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Due to the increased economic demand for livestock, the number of livestock is
increasing. Because of human interference, the survival of wild animals is threatened
in the face of competition, particularly in co-inhabited grazing pastures. This may
lead to differences in the adaptability between wild and domestic animals, as well as
nutritional deficiencies in wild animals. The gut microbiota is closely associated with host
health, nutrition, and adaptability. However, the gut microbiota diversity and functions in
domestic and wild animals in co-inhabited areas are unclear. To reveal the adaptability of
wild and domestic animals in co-inhabited areas based on gut microbiota, we assessed
the gut microbiota diversity. This study was based on the V3–V4 region of 16S rRNA
and gut microbiota functions according to the metagenome analysis of fresh fecal
samples in wild goitered gazelles (Gazella subgutturosa) and domestic sheep (Ovis aries)
in the Qaidam Basin. The wild and domestic species showed significant differences
in alpha- and beta-diversities. Specifically, the alpha-diversity was lower in goitered
gazelles. We speculated that the nutritional and habitat status of the goitered gazelles
were worse. The gut microbiota functions in the gazelles were enriched in metabolism
and cellular processes based on the KEGG database. In summary, we reasoned
that gut microbiota can improve the adaptability of goitered gazelles through energy
maintenance by the functions of gut microbiota in the face of nutritional deficiencies.
These findings highlight the importance of gut microbiota diversity to improve the
adaptability of goitered gazelles, laying a foundation for the conservation of wild goitered
gazelles. In addition, we further provide management suggestions for domestic sheep
in co-inhabited grazing pastures.
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INTRODUCTION

Wild and domestic animals that co-inhabit the same regions face similar environmental challenges
and may compete for food (Xu et al., 2008a). Due to the increasing demand for livestock, their
numbers continue to increase (McDonald et al., 2019) and domestic animals may encroach on
wildlife resources, imposing new selection pressures on wild animals, particularly in the grazing
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pastures (Scasta et al., 2016; Zhao et al., 2019). Monitoring the
adaptability of wild and domestic animals in co-inhabited areas is
essential to the conservation of wild animals and also benefits the
management of domestic animals (Woodcock et al., 2005).

The Qaidam Basin is an inland basin in the northern Qinghai
Province, marked by drought, levels of evaporation that exceed
precipitation, long cold winters, and large temperature variations.
The average annual temperatures range from 1.2 to 4.3◦C and
the elevation ranges from 2600 to 3000 m (Shi et al., 2005; Wei
et al., 2014; Zhong et al., 2014), in which the natural conditions
are harsh. In the Qaidam Basin, the composition of the vegetation
is simple, with deserta most prevalent. The vegetation coverage
is less than 5%. The main plants include Nitraria tangutorum,
Sympegma regelii, Kalidium foliatum, and Salsola collina (Zhong
et al., 2014). Meanwhile, the Qaidam Basin is the main habitat
of goitered gazelles in Qinghai Province (Northwest Institute of
Plateau Biology, 1989) and the main domestic animals here are
sheep. Gazella subgutturosa (Güldenstaedt, 1780), also known
as goitered gazelles, are inhabitants of deserts and semi-deserts
(IUCN SSC Antelope Specialist Group, 2017). Studies on goitered
gazelles have focused on feeding habits, behavioral characteristics,
and physiological and ecological adaptation (Ostrowski and
Joseph, 2006; Ostrowski et al., 2006; Chu et al., 2008; Xu et al.,
2008a,b; Blank et al., 2012, 2015). Goitered gazelles adapt to
water and food shortages by changing their organ size (Ostrowski
et al., 2006), but knowledge of their gut microbiota and its
adaptability are sparse. Goitered gazelles in the Qaidam Basin
are rarely assessed and studies on the gut microbiota of domestic
sheep (Ovis aries) have been limited to health and nutritional
assessments (Tanca et al., 2017; Thomas et al., 2019). As sheep are
an economic species, the main points of interest include health
maintenance, disease treatment, and weight-gaining approaches
(Houston et al., 2000; Al-Dabeeb, 2005; Supratman et al., 2018).
The dietary overlap between wild goitered gazelles and domestic
sheep during winter in the Karamely Mountain can reach 0.935,
suggesting that the two species are likely to face food competition
(Chu et al., 2008). Nuomuhong County in the Qaidam Basin (our
sampling area) is an area co-inhabited by wild goitered gazelles
and domestic animals. Due to human interference, domestic
animals generally feed in high-quality pastures. Hence, wild
animals inhabiting the Qaidam Basin may face low food quality
coupled with severe cold during the winter months (Li et al.,
2013). Compared to domestic sheep, wild goitered gazelles face
greater survival challenges and higher competitive pressure in
winter on the Qaidam Basin. In this study, the Nuomuhong
County in the Qaidam basin was selected as a representative
site to study the adaptability of wildlife and domestic animals in
co-inhabited areas.

