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Abstract: The improved treatment of knee injuries critically relies on having an accurate and cost-
effective detection. In recent years, deep-learning-based approaches have monopolized knee injury
detection in MRI studies. The aim of this paper is to present the findings of a systematic literature
review of knee (anterior cruciate ligament, meniscus, and cartilage) injury detection papers using
deep learning. The systematic review was carried out following the PRISMA guidelines on several
databases, including PubMed, Cochrane Library, EMBASE, and Google Scholar. Appropriate metrics
were chosen to interpret the results. The prediction accuracy of the deep-learning models for the
identification of knee injuries ranged from 72.5–100%. Deep learning has the potential to act at
par with human-level performance in decision-making tasks related to the MRI-based diagnosis
of knee injuries. The limitations of the present deep-learning approaches include data imbalance,
model generalizability across different centers, verification bias, lack of related classification studies
with more than two classes, and ground-truth subjectivity. There are several possible avenues of
further exploration of deep learning for improving MRI-based knee injury diagnosis. Explainability
and lightweightness of the deployed deep-learning systems are expected to become crucial enablers
for their widespread use in clinical practice.

Keywords: ACL; deep learning; knee injury; machine learning; meniscus

1. Introduction
1.1. Backdrop

Knee injuries account for the largest percentage of sport-related, severe injuries (i.e.,
injuries that cause more than 21 days of missed sport participation) [1–4]. Anterior cruciate
ligament (ACL) ruptures represent more than 50% of the cases, affecting 200,000 individuals
in the United States each year [1,5–7]. Knee cartilage lesions affect around 900,000 individ-
uals in the United States every year, resulting in over 200,000 surgical procedures [5–8].
Menisci injuries are the second most common knee impairment, with an incidence of
12–14% [9] and a prevalence of 60–70 cases per 100,000 in the United Kingdom [2]. ACL
injuries alone account for an expenditure of more than $7 billion in the United States [10].
Both short- and long-term pain, disability, and negatively affected, health-related quality
of life have all been strongly associated with knee injuries [11–13]. In regard to young
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and athletic individuals, the more time they spend engaging in occupational and/or recre-
ational activities, the higher predisposition to knee injuries they have, which, in turn,
contributes to a higher likelihood of developing osteoarthritis (OA) [14]. On average, half
of the individuals, that have an injury that involved ACL and/or meniscal tear develop ra-
diographically confirmed knee OA ten to 20 years post-injury [15,16]. Another two possible
consequences of knee injuries are: (i) structural muscle injuries of the lower limb [17]; and
(ii) tendinopathies [18]. All the above reflect the direct and indirect (lost wages, productivity,
and disability) socio-economic burden conferred on the society by knee injuries. The high
prevalence of knee injuries in the general population, and the resulting socio-economic
impact, have created a necessity for developing accurate and cost-effective procedures that
can detect and quantify the severity of knee injuries. Early diagnosis and, consequently,
treatment of ligament rupture, menisci tear, and/or cartilage lesion can prevent early onset
of knee OA [1].

Arthroscopy is considered the “gold-standard” for the diagnosis of intra-articular
knee pathologies, but is limited by potential complications and its invasive nature [19].
Therefore, magnetic resonance imaging (MRI) is the most widely used, non-invasive
imaging technique for diagnosing knee injuries [20,21]. However, the MRI-based diagnosis
of knee injuries can be a very challenging procedure, with the experience of clinicians
playing a critical role in image interpretation. Human-based image interpretation pitfalls,
such as subjectivity, distraction, and fatigue, as well as diagnostic uncertainties, often lead
to erratic diagnoses, hindering the optimal management of knee injuries [22,23]. Moreover,
clinical-diagnostic discrepancies among non-musculoskeletal radiologists and orthopedic
surgeons are commonly encountered in everyday clinical practice [11].

Due to the above-listed factors, as well as the exponentially increasing number of
clinical examinations, the idea of using computers for improving the challenging task of
image interpretation of medical examinations has been recently adopted by the scientific
community [24]. Imaging data proliferation, algorithmic advances, and recent technological
advances in fast computing have already resulted in a strong push towards the utilization of
artificial intelligence (AI) algorithms in medical image analysis. The term AI broadly refers
to any method that enables computers to mimic human intelligence [25]. Deep learning
(DL) in particular is a class of machine-learning (ML) algorithms that is currently driving
the AI boom [26]. Numerous applications of DL in medical image analysis have been
reported, including skin cancer classification, diabetic retinopathy detection, lung nodule
detection, and mammography cancer detection, among others [27]. The aforementioned
AI-empowered solutions are expected to revolutionize medical sectors by improving the
accuracy and productivity of different diagnostic and therapeutic measures in clinical
practice [20].

Drawing attention to the diagnosis of knee injuries, several early DL studies have
exhibited better performance than traditional ML techniques, while in some cases they
have proved to be even superior to radiologists [26]. However, the previously published
review studies in the MRI field were either focused on other application domains (e.g.,
fracture detection [28]) or limited to the performance of the proposed networks without
paying attention to their specifics (learning methodology, processing stages, technical
limitations etc.) [29]. In the light of the advancements of AI technology and the increas-
ing number of studies in this field, in this paper, we conducted a systematic literature
review, covering all DL-oriented techniques that have been employed in the diagnostic
process of knee injuries. The aim of this systematic review is to identify all recent stud-
ies that investigate the use of DL technology in the MRI-based diagnosis of the injured
knee. It was decided that the primary focus would be on studies that examine at least
one of the following pathologies: (i) injuries of knee ligaments; (ii) meniscus tears; and
(iii) cartilage lesion.
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1.2. Machine Learning in a Nutshell: Definitions and Terminology

To enhance the understanding of the readers and for the sake of completeness, this
section quickly presents the relevant terminology and definitions with respect to ML and
DL algorithms used in the studies involved in the present review. ML is a branch of AI
that focuses on the development of algorithms that automatically learn to make accurate
predictions by relying on experience (data) rather than on hard-coded instructions.

