method for identifying

optimal reference genes for miRNA expression quantification in P. xylostella and paved a way

for unveiling the roles of plant-derived miRNAs in cross-kingdom gene expression regulation.

Results

Expression levels of candidate reference genes

Results showed that six candidate reference genes displayed PCR efficiency (E) values ranging

from 94.7% to 109.6% with a correlation coefficient (R2)> 0.98 (Table 1 and S1 Fig). miR2b-

5p and miR677 with abnormal PCR efficiencies were excluded for further analysis. There was

no nonspecific amplification in qRT-PCR (S2 Fig). Among the tested samples, most candidate

miRNAs exhibited a moderate expression levels with Ct values greater than 15 cycles with the

exception of miR3281, which produced a Ct value less than 10 cycles (Fig 1). We therefore

excluded miR3281 for further analysis to avoid deviation in the expression levels of reference

genes. In all samples, U6 displayed the lowest dispersion while miR624� showed the highest

variation (Fig 1 and S1 Table). Finally, four miRNAs, miR279d, miR11, miR624�, and

miR4175-3p, and U6 were used for stability analysis.

Reference genes for expression analysis of plant-derived microRNAs in Plutella xylostella

PLOS ONE | https://doi.org/10.1371/journal.pone.0220475 August 1, 2019 2 / 17

Weiyi He). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0220475


Stability of candidate reference genes in developmental stages and tissues

of G88 strain

The comprehensive ranking calculated by RefFinder identified miR624� as the most stable ref-

erence gene over all the developmental stages (Fig 2A). Rankings varied with Delta CT and

NormFinder identifying miR624�, miR279d, and U6 as the most stable genes among develop-

mental stages (Fig 2B and 2C). In contrast, BestKeeper selected U6, miR624�, and miR4175-3p

(Fig 2D), and geNorm ranked miR11 and miR624� first followed by miR279d and U6 (Fig 2E).

However, the candidate gene miR624� was excluded for stability analysis due to its extreme Ct

value (> 35) in all the tissues. Once removed, U6 was considered the most stable gene followed

by miR11 (Fig 3).

Stability of candidate reference genes in tissues of G88-to-Col 0 (GC) strain

To determine whether the stability of candidate genes was altered when the GC strain fed on

artificial diet was transferred onto A. thaliana (producing the GC strain), tissue samples

including metabolic and excretory organs and body fluids (hemolymph) dissected from GC

strain were used to validate the four reference genes (miR11, miR279d, miR4175-3p and U6).

The results showed that the stability ranking differed from that of tissue samples of G88 strain.

The gene stability ranked by Delta CT was consistent with NormFinder given that miR11 and

miR279d were the most stable reference genes instead of U6 (Fig 4A and 4B), while BestKeeper

identified U6 as the most stable reference gene (Fig 4C). Similarly, geNorm identified

miR279d and miR11 as the best reference genes (Fig 4D). In both strains, miR11 was identified

as one of the most stable genes while miR4175-3p was the least stable (Fig 4E).

Optimal numbers of reference genes

The program geNorm can be used to determine the optimal number of reference genes for

gene expression normalization. Pairwise variation Vn/n+1 was calculated between the two

sequential normalization factors (NFn and NFn+1), using an average value of pairwise

Table 1. Evaluation of primers used for qRT-PCR.

Name Sequence (5’-3’) E (%) R2 Ta (˚C)

miR-279d RT: CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGGATGAG 109.6% 0.992 58

F: ACACTCCAGCTGGGTGACTAGATTTTCA

miR-11 RT: CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGCTAGAA 100.3% 0.986 58

F: ACACTCCAGCTGGGCATCACAGTCAGAG

miR-3281 RT: CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACACGCCA 94.7% 0.983 58

F: ACACTCCAGCTGGGAGAAATCTTATGTCGATG

miR-624� RT: CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTGAGACTA 108.8% 0.995 58

F: ACACTCCAGCTGGGTATTCACCAGTACTTG

miR-4175-3p RT: CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCTACCAT 108.4% 0.996 58

F: ACACTCCAGCTGGGGGCGTAGCTCAG

U6 F: CTCGCTTCGGCAGCACA 108.4% 0.996 58

RT&R: AACGCTTCACGAATTTGCGT

Universal R: TGGTGTCGTGGAGTCG / / 58

RT, reverse transcription primer; F, forward primer; R, reverse primer; E, PCR efficiency; R2, regression coefficient; Ta, annealing temperature. The sequence

underlined in forward primer denotes the reverse complementary sequence of the last 8 bp of mature miRNA, and the sequence underlined in reverse transcription

primer represents the remainder sequence of mature miRNA.

https://doi.org/10.1371/journal.pone.0220475.t001
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variations (V score) less than 0.15 as a guideline [27]. The results showed that all the V scores

were significantly less than the proposed 0.15 value (Fig 5). For the developmental stages, the

three most stable genes provided high quality data (Fig 5A). For both tissue samples of G88

and GC strains, the best two reference genes were sufficiently enough for reliable normaliza-

tion (Fig 5B and 5C).