The gut microbiota reflects and regulates the metabolic and
immune responses of the host, each of which are a key to host
adaptation (Ross et al., 2010; Fischbach and Sonnenburg, 2011;
Payne et al., 2012; Drissi et al., 2014; Trompette et al., 2014; Sun
et al., 2016; Tanca et al., 2017; Gazzaniga and Kasper, 2018; Huang
et al., 2018). In herbivores, the gut microbiota is dominated by
Firmicutes and Bacteroides, the functions of which are related to
cellulose digestion (De Filippo et al., 2010; Bergmann et al., 2015;
Xue et al., 2016). An array of environmental factors influence

the composition and function of the gut microbiota, including
diet, host genetics (Zhang et al., 2015; Li et al., 2018; Pereira-
Marques et al., 2019), and habitat (Huang et al., 2018). Variations
in gut microbiota composition and function are associated with
food intake (Claesson et al., 2012; Zhao et al., 2017; Zmora
et al., 2018). The gut microbiota are influenced by the digestive
system of the host, producing specific metabolites that affect
both metabolism and host health (Vrieze et al., 2010; Clemente
et al., 2012; Xu et al., 2013). Studies on the Alaskan moose
found that a high starch diet led to an abundance of archaea
in the rumen (Ishaq and Wright, 2012). Due to similar high-
cellulose diets in Yunnan snub-nosed monkeys (Rhinopithecus
bieti) and cows, the gut microbiota diversity of these species is
comparable (Xu et al., 2015). When food is abundant, Bacteroides
thetaiotaomicron fully utilize glycogen. However, when food
polysaccharides are in short supply, Bacteroides thetaiotaomicron
uses proteins and glycolipids to synthesize polysaccharides (Shen,
2012). It is accepted that host genes influence the diversity
and function of the gut microbiota (Khachatryan et al., 2008;
Turpin et al., 2016), which can be differentiated according
to species (Turpin et al., 2016; Ding et al., 2017; Crespo-
Piazuelo et al., 2019; Quan et al., 2019). The colonization
of microorganisms from the environment into the animal
gut represents a screening process. Environmentally ingested
microorganisms can be directly excluded or eliminated due to
competition with the gut microbiota (Smith et al., 2015). The
gut microbiota composition of fish differs in salt vs. freshwater
(Sullam et al., 2012). Habitat also significantly impacts the gut
microbiota of frog species living in farmlands and forests. Due
to different selection pressures, the gut microbiota functions of
farmland frogs are more diverse (Huang et al., 2018). Habitat
degradation is associated with a loss of alpha diversity (Amato
et al., 2013). In cold environments, physiological adaptations
occur in mammals and the gut microbiota promotes intestinal
regulation and absorption, enhancing food and energy utilization
(Gomez De La Torre Canny and Rawls, 2015). The gut
microbiota also provides energy through the fermentation of
non-digestive carbohydrates to short-chain fatty acids (Tremaroli
and Bäckhed, 2012). Moreover, the gut microbiota is conducive
to host energy compensation (Amato et al., 2015; Sommer
et al., 2016). For example, brown bears enhance their energy
compensation during hibernation periods (Sommer et al., 2016).