Supervised ML systems (Figure 1) operate in two phases: the learning phase (training)
and the testing one. In a traditional ML pipeline, a feature extraction/selection stage
(also referred to as feature engineering) is first implemented to extract or identify the most
informative features [16]. These features can be extracted from the input images, employing
various algorithms including grey-level co-occurrence matrix (GLCM), first- and second-
order statistics, and shape/edge features, among others [30]. Next, a ML model is fit to
the extracted features and the optimal model parameters are obtained. During the testing
phase, the trained model is shown previously unseen samples (represented as images
or features extracted from images), which are then classified. As opposed to traditional
programming, where the rules are manually crafted by a programmer, a supervised ML
algorithm automatically formulates rules from the data.
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Figure 1. Examples of typical machine-learning and deep-learning pipelines.

DL [31] is a subfield of ML that sets an alternative architectural paradigm by shifting
the process of extracting features from images to the underlying learning mechanism. The
most informative features for the task at hand are extracted by the algorithm itself. The
mainstream DL architecture for computer vision applications is the convolutional neural
network (CNN). A CNN typically consists of multiple building blocks (layers such as
convolutional, pooling, and fully connected) that automatically extract increasingly abstract
spatial hierarchies of features. The CNN training is carried out via a backpropagation
algorithm. The huge popularity of CNNs is attributed to certain characteristics they possess,
such as weight sharing and spatial invariance.

Transfer learning is a common strategy where a network, that was pre-trained on a big
dataset, is partly re-used to provide decisions on a problem with a different dataset. The
main idea behind transfer learning is that generic features learned on a large dataset could
be useful and applicable to other domain tasks with a potentially limited amount of acces-
sible data. Numerous pre-trained networks are currently available, such as DenseNet [32],
AlexNet [33], and VGG [34]. When employing DL with transfer learning for feature extrac-
tion, the pre-trained network is treated as an arbitrary feature extractor: the input image
propagates through multiple layers until it reaches a pre-specified layer, the outputs of
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which are considered as the finally extracted features. Table 1 provides a brief presentation
of the main ML and DL algorithms that were reported in the papers of this review.

Table 1. Brief presentation of the feature extraction techniques, as well as the ML and DL models,
and the main procedures that were reported in the papers of our survey.

Category Models Description

Feature
extraction

Histogram of oriented gradient
(HOG) [35]

This is a feature descriptor used in computer vision and image processing for
the purpose of object detection. The technique counts occurrences of gradient

orientation in localized portions of an image.

Generalized search tree
(GIST) [30]

GIST descriptor represents holistic spatial scene properties (spatial envelope)
of an image. It summarizes gradient information on different spatial scales and

orientations by splitting the image into a grid of cells on several scales and
convolving each cell using a Gabor filter bank from different perspectives.

Gray-level co-occurrence matrix
(GLCM) [36]

GLCM is a way of extracting second-order statistical texture features. In
particular, the texture of an image is estimated by calculating how often pairs

of pixels with specific values and a certain spatial relationship occur.

Traditional
Machine
Learning

k-nearest neighbor (K-NN) [37]

KNN algorithm is a simple, easy-to-implement supervised ML algorithm that
can be used to solve both classification and regression problems. It works by (i)

finding the distances between a query and all the examples in the data, (ii)
selecting the K nearest neighbors of the query, and (iii) voting for the most

frequent label (in the case of classification) or averaging the labels (in the case
of regression).

Support vector machines
(SVMs) [38]

SVMs is a supervised method that identifies a hyperplane that best divides the
data into two classes. To separate the two clouds of data points, there are many
possible hyperplanes that could be chosen. The objective of the SVM algorithm
is to find a slab that has the maximum thickness, i.e., the maximum distance

between data points of the different classes.

Shallow artificial neural
networks (ANNs) [39]

The ANN vaguely simulates the way the human brain analyzes and processes
information. They consist of sequential layers: input, hidden and output

layers. The hidden layer processes and transmits the input information to the
output layer.

Deep
Learning

Convolutional neural networks
(CNNs) [40]

This is a class of DL algorithms commonly used in computer vision and
pattern recognition. CNNs are a specific type of neural networks that are

generally composed of the following layers: (i) input layer, (ii) convolution
layers, (iii) pooling layers and (iv) fully connected layers. The convolution

layers use filters that perform convolution operations as they are scanning the
input with respect to its dimensions. Pooling is a down-sampling operation,

which is typically applied after a convolution layer. The fully connected layers
operate on a flattened input where each input is connected to all neurons in the

next layer and are usually found towards the end of CNN architectures to
optimize objectives such as class scores.

Region based convolutional
neural networks (R-CNNs) [41]

The method of detecting and classifying objects in an image is known as object
detection. R-CNN (regions with convolutional neural networks) is a deep

learning technique that blends rectangular area proposals with convolutional
neural network functionality. The R-CNN algorithm is a two-stage

detection method.

Deep residual networks [42]

A residual neural network (ResNet) is an ANN variant that uses residual
mapping and shortcut connections to tackle the problem of vanishing and

exploding gradients that is characteristic of deep CNNs. As a consequence of
this, deep residual networks achieve better performance when compared to
plain very deep networks, whereas their training is easier as well. Typical

ResNet models are implemented with double- or triple-layer skips that contain
nonlinearities such as rectified linear unit (ReLUs) and batch normalization

in between.
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Table 1. Cont.

Category Models Description

3D-CNNs [43]

A 3D CNN is simply the 3D generalization of 2D CNNs. It takes as input a 3D
volume or a sequence of 2D frames (e.g., slices in an MRI scan). Then kernels
move through 3 dimensions of data producing 3D activation maps. Overall,

they learn powerful representations of volumetric data.

Computer Vision
Transformers [44]

When data is modelized as a sequence of embeddings, the Transformer model
is a basic yet scalable technique that can be used for any type of data. Even

without typical convolutional pipelines, transformers can be utilized to
provide SOTA results in Computer Vision. It is a DL network that extracts
inherent properties of the interest domain via the self-attention technique.

Procedure

Training

The standard procedure involves a dataset of paired images and labels (x, y)
for training and testing, an optimizer (e.g., stochastic gradient descent, Adam

[45]), and a loss function to update the model parameters. The aim of the
training is to find the optimal values for the network parameters so that the

loss function is minimized.

Data augmentation

Data augmentation is a strategy that artificially generates more training
samples to increase the diversity of the training data. This can be done via

applying affine transformations (e.g., rotation, scaling), flipping or cropping to
original labeled samples.

Dropout
Dropout is a regularization method that randomly drops some units from the

neural network during training, encouraging the network to learn a sparse
representation. It is used to reduce overfitting.