Stability of candidate reference genes measured by ddPCR

To further confirm the stability, the top three reference genes (miR11, miR279d, and U6)

selected from tissue samples of the GC strain were subjected to absolute quantification using

ddPCR. In the assay for thermal gradient optimization of annealing temperature, the negative

and positive droplets were separated from each other and the dispersed droplets were reduced

Fig 1. Cycle threshold (Ct) values of candidate reference genes. The Ct values of the candidate reference genes were measured in the samples from G88

and GC strains as described in the Materials and Methods.

https://doi.org/10.1371/journal.pone.0220475.g001
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Fig 2. Stability analysis of candidate reference genes in the developmental stages of G88 strain. The Ct values derived from samples including first-day eggs, 1st

instar larvae, 2nd instar larvae, 3rd instar larvae, 4th instar larvae, pupae and adults were used to calculate the stability values by different algorithms. A lower value

indicates a more stable candidate gene as reference gene (numbers reported above the columns).

https://doi.org/10.1371/journal.pone.0220475.g002
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Fig 3. Stability analysis of candidate reference genes in the tissues of G88 strain. The Ct values derived from samples including brain, midgut, silk gland, Malpighian

tubule, fat body, hemolymph, and the remaining tissues of 4th instar larvae were used to calculate the stability values by different algorithms. A lower value indicates a

more stable candidate gene as reference gene (numbers reported above the columns).

https://doi.org/10.1371/journal.pone.0220475.g003
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Fig 4. Stability analysis of the candidate reference genes in the tissues of GC strain. The Ct values derived from samples including midgut, silk gland, Malpighian

tubule, fat body, hemolymph and remaining tissues from the first-day 4th instar larvae were used to calculate the stability values by different algorithms. A lower value

indicates a more stable candidate gene as reference gene (numbers reported above the columns).

https://doi.org/10.1371/journal.pone.0220475.g004
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at 55.7–56.9˚C as revealed by the 1-D fluorescence amplitude plots (S3–S5 Figs). The optimal

annealing temperature was finally set at 56˚C. In addition, cDNA of larval midgut of the GC

strain was assessed to ensure the concentration loaded within the dynamic range of detection.

The appropriate amounts of input DNA were 50 ng, 10 ng and 5 ng for miR11, miR279d and

U6, respectively (S3–S5 Figs).

We then detected the absolute expression levels of the top three reference genes (miR11,

miR279d and U6) (S6–S8 Figs) and found that miR11 remained as the most stable reference

gene based on absolute quantitative levels due to the lowest standard deviation (Table 2).

Validation of reference gene selection

The target miRNA ath-miR159a, a plant-derived miRNA, was only detectable in GC strain

samples. Therefore, the levels of ath-miR159a in various tissues of the GC strain were evaluated

by using its level in midgut as a control group. The expression patterns were analyzed by four

different normalization factors: 1) the best (NF1, miR11), 2) the worst (NF4, miR4175-3p), and

two optimal recommended combinations, 3) NF(1–2), miR11 and miR279d and 4) NF(1–3),

miR11, miR279d and U6 (Fig 6). Generally, the expression patterns of ath-miR159a normal-

ized by NF1, NF(1–2) and NF(1–3) were similar but distinct from that normalized by NF4. The

Fig 5. Determination of the optimal number of reference genes for normalization. (A) Developmental stages of G88 strain; (B) Tissues of G88 strain; (C) Tissues

of GC strain. Pairwise variations (Vn/n+1) were calculated between the normalization factors NFn and NFn+1 by geNorm to determine the optimal number of

reference genes. geNorm decides whether inclusion of an extra reference gene adds to the stability of the normalization factor.

https://doi.org/10.1371/journal.pone.0220475.g005

Table 2. Validation of the stability of candidate reference genes using ddPCR.

Gene n Mean ± SD Maximum Minimum

miR11 6 80.05 ± 24.40 107.00 39.70

miR279d 6 65.24 ± 38.64 135.00 20.90

U6 6 192.96 ± 47.19 275.00 97.20

Data are shown in the form of absolute concentration (copies/μL). The mean, maximum and minimum of absolute concentrations of the sampled tissues of the GC

strain are shown. n: number of the tested tissue samples, SD: standard deviation.

https://doi.org/10.1371/journal.pone.0220475.t002
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level of ath-miR159a in hemolymph samples was relative high when using NF1, NF(1–2) and

NF(1–3). However, its level in the remaining tissues became the highest when using NF4. There

was no difference in ath-miR159a levels between the midgut and the remaining tissues nor-

malized by NF1, NF(1–2) and NF(1–3), while a significant difference was found with NF4.

To further evaluate the effects of four normalization factors on the accuracy of the

qRT-PCR test, absolute quantification of ath-miR159a was investigated using ddPCR (S9 Fig).

Its expression profiling was similar with the expression pattern normalized by NF1, NF(1–2) or

NF(1–3) in qRT-PCR but varied greatly with NF4. We found that ath-miR159a was mostly dis-

tributed in hemolymph followed by Malpighian tubule and fat body (Fig 7). Consistent results

of qRT-PCR and ddPCR emphasized that miR11 was an ideal reference gene for expression

normalization and profiling of plant-derived miRNAs in P. xylostella.

Discussion

Detection of expression level of miRNAs using qRT-PCR is fundamental for functional studies

in insects [27, 28]. However, the work on selection of reference genes for miRNA quantifica-

tion in P. xylostella is limited regarding developmental stages and insecticide resistance [26].

In our study, we built a system that could trace whether plant miRNAs entered the insect body

for cross-kingdom gene regulation, by transferring larvae of G88 strain of P. xylostella, which

permanently fed on artificial diet without plant ingredients, onto the host plant A. thaliana. To

avoid nonspecific amplification due to the limit of short miRNA sequences, stem-loop strategy

can be used and, cDNA generated using this strategy is exclusive for a single miRNA in every

individual sample [29]. Based on this notion, we initially selected seven candidate miRNAs

and U6 snRNA. We then assessed the stability of these eight candidate genes over different

developmental stages and tissues in the G88 strain before evaluating them in different tissues

of the GC strain. We were able to select the most stable reference gene, miR11. Through this

study, we also developed a qRT-PCR-based system for the accurate measurement of level of

plan-derived miRNAs in P. xylostella.

Further analyses on Ct values for stability led us to eliminate most of the candidate refer-

ence genes. U6 was also a strong candidate but it has been reported that U6 is not always an

appropriate reference gene for qRT-PCR. It is likely that the longer RNAs, such as U6, are

more easily degraded by RNase after repeated freezing and thawing [7, 8]. In contrast, miRNAs

appear to be more stable, particularly those with a high GC ratio or under the protection of

protein carrier and exosome [30, 31]. Therefore, it is difficult to identify a universal reference

gene for the normalization of gene expression under various circumstances, but gene-specific

variation derived from treatment differences in an experiment can be faithfully reflected when

using proper reference genes [9, 32]. Previous studies have showed that using multiple refer-

ence genes can be more reliable than one single reference gene to capture the variation [33–

35]. By comparing the ath-miR159a expression patterns normalized by single or multiple ref-

erence gene(s), we were able to select miR11, which produced a similar result to those normal-

ized by reference gene combinations.

Currently, ddPCR is extensively used to detect the number of dietary miRNAs related to

cross-kingdom regulation and circulatory miRNAs associated with cancer [18, 36]. With the

random partitioning of droplets, ddPCR technology can reliably and precisely detect the slight

changes of mRNA or miRNA in a small amount of sample [37]. In our study, we observed that

ath-miR159a was much higher in hemolymph, Malpighian tubule, and fat body than in the

midgut of the GC strain and was absent in the G88 strain. This finding indicated that the

ingested plant miRNAs could break through the insect gut barrier and be absorbed within the

whole body of P. xylostella and may exert some specific functions. The limitations of these
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results might have been attributed to the fact that target miRNAs were in the lowest amplifica-

tion length range at 60 bp, which is shorter than recommended amplicon length of 80–250 bp

and potentially affected the separation between positive and negative droplets.

Taken together, this study assessed the selected reference genes for quantification of plant-

derived miRNAs in P. xylostella by means of qRT-PCR and ddPCR. After comparing and ana-

lyzing the stability of four candidate reference genes, we recommended miR11 to be use as a

reference gene. This work was fundamental for revealing cross-kingdom functions of the

Fig 6. Validation of reference gene selection using qRT-PCR. Relative expression levels of the target gene ath-miR159a in the tissue samples of the GC strain

were measured by four normalization factors. NF1, normalized against the best reference gene; NF(1–2), normalized against the two most stable reference

genes; NF(1–3), normalized against the three most stable reference genes; and NF4, normalized against the least stable reference gene. MG: midgut, SG: silk

gland, MT: Malpighian tubule, FB: fat body, HE: hemolymph, RE: remaining tissues. Expression levels were independently compared among tissues for each

normalization factor. The data were presented as the mean ± SD with level in midgut normalized to 1 (one-way ANOVA followed by a Tukey’s multiple

comparison test, p< 0.05).

https://doi.org/10.1371/journal.pone.0220475.g006

Fig 7. Validation of reference gene selection using ddPCR. MG: midgut, SG: silk gland, MT: Malpighian tubule, FB:

fat body, HE: hemolymph, RE: remaining tissues. The data were presented as the mean ± SD (one-way ANOVA

followed by a Tukey’s multiple comparison test, p< 0.05).

https://doi.org/10.1371/journal.pone.0220475.g007
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miRNAs derived from host plant in regulating gene expression of the insect herbivore. These

findings may help develop a novel siRNA-based control strategy produced from the plants and

free from genetic transformation.

Materials and methods

Insects and sampling

The G88 strain of P. xylostella [38] was introduced and reared on artificial diet under labora-

tory conditions for more than two years prior to these experiments. Insects were maintained at

25 ± 1˚C and a RH of 60 ± 10% with a photoperiod of 16 h: 8 h (L: D). To develop the GC

(G88-to-Col 0) strain, newly emerged 1st instar larvae of the G88 strain were transferred on

Col 0-type of the host plant Arabidopsis thaliana to be reared until the 4th instar.

Individuals of the G88 strain were collected at different developmental stages while only 4th

instar larvae of the GC strain were collected. In addition, various tissues of 4th instar larvae of

G88 and GC strains and adults of G88 strain were collected. Regarding the developmental

stages of G88 strain, each biological replicate contained one of the following to acquire suffi-

cient materials for the analyses: 300 first-day eggs, 50 1st instar larvae, 30 2nd instar larvae, 10

3rd instar larvae, 6 4th instar larvae, 6 pupae or 6 adults. For tissues of G88 strain, the following

tissues were collected: brain, midgut, silk gland, Malpighian tubule, fat body, hemolymph, and

the remaining tissues of 4th instar larvae (each tissue as a pool of 30 individuals per biological

replicate), and adult testes and ovaries (pooled samples of 30 for each biological replicate). For

tissues of the GC strain, the same procedure was used to dissect midgut, silk gland, Malpighian

tubule, fat body, hemolymph and remaining tissues from the first-day 4th instar larvae for each

biological replicate. All specimens or tissues were quickly frozen in liquid nitrogen and stored

at -80˚C. All following qRT-PCR and ddPCR experiments were based on these three biological

replicates.

Total RNA extraction and cDNA synthesis

Total RNA was extracted using TRIzol kit (Invitrogen, USA) following the manufacturer’s

instructions and quantified by a Nanodrop 2000 (Thermo Scientific, USA). RNA samples with

a clear 18S rRNA band in the agarose gel electrophoresis and A260/A280 values within 1.9–2.1

were further used for the synthesis of first-strand cDNA of mature miRNA using the GoScript

Reverse Transcription System kit (Promega, USA). The gene-specific reverse primer was syn-

thesized by adding the reverse complementary sequence of the last 8 bp of mature miRNA to

the 3’ terminal of the common stem-loop structure (Table 1). The remainder of the sequence

of mature miRNA was added with a universal adapter at the 5’ terminal as the forward primer

paired with a universal reverse primer. The mature sequences and expression levels of candi-

date miRNAs from high-throughput sequencing were presented in S2 Table. Tested miRNAs,

including a plant-derived miR159a from A. thaliana, were verified using Sanger sequencing

(S10 Fig).

qRT-PCR assays

qRT-PCR assays were performed using the GoTaq qPCR kit (Promega, USA) and CFX96 Real

time PCR system (Bio-rad, USA). The qRT-PCR reaction mixture consisted of 10 μL of

2 × GoTaq qPCR Master Mix, 0.5 μL of 10 μM for each of the gene-specific primer pairs

(Table 2), 2 μL of 3 × diluted cDNA sample, and 7 μL of nuclease-free water for a final volume

of 20 μL. PCR program was as follows: 95˚C for 3 min, 40 cycles of 95˚C for 30 s and 58˚C for

30 s. At the end of the cycling, the melting curves of the resulting PCR products were obtained
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by gradually increasing the temperature from 55˚C to 95˚C at an increment of 0.5˚C/5 s to

assess the specificity of the primers. Three technical replicates were prepared for the qRT-PCR

test of each biological replicate. The candidate reference genes were identified based on the fol-

lowing criteria: the genes were expressed in all samples and the corresponding mean Ct values

were� 35.

The PCR efficiency of all the primer pairs was measured using cDNA of 4th instar larvae of

the G88 strain. A standard curve for each gene was generated based on the cycle threshold (Ct)

values (Y axis) detected from a series of 5-time dilution of cDNA starting from 1 μg (X axis,

log5 transformation) to establish the standard curve. The regression equation was developed to

calculate the slope and regression coefficient (R2) of each primer pair. The corresponding

qRT-PCR efficiency (E) was calculated based on the equation: (10[-1/slope]-1) × 100%. The

results were typically acceptable when R2 > 0.98 with a PCR efficiency between 90% and 110%

[39].

ddPCR procedure

The samples used for qRT-PCR were further validated using ddPCR. Each ddPCR assay was

loaded into a disposable droplet generator cartridge, containing 10 μL of QX200 EvaGreen

ddPCR Supermix, 1 μL of 10—fold or 50—fold diluted cDNA, 1 μL of the recommended opti-

mal concentration 100 nM for each of the gene-specific primer pairs and nuclease-free water

up to 22 μL. The QX200 droplet generator was used to partition the reaction mixture into

aqueous droplets in oil solution. Droplets were then transferred onto a 96-well PCR plate and

subsequently heat-sealed with foil. Thermal cycling was performed using the C1000 Touch

Thermal Cycler (Bio-rad, USA) with the following procedure: 95˚Cfor 5 min, 40 cycles of

95˚C for 30 s and 58˚C for 1 min, a signal stabilization step at 4˚C for 5 min, 90˚C for 5 min

and infinite holding at 4˚C. The temperature ramp rate was set to 2˚C/s for each step during

the cycling. A no template control was included in every assay. After PCR, the wells containing

the droplets were analyzed by QX200 Droplet Reader (Bio-rad, USA).

To obtain the largest fluorescence amplitude difference between the positives and negatives

and avoid nonspecific amplification, thermal gradient optimization of ddPCR assay was per-

formed in the C1000 Touch Thermal Cycler by replacing the annealing temperature of the

standard PCR cycling program with a thermal gradient from 55˚C to 65˚C. Eight ddPCR reac-

tions containing the same amount of cDNA were annealed at different annealing tempera-

tures. Three loaded cDNAs of the larval midgut of the GC strain, including 5 ng, 10 ng, and 50

ng, were subjected to thermal gradient optimization for annealing temperature.

Validation of reference gene selection

The miR159a of A. thaliana (ath-miR159a), a cross-kingdom miRNA, was used to assess the

validity of selected reference genes. The levels of ath-miR159a were determined in different tis-

sues of GC strain using qRT-PCR and were normalized by the Ct value of the best normaliza-

tion factor NF1 or the worst NF4, or geometric mean Ct value of the optimal recommended

combination of NF(1–2) or NF(1–3). The relative expression levels were calculated using the 2-

ΔΔCt method. The expression pattern of ath-miR159a was also measured in different tissues of

the GC strain using ddPCR.

Statistical analysis

The comprehensive ranking of candidate reference genes was assessed by a web-based analysis

tool RefFinder [40], which contains four algorithms: Delta CT [41], BestKeeper [42], geNorm

[43] and NormFinder [44]. Raw Ct values were loaded directly for analysis using BestKeeper.
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The Ct values were transformed to linear scale expression values before analysis by Delta CT,

geNorm and NormFinder algorithms. The stability of the reference genes was evaluated

through the standard deviation of Delta CT (SD) and BestKeeper (SD) and the stability values

of geNorm (M) and NormFinder (SV). Based on the ranking from each program, RefFinder

assigns an appropriate weight to each gene and calculates the geometric mean of their weights

for the overall final ranking [41]. For ddPCR, automatic analysis based on a Poisson distribu-

tion was applied for distinguishing positive and negative droplets or a threshold was manually

set when a concentration estimate fails to appear. Data were analyzed using one-way ANOVA

followed by a Tukey’s multiple comparison test performed in IBM SPSS Statistic 21 (IBM,

USA). The difference was considered statistically significant at p< 0.05.
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