Previous comparative studies on gut microbiota involved
captive and wild populations and focused on health and
reintroduction problems (Glad et al., 2010; Cheng et al., 2015;
Guan et al., 2017; Li et al., 2017). In general, significant differences
exist between the gut microbiota of wild and domestic animals
(Scupham et al., 2008; Lyu et al., 2018), because of the variation
in habitats or diet (Borbon-Garcia et al., 2017; Li et al., 2017).
However, these studies were limited to wild animals (Moeller
et al., 2013; Menke et al., 2014; Yang et al., 2016). At present,
no comparative studies on the gut microbiota diversities between
wild and domestic animals in co-inhabited area of the Qaidam
Basin have been performed. It is currently unclear whether wild
goitered gazelles are influenced by domestic sheep and what the
relationship is between gut microbiota and their adaptability. We
speculated that due to disturbances in grazing, the nutritional
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level and habitat quality of wild goitered gazelles was decreased,
leading to changes in the gut microbial diversity and function.

In this study, we collected 33 fresh fecal samples by a non-
invasive sampling method in the Qaidam Basin to compare
the diversity and function of the gut microbiota between
wild goitered gazelles (Gazella subgutturosa) and domestic
sheep (Ovis aries). The diversity of the V3-V4 regions of
the 16S rRNA community structure and functions based on
metagenome data were analyzed. Our results lay the foundation
for the conservation of wild animals and the management of
domestic animals.

MATERIALS AND METHODS

Ethics Statement
All experiments, including the sample collection methods,
followed the principles of the Ethical Committee for
Experimental Animal Welfare of the Northwest Institute of
Plateau Biology.

Sample Collection
The green solid lines in Figure 1 represent the sampling area
in which goitered gazelles and sheep typically forage, though it
was not restricted to these areas. According to our investigation,
the numbers of goitered gazelles ranged from 150 to 200
(unpublished data) in our sampling area. Goitered gazelles in
Nuomuhong County gather together in a regular drinking route
(sheep path) in the morning and evening. Their rest shrubs
are relatively fixed at night. They typically defecate 1 – 2 times
per day and defecation times are concentrated in the mornings
and evenings. Fresh fecal material is typically observed near the
shrubs where they spend the night. The four sites marked in
Figure 1 represent the overnight sites of goitered gazelles, which
formed the sampling sites of this study. The sheep feed during
the day under the direction of the shepherd and are returned to
the sheep pen overnight. The sampling sites of the sheep shown in
Figure 1 represent the location of the pen. Samples were collected
in the morning prior to the sheep exiting the pen. The sampling
areas and sites were geocoded with ArcGIS (V10.5).

The fecal pellets of goitered gazelles were concentrated rather
than scattered on the ground, allowing their identification as
from individuals not groups. We selected larger, oval samples to
ensure they came from adults. Five samples were collected (one
per individual) from each sampling site in a single day. Samples
were not collected from the same sites on subsequent days to
avoid collecting samples from the same individual. The sampling
time of the four sites was from December 1 to December 4, 2016.
As domestic sheep gather in large groups, only a single sampling
point was assessed.

A total of 20 fresh fecal samples from goitered gazelles and
13 fresh fecal samples from domestic sheep were collected. The
goitered gazelle samples were labeled from WGS1 to WGS20
and the sheep samples were labeled from WSE1 to WSE13.
During sampling, disposable polyethylene (PE) gloves were used
to avoid contamination. The collected fecal samples were added
to self-sealing bags, numbered, and recorded. The PE gloves were

changed upon the collection of subsequent samples. Following
collection, all samples were stored at −20◦C for a maximum of
1 week. Samples for prolonged storage were stored at −80◦C
in the Northwest Institution of Plateau Biology. The goitered
gazelles and domestic sheep were allowed to naturally defecate
for the morning sample collections.

DNA Extraction, Amplification, and
Sequencing
DNA from 33 samples was extracted using the CTAB method
and the V3-V4 region of 16S rRNA was amplified using 341F-
806R specific primers (341F: 5′-CCTAYGGGRBGCASCAG-
3′, 806R: 5′-GGACTACNNGGGTATCTAAT-3′). PCR reactions
were performed in a reaction volume of 30 µL and included
Phusion R© High-Fidelity PCR Master Mix with GC Buffer (New
England Biolabs, 15 µL), primers (3 µL), gDNA (10 µL) and
H2O (2 µL) using the grads PCR instrument (Bio-Rad T100).
PCR conditions were as follows: denaturation at 98◦ for 1 min,
30 cycles of denaturation at 98◦C for 10 s, annealing at 50◦C for
30 s, extension at 72◦C for 30 s, and a final extension at 72◦C
for 5 min. The PCR products were assessed by 2% agarose gel
electrophoresis. The 400 – 450 bp products were gel-purified with
GeneJET Gel Extraction Kits (Thermo Scientific).

Illumina TruSeq DNA PCR-Free Library Preparation Kits
(Illumina, United States) were used for library sequencing
according to the manufacturer’s protocols. Index codes were
added to all samples. The Qubit@ 2.0 Fluorometer (Thermo
Scientific) and the Agilent Bioanalyzer 2100 systems were used
to assess library quality and the 250 bp paired-end reads were
obtained after sequencing on the Illumina HiSeq platform.

Metagenome Sequencing and
Annotation
Eight fecal samples (four from goitered gazelles and four from
domestic sheep) were randomly selected for metagenome analysis
to sequence the total microbial DNA. Qubit was used to quantify
the DNA concentrations and the DNA samples were randomly
restricted into 350 bp segments using Covaris. Inter-sizes were
detected using the Agilent 2100 library and the samples were
diluted to 2 ng/uL. The libraries were quantified using Q-PCR
and sequenced by Illumina PE150. Reads in the raw data
with quality scores ≤ 38, N numbers ≥ 10 bp, and overlap
lengths ≥ 15 bp were deleted by Readfq software1 (V8). Bowtie2
software was used to avoid host contamination (Karlsson et al.,
2012, 2013). The parameters were –end-to-end, –sensitive, and -I
200, -X 400. Clean data were used for subsequent analysis.

Assembly analysis was performed using SOAP de novo
software (version 2.04) (Luo et al., 2012). The samples were
assembled according to K-mer = 55 using parameters of -d 1, -
M 3, -R, -u, and -F (Scher et al., 2013; Qin et al., 2014; Brum
et al., 2015; Feng et al., 2015). Scaffolds were interrupted from Ns
to obtain Scaftigs lacking Ns (Mende et al., 2012; Nielsen et al.,
2014; Qin et al., 2014). To acquire unused PE reads, we mapped
the clean reads to Scaftigs with Bowtie2 software (Karlsson et al.,

1The git hub address is https://github.com/cjfields/readfq.
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FIGURE 1 | (A) Sampling area and sites in Nuomuhong County. (B) A male goitered gazelle in its shrub habitat. (C) Fresh fecal pellets of a goitered gazelle.
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2012, 2013) and the parameters were –end-to-end, –sensitive,
–I 200, –X 400. The unused reads were mix-assembled based on
K-mer = 55 (Qin et al., 2010; Karlsson et al., 2012, 2013; Qin et al.,
2014). We used Scaftigs with lengths ≥ 500 bp for subsequent
analysis (Karlsson et al., 2013; Li et al., 2014; Nielsen et al., 2014;
Zeller et al., 2014; Sunagawa et al., 2015).

ORF (open reading frame) predictions for Scaftigs were
produced from mixed assemblies using MetaGeneMark (Zhu
et al., 2010; Karlsson et al., 2012; Mende et al., 2012; Li et al.,
2014; Qin et al., 2014; Oh et al., 2014). Sequences < 100 nt were
discarded (Qin et al., 2010; Nielsen et al., 2014; Zeller et al.,
2014; Sunagawa et al., 2015). CD-HIT (Li and Godzik, 2006;
Fu et al., 2012) was used to remove redundancies to obtain
initial gene catalogs. Cluster default parameters were used to
identify 95%, coverage 90%, -c 0.95, -G 0, -aS 0.9, -g 1, and
-d 0. The longest sequences were selected as representative.
The clean data were mapped to the gene catalog to acquire
the numbers of reads in each sample based on Bowtie2
software. The parameters were –end-to-end, –sensitive, -I 200,
-X 400. Following gene deletion, the number of reads was
≤2 (Karlsson et al., 2012; Qin et al., 2012). The final gene
catalog was obtained following further analysis. According to the
read numbers and gene lengths, the relative abundance of the
unigenes was calculated.

DIAMONDE software (Buchfink et al., 2015) was used to
compared the unigenes, including bacteria, fungi, archaea, and
viruses, in the NCBI NR database (Version: 2018.01) (blastp,
e-value ≤ 1e-5) (Karlsson et al., 2013). We selected data with
minimum e-values for further analysis based on the LCA
algorithm (Huson et al., 2011). The unigenes were compared to
the KEGG database (Kyoto Encyclopedia of Genes and Genomes)
with DIAMONDE software to obtain annotation information
on functions (blastp, e-value ≤ 1e-5) (Li et al., 2014; Feng
et al., 2015). Data with the highest scores (one HSP > 60
bits) were selected for subsequent analysis (Qin et al., 2012;
Karlsson et al., 2013; Li et al., 2014; Backhed et al., 2015).
Relative gene abundances were annotated at the functional level
(Karlsson et al., 2012; Li et al., 2014).

Data Analysis
FLASH (Magoč and Salzberg, 2011) was used to merge paired-
end reads to obtain raw Tags. Quality control of the raw Tags
was performed with QIIME (Caporaso et al., 2010). Chimeras
were removed after comparison of the Tags to the Gold database
(Edgar et al., 2011; Haas et al., 2011). Effective Tags were
finally obtained.

Effective Tags with ≥ 97% similarities were clustered into
the same OTUs (operational taxonomic units) and richness
was counted using Uparse software (Edgar, 2013). The highest
frequency OTUs were selected as representative and individual
singletons were removed with Uparse software (Edgar, 2013).
Annotation information was obtained at seven levels (kingdom,
phylum, class, order, family, genus, and species) through
the comparison of representative OTUs with the SSUrRNA
database (Quast et al., 2013) in SILVA (Wang et al., 2007)
(threshold: 0.8∼1) using the Mothur method (Schloss et al.,
2009). Sequence alignments were performed with MUSCLE

software (Edgar, 2004). Alpha- and beta- diversity analyses were
performed based on the normalized sample data.

Chao1, Shannon, Simpson, and ACE indices were calculated
using Qiime software (Caporaso et al., 2010). The intergroup
differences were analyzed with R software2 at the alpha-diversity
level. At the beta-diversity level, the unweighted and weighted
Unifrac distances and UPGMA (Unweighted Pair-group Method
with Arithmetic Means) trees were calculated using Qiime
software (Caporaso et al., 2010). PCA analysis (packages “ade4”
and “ggplot2”) (Dray et al., 2018; Wickham et al., 2019),
Anosim analysis (packages “vegan,” anosim function) (Oksanen
et al., 2019), heatmap (packages “pheatmap”) (Perry, 2016) and
Metastats analysis were performed with R software (packages
“optparse”) (Davis, 2019). LefSe (linear discriminant analysis
effect size) analysis was performed using LefSe software (Segata
et al., 2011). The LDA (linear discriminant analysis) score was 4.

RESULTS

Gut Microbiota Profiles
According to 16S rRNA data, we identified 2,626,321 reads,
2,358,917 of which were combined with an average length
of 410.15 bp (Supplementary Table A). A total of 2,107,371
qualified reads were produced, including 63,860 reads per sample.
The qualified reads ranged from 45,828 to 72,205 per sample.
The average length of the reads was 409.7 bp, with Q20 ≥ 98%
and Q30 ≥ 96% (Supplementary Table B). Both the rarefaction
curves and species accumulation plots indicated a relationship
between sequencing depth and OTU numbers. All rarefaction
curves (Figure 2A) were smooth, indicating a sufficient sequence
depth with a very low possibility of discovering new OTUs. The
species accumulation boxplots (Figure 2B) tended to be smooth,
indicating sufficient sequencing depth. The possibility of new
OTUs did not significantly increase with larger sampling size.

At the OTU level, according to 97% sequence-similarity
thresholds, 2205 OTUs were shared by the goitered gazelles and
domestic sheep. A total of 317 OTUs were unique to goitered
gazelles, whereas 213 OTUs were unique to domestic sheep. This
suggested that the composition of the two species is comparable
at the OTU level. The gut microbiota of the goitered gazelles was
classified into 25 phyla, 130 families and 246 genera (including
unclassified entries). The gut microbiota of the sheep was divided
into 21 phyla, 112 families, and 229 genera (including unclassified
entries). The relative abundance of the top 10 phyla, top 10
families, and top 10 genera is shown in Figure 3.

Gut Microbiota Composition
At the phylum level, Firmicutes (76.40% ± 0.93%;
71.03% ± 1.83%) and Bacteroides (17.17% ± 0.85%;
21.84% ± 1.58%) were the core phyla (relative abundance ≥ 1%)
in both the goitered gazelles and sheep. These results were
consistent with other previous studies (Bergmann et al., 2015;
Xue et al., 2016; Tanca et al., 2017). The Firmicutes/Bacteroides
ratio in goitered gazelles was 4.670 ± 1.091 and 3.686 ± 2.012 in

2The website address is https://www.r-project.org/.
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FIGURE 2 | (A) Rarefaction Curves. X-axis: number of randomly selected sequences in the samples; y-axis: number of OTUs based on the sequences. Individual
samples are represented by different colors. (B) Species accumulation boxplots. X-axis: sample size; y-axis: number of OTUs after sampling.

sheep. The bacteria from the two phyla are related to cellulose
and carbohydrate digestion (De Filippo et al., 2010; Li et al.,
2017). According to Metastats analysis, the relative abundance
of Firmicutes in the goitered gazelles was significantly higher
than that in domestic sheep, whereas the relative abundance of
Bacteroides was significantly lower (P < 0.05). Thaumarchaeota,
Synergistetes, Chlorobi, and TM6 were only identified in goitered
gazelles. The relative abundance of each sample at the phylum
level is shown in Figure 4A.

We identified 10 core families (including unclassified
families) shared by both species. The top three families
in terms of relative abundance were Ruminococcaceae
(47.14% ± 0.70%, 40.71% ± 1.96%), Lachnospiraceae
(16.92% ± 0.53%, 8.50% ± 0.47%), and Rikenellaceae
(7.83% ± 0.47%, 8.64% ± 0.75%), all shared by both species.
The relative abundance of Ruminococcaceae and Lachnospiraceae
in goitered gazelles was significantly higher than that in
domestic sheep (P < 0.05), whereas the relative abundance of
Enterobacteriaceae was lower in gazelles (P< 0.01). In the 10 core
families, six showed significance (P < 0.05) based on Metastats
analysis. These included Ruminococcaceae, Lachnospiraceae,
Christensenellaceae (5.79% ± 0.27%, 8.42% ± 0.53%),
Bacteroidaceae (3.69% ± 0.19%, 5.65% ± 0.48%),
Peptostreptococcaceae (1.03% ± 0.09%, 3.87% ± 1.07%),
and Peptococcaceae (1.01% ± 0.08%, 1.32% ± 0.10%) in goitered
gazelles and sheep, respectively. The relative abundance of each
sample at the family level is shown in Figure 4B.

At the genus level, 13 core genera (including unclassified
genera) were shared by the goitered gazelles and the
sheep. According to Metastats analysis, only eight genera
showed significant differences (P < 0.05), including
Ruminococcaceae_UCG-005 (15.93%± 0.42%, 11.17%± 0.58%),
Christensenellaceae_R-7_group (5.66%± 0.27%, 8.10%± 0.51%),
Eubacterium_coprostanoligenes_group (5.39% ± 0.22%,
4.11% ± 0.27%), Ruminococcaceae_UCG-013 (4.62% ± 0.22%,
3.28% ± 0.23%), Bacteroides (3.69% ± 0.19%, 5.65% ± 0.48%),

Ruminococcaceae_UCG-014 (3.26% ± 0.22%, 2.28% ± 0.19%),
Tyzzerella_4 (2.30% ± 0.08%, 1.12% ± 0.07%), and Alistipes
(1.64% ± 0.15% 1.16% ± 0.07%) in goitered gazelles and
sheep, respectively. The predominant bacteria in goitered
gazelles was consistent with sika deer and takin and included
Ruminococcaceae_UCG-005 and Ruminococcaceae_UCG-010
that are related to cellulose degradation (Chen et al., 2017; Guan
et al., 2017). Prevotella is a common genus in the gut microbiota
of herbivores (Xue et al., 2016; Wang et al., 2017) but was
not identified in either the goitered gazelles or the sheep. The
relative abundance of each sample at the genus level is shown
in Figure 4C.

Potentially pathogenic bacteria also colonized the
gastrointestinal tract of both species. The relative abundance
of Campylobacter, Helicobacter, and Shigella in the sheep
was significantly higher than that of the goitered gazelles.
Campylobacter is associated with inflammatory bowel disease
and sheep abortions (Skirrow, 1994; