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The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature
approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of
these approaches do not take into account the presence of infill walls into the structure despite the fact that infill walls increase
the stiffness and mass of structure leading to significant changes in the fundamental period. In the present paper, artificial neural
networks (ANNs) are used to predict the fundamental period of infilled reinforced concrete (RC) structures. For the training and
the validation of the ANN, a large data set is used based on a detailed investigation of the parameters that affect the fundamental
period of RC structures. The comparison of the predicted values with analytical ones indicates the potential of using ANNS for the
prediction of the fundamental period of infilled RC frame structures taking into account the crucial parameters that influence its

value.

1. Introduction

The dynamic characteristics of buildings play an important
role in predicting their seismic behaviour and in selecting
the appropriate retrofitting approach in case of damage. One
of the most significant dynamic characteristics of a building
is its fundamental period. A method that can estimate the
fundamental period is essential for the reliable prediction of
its response to dynamic loads and it is based on the evaluation
of the building’s mass and stiffness. The mass can be easily
determined but the assessment of the stiffness is challenging
since it is influenced by several system parameters. All ele-
ments that contribute to the stiffness, including nonstructural
ones, affect the vibration characteristics of a building. Thus, in
order to estimate the fundamental period, several parameters
must be considered including the vertical elements such as

shear walls and infill panels that contribute directly to the
stiffness of the building but also parameters whose influence
is not as obvious. Such parameters include the structural
regularity, the number of storeys and spans, the height of the
buildings, the existing openings in the vertical elements, the
position of loads, and the size of the members. The inclusion
of all these parameters in the estimation of the vibration
characteristics of a building is not trivial. Researchers and
earthquake codes have provided expressions for estimating
the fundamental period of a building based on the regression
analysis of the periods obtained from seismic vibrations of
actual buildings. These expressions provide the fundamental
period as a function of the total height or the number of
storeys. Their results can vary considerably especially when
the comparison is between values obtained from numerical
analysis with the ones obtained from measurements. Higher
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values are predicted from the numerical analysis since most
of the times the influence of the nonstructural components or
secondary parameters is not taken into account. For example,
the infill panels increase considerably the stiffness of the
structure affecting the fundamental period.

Previous research has shown the importance of the infill
in the dynamic behaviour of the structure either experimen-
tally [1-5] or numerically [6-16]. Nonetheless, the infill most
of the times is omitted in the numerical analysis due to (i)
increase of computational time, (ii) multiple effects of infill
on the structural response during an earthquake: beneficial
at the beginning but adverse after being damaged, (iii) lack
of confidence in the behaviour of brittle materials used in
the infill, (iv) influence of the construction practices, and so
forth. The existence of the openings in the infill reduces their
stiffness and affects the interaction with the frame, altering
the overall dynamic characteristics of the structure. Several
times heavy masonry infill is replaced by light partitions and
vice versa influencing considerably the seismic behaviour of
the structure.

Past work has shown that infill panels subjected to in-
plane-loads (especially if they do not contain openings in
their diagonal) can be modeled as diagonal struts of the same
material connected at the corners of the frames. The diagonal
struts approach is the most commonly used in modeling of
the infill panels [17-20].

In the last decades, there have been many attempts to use
neural networks in structural engineering [21-24]; however,
to the authors’ knowledge, there has been only one attempt
to apply neural networks (NNs) for the prediction of the
fundamental period of infilled framed structures [25]. In this
study, an ANN model has been proposed with the neurons
organized into input, hidden, and output layers. The input
layer consists of five neurons corresponding to five input
parameters (the height of building, number of bays, ratio of
area of shear walls to area of floor, ratio of infilled panels to
total number of panels, and type of frame). Two hidden layers,
the first and second one, exist between the input and output
layers consisting of six and five neurons, respectively. The
Logsig transfer function and Levenberg-Marquardt Learning
mechanism were used in the ANNs modeling. The output
layer, composed of one neuron, provides the fundamental
period.

In the present paper, the use of Back-Propagation Neural
Networks (BPNNG) is proposed to predict the fundamental
period of infilled framed structures considering most of the
parameters affecting its value. The Back-Propagation Neural
Network is based on a new heuristic algorithm that optimizes
multilayer neural networks. The model is tested using a set of
data obtained by analyzing a large number of infilled frames
using the software FESPA and modeling the infill as diagonal
struts. The results are compared with the ones obtained using
various empirical expressions existing in the literature.