Loss function
The metric to assess the discrepancy between model predictions and labels is
called loss function. The gradients of the loss function are used to update the

weights of the neural networks.

Transfer learning

This aims to transfer knowledge from one task to another different but related
target task. This is often achieved by reusing the weights of a pre-trained

model, to initialize the weights in a new model for the target task. Transfer
learning can help to decrease the training time and achieve lower

generalization error.

2. Materials and Methods
2.1. Reporting

The present (systematic) review was performed in accordance with the preferred
reporting items for systematic reviews and meta-analyses (PRISMA) guidelines [46]. Each
step of the review process (literature search, study selection, and data extraction) was
independently performed by 2 authors (A.S., S.M.). Discrepancies were resolved by a
3rd author (D.T.). The present study was not registered in a database prior to its conduction.

2.2. Literature Search

A structured literature search was conducted in the following databases: (a) MEDLINE
(through PubMed), (b) CENTRAL (through Cochrane Library), and (c) EMBASE (through
Elsevier). Articles cited by the retrieved papers, as well as articles citing the retrieved papers
(using Google Scholar), were also identified through a supplementary manual search. Grey
literature was examined based on conference abstracts, English abstracts (from articles not
published in English), and the OpenGrey database. The potential eligibility of the articles
was initially decided based on their title and abstract. Full texts were investigated to verify
whether the initial qualifiers fulfill the inclusion criteria. The structured search strategy per
database is quoted in Table S1.

2.3. Eligibility Criteria

The inclusion criteria were as follows: (i) papers were published between the
1st of January 2013 (the dawn of the DL era) and the 15th of November 2021 (date of final
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literature search); (ii) MRI images were used for the evaluation of knee injuries; (iii) knee-
injury detection was conducted via AI-based algorithms, including both traditional ML
and DL techniques; and (iv) the performance of the AI-based algorithms was compared to
clinical, human-based evaluations.

Papers were excluded according to the following criteria: (i) articles published before
2013; (ii) papers investigating OA or other bone pathology not directly linked with knee
injuries; (iii) studies performed in animals; (iv) non-original research articles, such as
protocols, reviews, meta-analysis, etc.; (v) articles not written in English (however, English
abstracts were assessed as part of the grey literature); and (vi) book chapters, editorials
and commentaries.

2.4. Data Extraction

Extracted data were placed into a custom Microsoft Excel spreadsheet using a stan-
dardized table. The following information was included for each of the articles: first
author, publication year, database, description of data and models, and learning algo-
rithm, including pre-processing, size of training and test samples, validation method, and
obtained results.

2.5. Statistical Analysis

Multiple evaluation criteria were employed to assess the predictive capacity of the
proposed learning algorithms. The most common evaluation metric considered in this
review study was accuracy, along with the receiver operator characteristic curves (ROCs)
that visualize the performance of a classification model at various likelihood ratio thresh-
olds. These curves plot two factors: true positive rate (sensitivity = TP/(TP + FN)) versus
the false positive rate (specificity = FP/(FP + TN)), where TP, FN, FP, and TN denote true
positives, false negatives, false positives, and true negatives, respectively. The quantitative
output of this curve is the AUC, which could be interpreted as an aggregated measure of
performance across all possible classification thresholds.

2.6. Quality Assessment

Quality assessment was performed using a modified methodologic index for non-
randomized studies (MINORS) [47]. A seven-item checklist was considered, including
information with respect to the following items: disclosure, study aim, input feature,
ground truth label determination, dataset distribution, performance metric, and expla-
nation of the applied AI models. Data were extracted and recorded using standardized
forms (Microsoft Excel spreadsheet). To resolve conflicts over article selection, quality
assessment, and data extraction, both observers (A.S., S.M.) convened a consensus meeting.
The items were scored with 0 (not reported), 1 (reported but inadequate), or 2 (reported
and adequate). The average modified MINORS score among all studies was 9.82 ± 1.99. It
should be mentioned that the range of the score per item was between 0 and 44.

As shown in Figure 2, all the reported studies (22) clearly stated the study aim, input
features, and the performance achieved using appropriate metrics. A clear distribution
and description of the dataset were reported in twenty studies (90.09%). Fifteen studies
(68.18%) clearly described how they established the ground truth (AI’s reference standards),
whereas the others were subjected to AI models that were inadequately trained. The most
prevalent causes of quality point loss were failures to describe ground truth assignment.
Last, but not least, more than half of the studies (54.54%) failed to disclose a conflict of
interest declaration.
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Figure 2. Quality assessment outcomes using the MINORS tool.

3. Results

In total, 407 studies were retrieved: 172 from MEDLINE (through PubMed), 170 from
EMBASE (through ELSEVIER), 24 from CENTRAL, 40 from the structured search in Google
Scholar, and 1 conference abstract (grey literature). Fifty-nine papers were selected after
applying the proposed inclusion/exclusion criteria. Thirty-seven studies were further
excluded due to irrelevant content (for example, those focusing only on segmentation
or other scientific fields). Taking everything into consideration, 22 articles were finally
included in the present systematic review. A flow chart of the literature search design is
presented at Figure 3.
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The retrieved articles were categorized into the following application domains: (i) detection
of ACL injuries alone (10 studies); (ii) detection of meniscus tears alone (7 studies);
(iii) detection of cartilage lesions (1 study); and (iv) combined ACL and meniscus tears
plus other knee injuries (4 studies). The main results of each study have been quoted,
while the individual study validity has been determined based on its methodological
strengths and weaknesses. Important methodological features of the retrieved articles have
been commented.

The identified studies focusing on ACL and meniscus tears detection have been
grouped into three categories: (i) those employing traditional ML pipelines; (ii) DL studies
in which transfer learning is reported; and (iii) papers that propose the use of custom-made
DL architectures.

3.1. ACL Injury Detection
3.1.1. Machine Learning

Štajduhar and colleagues [48] utilized two different feature extraction techniques: his-
togram oriented gradient (HOG) [35] and generalized search tree (GIST) [30]. These feature
extraction techniques were subsequently paired with two commonly used ML models:
support vector machines (SVMs) [38] and random forests [49]. They found that the best
performing ML model was the one that combined HOG with linear-kernel SVM, producing
an AUC of 0.89 for differentiating between ACL-injured and healthy subjects, and an area
under curve (AUC) of 0.94 for detecting only completely ruptured ACL. Abdulah et al. [50]
described a diagnostic system consisting of image pre-processing, feature extraction based
on segment-derived spatial descriptors (perimeter, area, and shape), and, finally, classifica-
tion. They compared k-nearest neighbor (K-NN) with back propagation artificial neural
network (BP-ANN) for ACL tear classification. BP-ANN achieved a classification accuracy
of 94.44% whereas K-NN reached an accuracy of 87.33%. Another study [51] tested an SVM
algorithm on a dataset that was comprised of 100 non-injured ACLs, 100 partially-torn
ACLs, and 100 completely-torn ACLs. All datasets underwent pre-processing. Features
were extracted using shape descriptors, such as objects’ contour circularity, aspect ratio,
angle, and number of sides. It was reported that the SVM model had an accuracy of 100%
for classifying ACL MRI samples as normal, partial-tear, or complete-tear. The authors also
sought to compare the diagnostic capability of their AI model with that of two medical
experts on a subset of 10 samples. No statistically significant differences between the AI
model and the radiologists were found.

3.1.2. Deep Learning with Transfer Learning

Bien et al. [27] used transfer learning in order to train a fully automated CNN for
classifying MRI series and they combined the predictions from 3 series per exam using
logistic regression. The accuracy and the AUC of the model for detecting ACL tears were
86.7% and 0.965, respectively. These results were juxtaposed with the assessments by three
musculoskeletal (MSK) radiologists on a testing set of 120 knee MR images. Radiologists
achieved significantly higher sensitivities for tear diagnosis than the AI model (AUC: 0.91
vs. 0.76, p-value = 0.002). The accuracy achieved by the radiologists (92%) was higher
than the one achieved by the AI model (86.7%). Azcona et al. [52] proposed and evaluated
the performance of four architectures: (i) deep residual network with transfer learning;
(ii) custom deep residual network using a fixed number of slices; (iii) multi-plane deep
residual network; and (iv) multi-plane multi-objective deep residual network. They found
that transfer learning combined with a carefully tuned data augmentation strategy were the
crucial factors in achieving best performance. The authors modified the last layer to output
a probability instead of a one-hot softmax vector for a number of classes and they also used
transfer learning with pre-trained weights from ImageNet. By using the aforementioned
DL architectures and data augmentation strategies for ACL detection, they achieved an
AUC of 0.96 on the validation data.
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3.1.3. Custom-Made Deep-Learning Networks

Another study [8] evaluated three customized CNN models with variations in the
input fields of view (i.e., full slice, cropped slice, and dynamic patch-based sampling) as
well as in dimensionality (single slice, three slices, or five slices) for the detection of complete
ACL tears. The importance of limiting the input field-of-view to the intercondylar region
for high algorithm performance was demonstrated. The incremental value of contextual
information of adjacent image slices in improving network classification accuracy was also
exhibited. The model that utilized dynamic sampling had an accuracy of 96.7% and an AUC
of 0.97. Liu et al. [53] trained multiple CNNs and applied them to a test set comprised of
50 MR images of ACL tears with normal thickness and 50 MR images with intact ACLs. The
best model they came up with for detecting the presence or absence of a full thickness ACL
tear produced an AUC of 0.98 (95% CI: 0.93–1.00, p-value < 0.001). However, there was no
statistically significant difference in diagnostic performance between the AI model (AUC:
0.98, 95% CI: 0.93- 1.00) and the clinical radiologist performance: Radiologist AUC: 0.98
(95% CI: 0.95–1.00); Fellow AUC: 0.98 (95% CI: 0.95- 1.00); Resident 1 AUC: 0.93 (95% CI:
0.88–0.98); Resident 2 0.97 (95% CI: 0.94–1.00); Resident 3 0.98 (95% CI: 0.95–1.00).

Namiri et al. [54] employed two CNN types for classification of ACL injuries: the first
one involved three-dimensional (3D) kernels, whereas the second one made use of two-
dimensional (2D) filters. The overall accuracies using the 3D CNN and the 2D CNN were
89% (225 of 254) and 92% (233 of 254), respectively (p-value= 0.27), whereas both CNNs had
a weighted Cohen k of 0.83. The 2D CNN and 3D CNN performed similarly in classifying
intact ACLs (2D CNN: sensitivity of 93% and specificity of 90%; 3D CNN: sensitivity of
89% and specificity of 88%). The classification of full tears by both networks was also
comparable (2D CNN: sensitivity of 82% and specificity of 94%; 3D CNN: sensitivity of 76%
and specificity of 100%). The 2D CNN classified all reconstructed ACLs correctly. A separate
study [6] proposed to perform CNN-based classification by relying on the architecture
of 3D DenseNet [32]. They compared this DL approach with two other variants, namely
VGG16 [34] and ResNet [42]. The accuracy, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) of the proposed customized architecture were
calculated respectively. The average AUCs were 0.95, 0.86, and 0.96 for ResNet, VGG16, and
their proposed network, respectively. The diagnostic accuracies achieved by the proposed
model, the residents, and the senior radiologists were 95.7%, 81.4%, and 89.9%, respectively.

Germann et al. [24] trained a deep convolutional neural network (DCNN) on 512 MR
images of ACL tears from different patients (ACL tears were present in 45.7% and ab-
sent in 54.3% of the subjects). The network had a pre-processing step that involved the
selection, rescaling, and cropping of coronal and sagittal-fluid-sensitive views. Next, the
coronal and sagittal MRI scans were processed independently in parallel and were then
concatenated before being processed by one dense layer fat-suppressed MRI scan. Finally,
a soft-max layer extracted the confidence level for the ACL tear. Three fellowship-trained
full-time academic MSK radiologists independently evaluated the MRI examinations for
full-thickness ACL tears. ACL tears were present in 45.7% and absent in 54.3% of the
subjects. The DCNN had a sensitivity of 96.1%, which was not significantly different from
that of the readers (97.5–97.9%; all p-values ≥ 0.118). However, the sensitivity of the DCNN
(93.1%) was significantly lower than that of the readers (99.6–100%, all p-values < 0.001),
and a similar trend was observed in the AUC values (DCCN: 0.94, readers: 0.99–0.99, all
p < 0.001). Finally, a related study [55] used a customized 14-layer ResNet-based CNN with
six different directions by using class balancing and data augmentation. The proposed
ResNet-14 achieved AUC values of 0.98, 0.97, and 0.99 for detecting a healthy tear, partial
tear, and fully ruptured tear, respectively. Jeon et al. [56] proposed a 3D deep-neural-
network model for diagnosing ACL tears from a knee MRI test that is both interpretable
and lightweight. They used squeeze modules and fewer convolutional filters to represent
the homogeneity of the features, as well as attention modules and Gaussian positional
encoding to strengthen the searching of local features. Their model outperformed the
prior SOTA on the Chiba and Stanford knee datasets, achieving average ROC and AUC
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values of 0.983 and 0.980, respectively. Recently, Dai et al. introduced TransMed [57] as
a multi-modal medical picture categorization system. It combines the benefits of CNN
and transformer to efficiently extract low-level characteristics from pictures and construct
long-range relationships between modalities. The accuracy and the AUC of the model
for detecting ACL tears were 94.9% and 0.98, respectively. These results were of higher
accuracy than the MRNet technique. Astuto et al. [58] made use of 3D CNNs, which were
designed to identify and grade ACL injuries in MRI investigations. The reported binary
lesion sensitivity for ACL tissue is 88%. The specificity of the results is 89%. The AUC
is 0.90.

3.2. Meniscus Tear
3.2.1. Machine Learning

Fu et al. [59] compared the performance of two SVM models in detecting meniscus
tears. One model was trained on selected MR features (from a pool of 180 spatial and
textural features using GLCM), while the other model implemented the SVM model without
any feature selection. The SVM model without feature selection produced an AUC of 0.73,
while their model with feature selection yielded an AUC value of 0.91. Zarandi et al. [60]
performed MR image segmentation, followed by the application of a perceptron neural
network (PNN) for classifying meniscal tears. The model accomplished a 90% classification
accuracy (meniscus tear versus no meniscus tear) on a testing dataset of 50 MRI studies.
Precision (%) was also reported for five different settings of meniscus tear, including:
(1) medial anterior horn and posterior horn normal (88.82%); (2) lateral anterior horn and
posterior horn normal (92.13%); (3) medial anterior horn normal and posterior horn torn
(84.24%); (4) lateral anterior horn normal and posterior horn torn (91.96%); and (5) lateral
anterior horn torn and posterior horn normal (87.64%).

3.2.2. Deep Learning with Transfer Learning

Another group [27] utilized MRNet as the primary building block of their prediction
system, that is CNN mapping a 3D MRI series to a probability. The input to MRNet
had dimensions: s × 3 × 256 × 256, where s was the number of images in the MRI
series (3 is the number of color channels). In diagnosing a meniscus tear, this group
reported an accuracy of 72.5% (95% CI: 0.639–0.797) and an AUC of 0.85 (95% CI: 0.78–0.91).
Furthermore, they compared the performance of the proposed model with unassisted
MSK radiologists for detecting a meniscus tear (intact, degenerative changes without tear,
or postsurgical changes without tear). When compared to the MSK radiologists in the
study, the AI model had a statistically significant lower specificity (AUC: 0.88, 95% CI:
0.85–0.91 versus AUC: 0.741, 95% CI: 0.62–0.84; p-value = 0.003) and accuracy (0.85, 95% CI:
0.82–0.87 versus 0.725, 95% CI: 0.64–0.80, p-value = 0.015). The sensitivity was also shown
to be lower for the AI model (0.82, 95% CI: 0.78–0.85) compared to MSK radiologists (0.71,
95% CI: 0.59–0.81; p-value = 0.504), although this was not statistically significant. Azcona
and colleagues [52] leveraged the baseline MRNet architecture and replaced the AlexNet
feature extractor with more modern residual architectures, such as Resnet18, Resnet50,
and Resnet152. They applied a series of transformations including horizontal flips and
photometric augmentations (with respect to random contrast, gamma, and brightness).
They reported an AUC performance of 0.91 on the validation data by using ResNet18.

3.2.3. Custom-Made Deep-Learning Networks

Couteaux et al. [61] used a region-based convolutional neural network (R-CNN)
model for tear detection and localization (anterior or posterior). The anterior meniscus
was classified as torn when at least one network had detected a torn anterior meniscus
and the posterior meniscus was classified as torn when the strict majority of the networks
had detected a torn posterior meniscus. A weighted AUC score of 0.91 was achieved by
the proposed network on a test set of 700 MRIs. Another paper [62] also used an R-CNN
trained on a dataset of 700 MRI images to perform three tasks, namely the detection of
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meniscus tear presence, position, and orientation. Their AI model produced an AUC of
0.94 on the task of detecting the presence of a meniscal tear, 0.92 for detecting the position
of the two meniscal horns, and 0.83 for detecting the orientation of the tear. The overall
combined AUC was 0.90.

Another group [63] created a DL model that combined meniscus segmentation and
a 3D CNN for accomplishing both the detection and severity staging of meniscus lesions.
The segmentation task for both cartilage and the meniscus was implemented using 2D
U-Net [64]. The model was first built to recognize the presence of a lesion (including
intrasubstance abnormalities), and, subsequently, to quantify the lesion severity. This
model produced a lesion detection AUC performance of 0.89 on the test dataset and
accuracies of 80.74%, 78.02%, and 75.00% for determining severe, mild-moderate, and
no lesions, respectively. Comparisons were made between the model and experts. The
authors also sought to determine the inter-rater variability between three MSK radiologists
(expert 1: >20 years of experience, expert 2: 10 years of experience, and expert 3: <1 year
of experience) for assessing meniscus lesion severity on selected cases. They restored an
average agreement among the three experts of 86.27% for no meniscus lesions, 66.48%
for mild-moderate lesions, and 74.66% for severe lesions, while the best model obtained
accuracies of 80.74% for no meniscus lesions, 78.02% for mild-moderate lesions, and 75.00%
for severe lesions.

Fritz et al. [15] proposed that deep CNN-based meniscus tear detection be performed
in a fully automated manner with a similar specificity, but a lower sensitivity, in comparison
with the MSK radiologists. The AUC of the deep CNN employed was 0.88, 0.78, and 0.96
for the detection of medial, lateral, and overall meniscus tear, respectively. The sensitivity,
specificity, and accuracy for medial meniscus tear detection were 93%, 91%, and 92%,
respectively, for reader 1; 96%, 86%, and 92%, respectively, for reader 2; and 84%, 88%,
and 86%, respectively, for the DCNN. The sensitivity, specificity, and accuracy for lateral
meniscus tear detection were 71%, 95%, and 89%, respectively, for reader 1; 67%, 99%,
and 91%, respectively, for reader 2; and 58%, 92%, and 84%, respectively, for the DCNN.
The sensitivity for medial meniscus tears was significantly different between reader 2
and the DCNN (p-value = 0.039), but no significant differences were witnessed in all
other comparisons (all p-value ≥ 0.092). Rizk et al. [65] used a 3D CNN architecture that
incorporated meniscal localization and lesion classification. They achieved AUC values of
0.93 and 0.84 for medial and lateral meniscal tear detection, respectively, and 0.91 and 0.95
for medial and lateral meniscal tear migration detection, respectively. The combined medial
and lateral meniscal tear detection models were externally validated and yielded an AUC
of 0.83 without additional training and 0.89 after fine-tuning. Moreover, Dai et al. utilized
TransMed [57], achieving accuracy and AUC values of 94.9% and 0.98, respectively, for
detecting meniscus tears, thus improving over the MRNet technique. 3D CNNs were built
by Astuto et al. [58] to identify and grade meniscus tear in MRI examinations. The reported
binary lesion sensitivity and specificity values were 85% for both., whereas the AUC was
0.93. Lastly, Dai et al. used TransMed to also identify meniscus tears in the MRNet dataset.
The group reported an AUC of 0.95 and an accuracy of 85.3%.

3.3. Cartilage Lesion and Other Abnormalities

Liu et al. [66] developed a fully automated DL-based cartilage lesion detection system
by combining CNN-based semantic segmentation and disease classification. Segmenta-
tion was implemented via the use of a VGG-16-based encoder network consisting of a
combination of 2D convolution layers, rectified-linear activations, batch normalization
layers, and max-pooling layers to achieve image feature extraction and data compression
at the same time. The classification CNN in the proposed pipeline was also based on the
2D VGG16. Their pipeline achieved an AUC in the range of 0.91–0.92, indicating high
overall diagnostic accuracy for detecting cartilage lesions. In addition, there was good
intra-observer agreement between two individual evaluations, with a k-statistic of 0.76. As
previously indicated, Astuto et al. [58] also used 3D CNNs to detect cartilage lesions. The
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sensitivity and specificity of binary lesions were found to be 85% and 89%, respectively,
whereas the AUC was 0.93. Finally, three of the reported papers [27,52,57] attempted to
detect other knee abnormalities, such as osteoarthritis, effusion, iliotibial band syndrome,
posterior cruciate ligament tear, fracture, contusion, plica, and medial collateral ligament
sprain. MRNet [27], ResNet18 [67], and TransMed networks were employed to implement
the classification tasks, achieving AUC values of 0.94, 0.94, and 0.976, respectively.

4. Discussion and Conclusions

The present systematic review (Table 2) outlined the recent application of traditional
ML and DL models to the diagnosis of the most common knee injuries using MRI as the
main data source. The results of the present study can be summarized as follows. Figure 4
shows an increasing trend in adopting ML-based studies in this application area, with most
of the papers being published from 2017 onwards (whilst the first ML-based paper on the
field was published in 2013). Medical imaging, and specifically MRI, has to be seen as one
of the most instructive assets in the field of knee injury diagnosis. The proliferation of MRI
data has facilitated the effective training of ML and DL networks towards the development
of: (i) novel methodologies that could enhance the medical experts’ domain knowledge and
understanding of MRI; and (ii) new, data-driven tools that could enable a more reliable, fast,
and fully automated detection of knee injuries. The main characteristics of the proposed
MRI-based learning algorithms and pipelines were identified along with the data sources
investigated. The following paragraphs present our findings with respect to the choice of
CNN networks and the associated results in comparison with clinical assessments carried
out by experts.
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Table 2. Results of studies.

No. Author Year AI Model Used Pretrained CNN MRI (T) Localization Technique Validation Performance
(Accuracy/AUC)

Application
Domain

1 Awan et al. [55] 2021 CNN ResNet-14 1.5 T

They applied normal
approach to localize
based upon region of

interest (ROI)

5-fold
cross-validation

92%/(healthy tear = 0.98,
partial tear = 0.97 and fully

ruptured tear = 0.99)
ACL tear

2 Jeon et al. [56] 2021 3D CNN VGGNet, AlexNet,
and SqueezeNet 3 T & 1.5 T Custom localization

technique
5-fold

cross-validation

N/A/0.983 and 0.980
on the

Chiba and Stanford knee
datasets, respectively

ACL tear

3 Rizk et al. [65] 2021 3D CNN CNN-based
localization model

1 T (54%)–1.5 T
(9.7%)–3 T

(36.3%)

Custom localization
technique

ten-fold cross
validation

Meidal = N/A/0.93,
Lateral = N/A/0.84 Meniscus tear

4 Dai et al. [57] 2021 TransMed N/A 3 T & 1.5 T N/A 120 exams
ACL tear = 94.9%/0.98,

Abnormality = 91.8%/0.976,
Meniscus tear = 85.3%/0.95

ACL
tear—Meniscus

tear—
Abnormalities

5 Astuto et al. [58] 2021 3D CNN N/A 3 T V-Net Hold out (15% of
sample) N/A/from 0.83 to 0.93

ACL
tear—Meniscus
tear—Cartilage

Lession

6 Fritz et al. [15] 2020 DCNN N/A 1.5 T (64%)–3 T
(36%)

To visually localize the
tear, the software

computes the class
activation map (CAM) of
the last convolution layer
in the CNN and maps it
to an axial knee image

Hold out (10% of
sample)

Medial = (86%/0.88),
Lateral = (84%/0.78),
Overall = (N/A/0.96)

Meniscus tear

7 Namiri et al.
[54] 2020 CNN N/A 3 T three-dimensional V-Net Hold out (10% of

sample)

3D-
model = (89%/sensitivity
of 89% and specificity of

88%), 2D-
model = (92%/sensitivity
of 93% and specificity of

90%)

ACL tear
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Table 2. Cont.

No. Author Year AI Model Used Pretrained CNN MRI (T) Localization Technique Validation Performance
(Accuracy/AUC)

Application
Domain

8 Zhang et al. [6] 2020 CNN 3D DenseNet,
VGG16, ResNet

1.5 T (74%)–3 T
(26%) - Hold out (20% of

sample)

Custom = (95.7%/0.96),
ResNet = (NA/0.95),
VGG16 = (NA/0.86)

ACL tear

9 Germann et al.
[24] 2020 DCNN N/A 1.5 T–3 T They cropped manually

Out of the 5802
MRI studies, 4802

were used for
training, 500 for
validation, and
500 for initial

testing

N/A/0.94 ACL tear

10 Azcona et al.
[52] 2020 CNN

MRNet, ResNet18,
Resnet50 and

ResNet152,
ImageNet

3 T
(56.6%)–1.5 T

(43.4%)
- N/A NA/0.96–N/A/0.91–

N/A/0.94

ACL
tear—Meniscus

tear—
Abnormalities

11 Chang et al. [8] 2019 CNN ResNet 1.5 T–3 T

The object localization
CNN was implemented
as a fully convolutional
network based on U-net

architecture

5-fold-cross-
validation 96.7%/0.97 ACL tear

12 Liu et al. [53] 2019 CNN
LeNet-5,

DenseNet,
VGG16, AlexNet

N/A
They used object

detection technique
YOLO

50 subjects test set
(14% of the

sample)
N/A/0.98 ACL tear

13 Couteaux et al.
[61] 2019 CNN ResNet-101,

ConvNet, R-CNN N/A

To localize both menisci
and identify tears in each
meniscus, they used the

Mask R-CNN framework

54 cases and the
model with the

highest validation
accuracy was

selected

N/A/0.90 Meniscus tear

14 Pedoia et al. [63] 2019 2D U-Net, CNN N/A 3 T - Hold out (20% of
sample)

Sensitivity of 89.81% and
specificity of 81.98% Meniscus tear

15 Roblot et al. [62] 2019 CNN AlexNet, MRNet N/A
They used object

detection technique Fast
RCNN & Faster RCNN

The algorithm
was thus used on

a test dataset
composed of 700

images for
external

validation

72.5%/0.85 Meniscus tear
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Table 2. Cont.

No. Author Year AI Model Used Pretrained CNN MRI (T) Localization Technique Validation Performance
(Accuracy/AUC)

Application
Domain

16 Nicholas Bien
et al. [27] 2018 CNN AlexNET, MRNet

3 T
(56.6%)–1.5 T

(43.4%)
- 120 exams 86.7%/0.97–72.5%/0.85–

N/A/0.94

ACL
tear—Meniscus

tear—
Abnormalities

17 Liu et al. [66] 2018 CNN VGG16 3 T -

fellowship trained
musculoskeletal
radiologist (R.K.,
with 15 years of

clinical
experience)

N/A/0.92 Cartilage lesion

18 Stajduhar et al.
[48] 2017

HOG + linSVM,
HOG + RF, GIST
+ rbfSVM, GIST

+ RF

N/A 1.5 T Manual extraction of a
rectangular ROI

10-fold cross
validation

(Injury detection problem,
complete

rupture) = (N/A/0.89,
N/A/0.94), (N/A/0.88,
N/A/0.94), (N/A/0.889,
N/A/0.91), (N/A/0.88,
N/A/0.90) respectively

with the models

ACL tear

19 Mazlan et al.
[51] 2017 SVM N/A N/A They use cropping

technique
Hold out (10% of

sample) 100%/N/A ACL tear

20 Zarandi et al.
[60] 2016 IT2FCM, PNN N/A N/A - Hold out (20% of

sample)
0 and 1 mode: 90%/N/A
Binary mode: 78%/N/A Meniscus tear

21 Fu et al. [59] 2013 SVM N/A N/A

Active Contours without
Edges method. This

method combines Active
Contours with Level Sets

and is called ACLS

5-Fold cross
validation

SVM model: N/A/0.73
SFFS + SVM: N/A/0.91 Meniscus tear

22 Abdullah et al.
[50] 2013 BP ANN, K-NN N/A N/A - 5-fold and 6-fold BP ANN: 94.44%/N/A

k-NN: 87.83%/N/A ACL tear
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Although there is no clear acceptance of a “gold-standard” methodological pipeline
for diagnosing knee abnormalities using MRI data, it was observed that a number of pro-
cessing steps were commonly employed in the majority of the reported studies. Figure 5
visualizes a DL pipeline that was adopted by most of the papers, including a pre-processing
step, localization (optionally) by identifying regions of interest, and, finally, a CNN-based
classification step. Data augmentation was employed by a significant number of papers
in the detection of ACL injuries [6,27,52,54–58], in papers where meniscus injuries were
investigated [27,52,57,58,62,63], and, finally, in studies focusing on cartilage lesion abnor-
malities [27,52]. In particular, the available MRI images were modified (via a number of
image transformations such as random rotations, shifting, flipping, and the addition of
noise) to expand the training dataset, and thus help to improve the performance and ability
of the employed DL models to generalize. Localization was employed in papers from all
three subcategories: (i) ACL studies [6,8,24,48,53–56,58]; (ii) meniscus injuries detection
studies [15,58–63,65]; and (iii) for diagnosing lesion abnormalities [66]. Segmentation or
objection detection algorithms were applied in the aforementioned studies to extract areas
of interest, enabling the application of CNN-based models on focused and more relevant
parts of the initially available images. Given that the region of interest (ROI) may appear in
slightly different positions within an image and may have different aspect ratios or sizes,
identifying ROIs with an automatic manner has been proven to be a crucial processing step.
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Figure 5. A typical DL pipeline for ACL detection.

CNN-inspired networks were identified as the dominant approach in the task of
extracting informative features from either ROIs or entire MRIs and finally classifying
them as normal (healthy) or abnormal (indicating either partial or complete tears). Transfer
learning was preferred in most of the cases, allowing the training of big and powerful deep
architectures, even if the amount of available data was limited. As networks require a lot
of information to be trained from scratch, this technique essentially ‘steals’ knowledge
from already pre-trained large networks. Specifically, ResNet variants were used in five
papers [6,8,52,55,61] of this review, whereas VGG [34], AlexNet [33], and MRNet [27]
were used three times [6,27,52,53,62,66]. Other pre-trained networks that were used at
least once in this survey are: DenseNet [32], Le-Net [68], ImageNet [33], and R-CNN [41].
In five [48,50,51,59,60] out of the 22 studies of the present survey, more traditional ML
pipelines were applied, including a separate feature engineering step (where features were
manually extracted from images). SVM classification was the preferred classifier in most of
the cases.

Despite the excellent capability of CNNs to come up with valuable image representa-
tions, these models lack the capacity for capturing long-range relationships. To deal with
this limitation, recent research studies [44,69] have proposed employing Transformer-based
architectures for various image recognition tasks. The Transformer [70] is a neural network
architecture that relies on global self-attention mechanisms, and it was initially designed
for sequence-to-sequence prediction. Papers that used this architectural paradigm have
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indeed achieved state-of the-art results [71,72] in many natural language processing (NLP)
tasks. Dai et al. [57] were the first to employ a Transformer-based architecture for the
MRI-based knee injury detection task. In particular, their hybrid (Transformer and CNN)
model was used to extract features that pick up the long-range dependencies between MRI
and other modalities.

The present review demonstrated that the prediction accuracy of the DL models for
the ACL and meniscus tears detection ranged from 72.5% to 100%. However, certain
limitations have been identified in all studies that are included in this literature review.
The lack of multi-center data has been recognized as a limitation in three papers [15,27,53],
leading to the development of biased DL-detection systems that have only been tested on
knee MRIs carried out at a single institution. The results of these studies relate to knee
examinations using specific MR acquisition protocols for knee joint assessment. In general,
classification models, trained using data acquired by a specific MRI acquisition protocol,
are unsuccessful or underperform when applied to data that was obtained differently.
One way to tackle this lack of ability to generalize is by using DL models that learn MRI
acquisition-invariant contrast-agnostic representations [73,74]. The effect of data imbalance
has been also highlighted in some cases [6,54,55] where the sample of patients was not
properly balanced among all gradings, leading the algorithms to pay more attention to
the majority class (typically the class of healthy subjects). Applying down-sampling in the
majority class has been proved to be an unreliable approach, which led to a biased result
in the case of the fully ruptured classes [55]. Verification bias was also identified [24,53],
mainly because subjects involved in the studies underwent arthroscopic knee surgery,
leading to increased sensitivity and decreased specificity for both the detection system
and the clinical radiologists. Moreover, it should be stressed that the grades used for the
training of the detection algorithms are typically dependent on subjective assessment by a
limited number of radiologists (one in some cases [54]). In most of the studies, only two
categories (normal versus tears) were discriminated and the need of considering additional
categories was highlighted [6] to allow more detailed classifications to happen. Overall, it
was stressed that the diagnostic performance of the combined use of a clinical radiologist
and machine interpretation of the MRI examinations has not been evaluated [53].

The current study is a systematic review that followed the PRISMA guidelines, but did
not include a more formal quantitative meta-analysis due to the observed heterogeneity of
the identified studies. Moreover, diagnostic arthroscopy was not used as the gold-standard
reference to identify ACL or meniscus injuries in the majority of the studies, which may
restrict the clinical applicability of the findings.

Future studies should try to train and test the accuracy of AI prediction models for
the detection of ACL and meniscal lesion based on the arthroscopic images, and compare
the outcome with that of direct, non-arthroscopic assessments. Arthroscopy is a surrogate
“gold-standard” for the validation of non-invasive assessments, such as MRI, as it provides
highly magnified and direct views of articular cartilage with non-destructive interactive
assessments of its structure and functional properties.

Radiological imaging data of the knee continues to grow at a disproportionate rate,
vastly outnumbering the trained MSK radiologists. The workload has also increased
dramatically, leading to inevitable errors in the decision-making process. Despite the
identified limitations, AI systems have the potential to relieve physician burnout, utilize
clinicians in fields at which they have not been specialized (MSK MRI), and reduce the cost
of knee injury diagnosis for the public health system. In addition to flagging abnormal
cases, if an AI algorithm could rapidly identify negative exams (increased sensitivity and
negative predictive value), then, a substantial amount of time and other resources could
be made free. Such a concept would be really useful in countries without easy access to
medical expertise.

Advances in medical imaging, in terms of quality, sensitivity, and resolution, have
enabled the discrimination between the smallest differences in the various knee tissue
densities. These differences sometimes are difficult to recognize, even by a trained, spe-
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cialized eye. Expert’s diagnostic capacity used to be superior, but now we see this has
been balanced out. As it was recently reported [24], deep CNN performance has reached
performance levels akin to fellowship-trained, full-time, academic MSK radiologists in
several tasks, including detection and segmentation. Despite this, AI can provide several
new tools to the field of radiology imaging of the knee and medicine in general. The major
hope for automated intelligent systems in the knee injury diagnosis is to increase accuracy,
efficiency, and productivity in order to streamline patient care and outcomes. The newest,
high-performance DL models should surpass the performance of traditional systems, meet
the requirements for clinical utility, and become more user-friendly for the MSK clinician.
Furthermore, there is the possibility of better training for young MSK radiologists with the
help of AI.

MRI data of the knee, complemented by massive amounts of associated, multi-
dimensional data such as omics and electronic health records, are only expected to grow.
To fully exploit the full potential of this wealth of data, new paradigms should arise in-
volving processes and workflows suitable for multi-institutional collaboration. Moreover,
addressing the need for trustworthy detection systems of knee injuries, a medical diagno-
sis algorithm should meet a number of requirements (e.g., transparency, interpretability,
explainability, and ease of use) in order to gain trust from clinicians. AI explainability and
lightweight deep learning are key enablers for the wide use of such systems in the everyday
clinical practice. Exploiting the intersection and merits of traditional ML and DL methods,
AI analytics are expected to revolutionize knee medical informatics, enabling informed and
accurate diagnoses needed by precision medicine.

Notwithstanding the huge potential of AI to improve the medical domain, the DL-
based methods have yet to achieve significant deployment in clinical environments. This
mainly ensues as a result of: (i) the intrinsic black-box nature of the DL algorithms; and
(ii) the high computational cost. Explainable AI aims at building trust in the AI algorithms
by providing medical experts with a diagnostic rationale behind the AI decision processes.
The goal of the lightweight DL field is to develop models that have shallower architecture
and are also faster and more data-efficient, while retaining the high-performance standards.
Jeon et al. [56] were the first to get to grips with the clinical deployment of the MRI-based
knee injury diagnosis. To this end, they proposed to use post-inference visualisation tools
(such as CAM and Grad-CAM), and they also incorporated attention modules, Gaussian
positional encoding, squeeze modules, and fewer convolutional filters.
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