2. Building Design Codes

Different approaches have been used for estimating the
fundamental period of RC frame structures with or without
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infill walls. The most common expression for the calculation
of the fundamental period of vibration (T is

T=C,-H", 0))

where H is the total height of the building (in meters)
and C, is a coeflicient. Such an expression is derived by
using Rayleigh’s method assuming that the horizontal forces
are linearly distributed over the building’s height; the mass
distribution is constant; the mode shape is linear; and the
base shear is inversely proportional to T>. The above
expression was first adopted by ATC3-06 [26] for reinforced
concrete moment-resisting frames. The European seismic
design regulations [27] and the Uniform Building Code [28],
among others, adopt the same expression as ATC3-06 for
the evaluation of fundamental period of vibration. Build-
ing codes from different nations adopt similar expressions
assigning different values to C,.

The UBC proposed formula has been updated in FEMA-
450 [29] based on the study by Goel and Chopra [30] and
the measured period of concrete moment-resisting frame
buildings, monitored during California earthquakes (includ-
ing the 1994 Northridge earthquake). Based on the lower
bound of the data presented by Goel and Chopra [30], FEMA
proposed a similar expression for RC frames that provides a
conservative estimate of the base shear:

T =C,H, (2

where H,, is the height of the structure (in meters), C, is equal
to0 0.0466, and x is 0.9.

The National Building Code [31] of Canada relates the
fundamental period of buildings with the number of stories,
N, above the ground, as

T =0.1N. (3)

Other seismic building codes including the Indian [32],
the Egyptian [33], the Venezuelan [34], and the French
Seismic Codes [35], in addition to the building’s height & (in
meters), take into consideration the total base dimension, d
(in meters), of the masonry infilled RC frame. The expression
for the estimation of the fundamental period of vibration
from the aforementioned seismic codes is

.09h
7= 00"
Vd
Eurocode 8 [27], besides the general height-related
expression (see (1)), provides a more accurate expression for

the calculation of the coefficient C,, for masonry infilled
reinforced concrete frames:

_0.075

COVAC
i\
AC=ZAI»<O.2+%>,

where C, is the correction factor for masonry infilled rein-
forced concrete frames, A is the combined effective area of

(4)

(5)
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TABLE 1: Expressions for the evaluation of fundamental period of
vibration.

Expression Reference

T =0.053H*° Goel and Chopra [30]

T = 0.0294H%%* Hong and Hwang [39]

T = 0.067H*’ Chopra and Goel [40]

T=0.1H Crowley and Pinho [41]
T = 0.055H Crowley and Pinho [42]
T = 0.026H*° Guler et al. [43]

the masonry infill in the first storey, A; is the effective cross-
sectional area of the wall in the direction considered in the
first storey, and [,,; is the length of the walls in the first storey
in the direction under consideration. A detailed report on the
code approaches about the fundamental period of masonry
infilled RC frames can be found in Morales [36], Kaushik
etal. [37], and Dorji [38].

Several researchers have proposed refined semiempirical
expressions for the fundamental period of RC frame struc-
tures based on the height-related formula (Table 1). In 2004,
Crowley and Pinho [41] indicated the importance of develop-
ing region-specific simplified period-height formulae. Based
on the assessment of 17 existing RC frames (representative
of the European building stock) examined using nonlinear
dynamic analyses, they proposed a period-height formula
for displacement-based design. The simple relationships
presented in Tablel are valid for RC buildings without
masonry infill. The examined RC frames corresponded to
actual buildings from five different south European countries
designed and built between 1930 and 1980 according to
older design codes. Later in 2006, Crowley and Pinho [42]
using eigenvalue analysis studied the elastic and yield period
of existing European RC buildings of varying height. Such
studies led to a simplified period-height expression for the
assessment of existing RC buildings considering the presence
of masonry infill at the uncracked and cracked stage.

Guler et al. [43] using ambient vibration tests and elastic
numerical analyses computed the fundamental periods of RC
buildings, considering the effects of infill walls. A period-
height relationship was derived for a fully elastic condition.

Figurel presents a comparison between some of the
aforementioned height-related expressions for the evaluation
of the fundamental period of vibration. It is obvious that the
fundamental period calculated based on these expressions is
spread out, revealing the need for further investigation and
refinement of the proposals.

3. Description of the Database Used for
Derivation of the Models

In this section, the building cases for which the fundamental
period is numerically evaluated are thoroughly described.
Building geometry and modeling parameters are presented.
The results of the analysis will be used as input data for the
neural network for the prediction of the fundamental period
of any infilled frame building.
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FIGURE 1: Comparison of equations for the evaluation of the
fundamental period.
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FIGURE 2: Cross section details of a RC infilled frame.

3.1. Building Forms and Infill Walls Parameters. The buildings
investigated in this study have 2, 4, 6, 8, 10, 12, and 14 storeys
(Figure 2). The storey height for all buildings is equal to 3.0 m.
The number of spans varied between 2, 4, and 6. For each case,
four different span lengths (3.0m, 4.5m, 6.0 m, and 7.5 m)
were considered.



TABLE 2: Building parameters.

Concrete strength 25MPa

Modulus of elasticity of concrete, 31GPa

EC

Steel tensile yield strength 500 MPa

Size of beams 250/600 mm

Slab thickness 150 mm

Dead loads 1.50 kKN/m? + 0.90 kN/m?
Live loads 3.50 kN/m?

Number of floors 1,2,3,4,5,6, 7,1i, 9,10, 11, 12, 13,
Storey height 3.00m

Span length 3.00m, 4.50 m, 6.00 m, 750 m
Number of spans 2,4,6

1.5 MPa, 3.0 MPa, 4.5 MPa,
" 8.0 MPa, 10.0 MPa
Modulus of elasticity of masonry, 1.5 GPa, 3.0 GPa, 4.5 GPa,
E, 8.0 GPa, 10.0 GPa
Thickness of infill panel, t,, 150 mm, 250 mm
0% (fully infilled), 25%, 50%,
75%, 100% (bare frame)

Masonry compressive strength,

Infill wall opening percentage

The influence of infill walls is examined by analyzing
both bare and infilled frames. Fully or partially unreinforced
masonry infilled frames, with or without openings, are
analyzed and various parameters are considered for each case.
Infill panels are either 0.15 or 0.25m thick, following the
conventional construction of single and double leaf walls.
The influence of infill wall openings is also examined by
considering five different cases. Infill wall openings are given
as a percentage of the panel area. Five different cases for infill
wall openings are studied. These are fully infilled walls (0%
openings), infill walls with small and large openings (25%,
50%, and 75% openings), and bare frames (100% openings).

Moreover, five different values for the masonry panel
strength were adopted to represent weak, medium, and strong
masonry, namely, 1.5 MPa, 3.0 MPa, 4.5 MPa, 8.0 MPa, and
10.0 MPa. These values cover the most common cases for
masonry infill conditions in Europe.

The building parameters used for the development of the
model are listed in Table 2.

The frames are designed according to Eurocode stan-
dards, using the software FESPA [44] for seismic zone I with
reference peak ground acceleration on type A ground, a g
= 0.16 g, for medium ductility class (DCM). The importance
factor y; was set to 1.0 and the ground type B with soil
factor S equal to 1.2 was selected, according to Eurocode 8.
Square column sections were used for all frames, with low
longitudinal reinforcement ratio, ranging between 1.0% and
1.5%, with most cases being under 1.15. Column dimensions
range from 350 X 350 mm to 700 x 700 mm, depending on
the height and the span length of the building.

3.2. Modeling. Experimental and conceptual observations
have indicated that a diagonal strut with appropriate geomet-
rical and mechanical characteristics could be used to model
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FIGURE 3: Masonry infill frame subassemblage.

composite infilled frame structures (Figure 3). In Figure 3, w
is the width of the diagonal strut, d is the diagonal length of
the masonry panel, L is the distance between the centres of
two columns, and z is the contact length of the diagonal strut
to the column.

Mainstone and Weeks [45] and Mainstone [46] based
on experimental and analytical data evaluated the width
of an equivalent diagonal strut as a function of the rel-
ative panel-to-frame-stiffness parameter using (6). FEMA-
274 [47], FEMA-306 [48], and the majority of researchers
adopted (6) for the analysis and rehabilitation of buildings
with infilled frames

w 0.4
E = 0.175)Lh ,

P (6)
L E,t, sin20
b 4FIh,

where E,, is the modulus of elasticity of the masonry panel,
EI is the flexural rigidity of the columns, ¢, is the thickness
of the infill panel and equivalent strut, / is the column height
between centerlines of beams, h,, is the height of infill panel,
and 0 is the angle, whose tangent is the infill height-to-length

aspect ratio:
a(h
6 = tan 1<L—“’> (7)

where L, is the length of infill panel (Figure 3).

Infill wall openings are taken into account by reducing
the stiffness of the infill wall. The increase in the opening
percentage leads to a decrease in the frame’s stiffness and for
an opening percentage greater than 50% the stiffness reduc-
tion factor tends towards zero [10]. Asteris [10] proposed a
stiffness reduction factor A for the infill walls with openings:

A=1- 2042}‘54 + (xi)'M, (8)
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where «,, is the ratio of the area of opening to the area of the
infill wall.

The equivalent width of a strut for the case of an infill wall
with opening is evaluated by multiplying the width obtained
using (6) with the relevant reduction factor A.

All buildings were modeled as plane frames using Seis-
moStruct [49]. A plastic-hinge element has been adopted for
beams and columns, with concentrated inelasticity within
a fixed length at each member’s end. Mass was calculated
using the seismic load combination, that is, dead loads
plus 30% of the live loads. Masonry is modeled using the
inelastic infill panel element which is an equivalent nonlinear
strut, proposed by Crisafulli [50]. Design and modeling
assumptions are described more thoroughly by Asteris et al.
[51].

4. Architecture of Artificial Neural Networks

This section summarizes the artificial neural networks
(ANNs) mathematical and computational aspects. Special
emphasis is given on a heuristic algorithm which is proposed
for the development of a reliable and robust ANN that can
predict the fundamental period of RC infilled framed struc-
tures. ANNs are information processing models configured
for a specific application through a training process. Trained
ANN maps rapidly a given input into the desired output
quantities (similar to curve fitting procedures) and thereby
can be used as metamodels enhancing the computational
efficiency of a numerical analysis process. This major advan-
tage of a trained ANN over conventional numerical analysis
procedures like regression analysis, under the condition that
the training and validation data cover the entire range of input
parameters values, is that the results can be produced with
much less computational effort [52-54].

4.1. Back-Propagation Neural Networks. In the present study,
we use a Back-Propagation Neural Network (BPNN). In
this type of NNs, the output values are compared with the
correct answer to compute the value of a predefined error
function. By various techniques, the error is then fed back
through the network. Using this information, the algorithm
adjusts the weights of each connection in order to reduce
the value of the error function by a small amount. After
repeating this process for a sufficiently large number of
training cycles, the network will usually converge to a state of
small calculation error. At this stage the network has reached
a certain target function. As the algorithm’s name implies,
the errors propagate backwards from the output nodes to
the inner ones. Thus, back-propagation is used to calculate
the gradient of the error of the network with respect to
the network’s modifiable weights. To adjust weights properly,
a general method is applied for nonlinear optimization,
called gradient descent. In order to minimize the error, the
derivative of the error function with respect to the network
weights is calculated, and the weights are then adjusted to
reduce the error (thus descending on the surface of the error
function). For this reason, back-propagation can only be
applied on networks with differentiable activation functions.

Forward direction
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FIGURE 4: A 5-4-3-2 BPNN.
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FIGURE 5: A neuron with a single R-element input vector.

Back-propagation can be given to suitable local networks
with quick convergence on satisfactory local error minima.

A BPNN is a feed-forward, multilayer network of stan-
dard structure; that is, neurons are not connected with each
other in the layer they belong to, but they are connected with
all the neurons of the previous and subsequent layer. A BPNN
has a standard structure that can be written as

N-H, -H, -+~ Hyy, — M, )

where N is the number of input neurons (input parameters);
H; is the number of neurons in the ith hidden layer for i =
1,...,NHL; NHL is the number of hidden layers; and M is
the number of output neurons (output parameters). Figure 4
depicts an example of a BPNN composed of an input layer
with 5 neurons, two hidden layers with 4 and 3 neurons,
respectively, and an output layer with 2 neurons, that is, a 5-
4-3-2 BPNN.

Another notation for a single node (with the correspond-
ing R-element input vector) of a hidden layer is presented in
Figure 5.

For each node, the individual element inputs p,,..., pg
are multiplied by the weights w; i, ..., w, p and the weighted
values are fed to the summing junction. At that point, the dot



product (W - p) of the single row matrix W = [w) ,,...,w, ]
and the column vector p = [py,..., pg]” is generated. The
threshold b (bias) is added to the dot product forming the net

input n which is the argument of the transfer function f:

n=w,p, +w,p, +-~-+wLRpR+b =Wp+b. (10)

4.2. Transfer Functions. The choice of the transfer function
may strongly influence the complexity and performance of
neural networks. Transfer functions are used in ANNs as
activation functions connecting the weights w; of a neuron
i to the input. Although sigmoidal transfer functions are the
most commonly used, there is no a priori reason why models
based on such functions should always provide optimal
decision borders. Past studies [55, 56] have proposed a large
number of alternative transfer functions. In the present study,
the following functions are used.

(a) The Identity (“Linear”) Transfer Function. The simplest
transfer function commonly used is that of the identity
activation function (Figure 6). The output of the identity
function and its derivative are given by

f(l’l) =n,
fln=1

This function yields output values in the interval [-oo,
+00], while its derivative always yields output values equal
to 1. It is worth mentioning that the combination of using
nonlinear activation functions among the neurons of hidden
units and the identity function for the output layer leads
to a robust form of nonlinear regression. The network can
predict continuous target values using a linear combination
of signals that arise from one or more layers of nonlinear
transformations of the input.

(11)

(b) The Logistic Sigmoid Activation Function. Another func-
tion, which is often used as output activation function, is the
logistic sigmoid (Figure 6). The output of this function and
its derivative are given by

f(n)ze‘”+1’ @)
12
' Cl+e"+1
fm= (1+em™)?

This function, yielding output values in the interval [0, +1],
is suitable for binary classification problems for which the
outputs values are in the interval [0, +1].

(c) The Hyperbolic Tangent Activation Function. An alter-
native to the logistic sigmoid is the hyperbolic tangent
or tanh function (Figure 6). The output of the hyperbolic
tangent function and its derivative are given by

2n 1
fo =5
’ 2 13)
Sty
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FIGURE 6: (a) Common activation functions, (b) their derivatives.

The tanh function is also sigmoidal (“s”-shaped). This func-
tion yields output values in the interval [-1, 1], while its
derivative yields output values in the interval [0, 1]. Thus,
strongly negative inputs to the tanh will map to negative
outputs. Additionally, only zero-valued inputs are mapped to
near-zero outputs. These properties make the network less
likely to get “stuck” during training.

4.3. Finding the Best Architecture of a ANN or How to Avoid
the Overfitting Problem. The best architecture of an ANN
can be identified, given the known number of parameters for
input and output (5 and 1, resp., for the present application),
by estimating the optimum number of hidden layers and
neurons.

The estimation of the best architecture avoids the over-
fitting problem. Overfitting generally occurs when a model
is excessively complex, such as having too many parameters
relative to the number of observations as well as when the
training data do not cover the entire range of the input
parameters values of the problem. As an extreme example,
when the number of parameters is equal to or exceeds the
observations, a simple model can predict the training data
by memorizing them but fails to predict new ones by not
learning to generalize. In order to prevent overfitting, several



Computational Intelligence and Neuroscience

techniques/algorithms and criteria have been proposed [54,
57-59] for determining the correct number of neurons with
their hidden layer based mainly on the number of inputs and
output parameters [60-62]. In the present work, a simple
heuristic algorithm is proposed achieving a reliable and
robust ANN suitable for predicting the parameter/function
that contains a continuous mapping from one finite space to
another. The steps of the proposed algorithm that can predict
the fundamental period of RC infilled frame structures are
the following.

Step 1 (development and training of several neural networks).
The development and training of the NNs occur with a
number of hidden layers ranging from 1 to n;, — 11, and with
a number of neurons ranging from n;, — 1 to 3 x (n;, — 1),
where n;, and n,,, correspond to input and output parameters,
respectively. Each one of the NNs is developed and trained for

a number (n f) of activation functions.

Step 2 (determination of mean square error). For each one
of the above trained NNs, the mean square error (MSE) is
computed for a set of data (validation data) which have not
been used during the training process (training data) of the
ANN:S.

Step 3 (establishment of upper and lower limits). Upper
and lower limits are introduced for each one of the output
parameters based on experimental or numerical data as well
as reasonable estimations by the users.

Step 4 (selection of optimum architecture). The optimum
architecture is the one that gives the minimum mean
square error while all the computed output parameters for
all the validation data are between the upper and lower
limits.

The importance of the limits established at Step 3 based
on the user’s expertise should be emphasized, since wide
experience is needed not only in relation to the neural
networks but also to the specific field applied in order to
establish reasonable estimations.

5. Results and Discussion

5.1. Data Set. A total of 1281 infilled frames have been studied,
and the fundamental period (output parameter for the NNs)
was investigated. A representative range of values is used (as
presented in Table 2) for the following five parameters of the
model: (i) number of storeys (equivalent of the total height of
structure), number of spans, span length, infill wall stiffness,
and opening percentage (5 input parameters for the NNs).
Due to the large size of the data sets, the results are presented
graphically in Figure 7.

Figure 7 presents the numerical values of the fundamen-
tal period for the entire set of 1281 cases under study, along
with the corresponding values appearing in the literature. As
can be seen, there is a great discrepancy in the numerical
values, and none of the up-to-date proposals yield robust
estimates.
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FIGURE 7: Fundamental period of infilled frame structures.

5.2. BPNN Model Development. Based on the algorithm
described in Section 4.3, 78 BPNN models have been
developed and investigated. Each one of these models was
trained by means of 1053 data sets (out of the total of 1281,
that is, an 82% percentage) and the reliability of the results
was validated against the remaining 228 data sets (18% of
total), by calculating the mean square error (MSE) using the

following equation:
Iy 2
MSE = ;Z Ty~ Tl (14)

i=1

where T; , and T; , are the predicted and the numerical values
of the fundamental period while v is the number of the
training data.

Based on this procedure, the optimum BPNN model is
that of 5-10-7-1 (Figure 8) with MSE equal to 0.00019. The
name of the model reveals the number of neurons used
in each layer. It is worth mentioning that the best NN in
regard to the computational time is the 5-12-1 (Figure 9)
with MSE 0.00204. Figures 10-12 present the numerical
results of the fundamental period values, as predicted by the
two NNs compared to the analytically derived values. The
comparison is taking place for both training data (Figure 10)
and validation data (Figure 11) as well as for the test data
set (Figure 12). It is also clear that the 5-10-7-1NN with the
smaller value of MSE predicts better than the 5-12-1 which
has a larger MSE value with the trade of a slight increase in
the computational time.

5.3. Comparisons with Code Provisions. The advantages of
the derived BPNN model compared to the code provi-
sions and other research formulae are shown in Figure 13.
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FIGURE 13: Comparison of the proposed NN with “exact” data and formulae from the literature.

The importance of graphing the data and the effect of outliers
on the statistical properties of a data set should also be
noticed. For example, Anscombe [63] presented four simple
data sets, and even though they show identical statistical
properties (mean values, standard deviation, correlation fac-
tor, etc.), they were quite different when inspected graphically.
For these reasons, Figure 13 compares the “exact” dynamic
analyses results with the ones predicted by the existing
empirical expressions and by the BPNN model.

From Figure 13, it is clear that the proposed 5-10-7-1
BPNN provides much more reliable values for the fundamen-
tal period of infilled frame structures than those proposed by
the empirical equations, thus confirming the validity of the
proposed NN. In particular, the proposed NN leads to the
minimum MSE (0.00018) if compared to the other research
or code proposals like FEMA-450 [29], EC8 [27], and Goel
and Chopra [30] with corresponding MSE of 0.11905, 0.12427,
and 0.13478, respectively. Similar observations can be made
if the NN results are compared with the rest of the research
proposals presented in Section 2.

6. Conclusions

In this paper, the artificial neural networks method was
assessed by investigating its accuracy in predicting the fun-
damental period of infilled framed structures. In particular,
a new heuristic algorithm was proposed to find the opti-
mum structure of a set of multilayered feed-forward Back-
Propagation Neural Networks. Based on this algorithm, a
neural network model of two hidden layers was selected as
the best fit. In the first and second hidden layers, 10 and
7 neurons were determined, respectively. The fundamental
period values, predicted from the multilayer feed-forward
neural network, are very close to the exact results as con-
firmed by the statistical parameter value MSE. Furthermore,
comparison with the available code provisions has shown
that the predicted periods by the BPNN model are more
accurate and reliable. In conclusion, the fundamental period
of infilled frame structures can be predicted by multilayer
feed-forward neural network model with smaller error rates
and less computational effort.
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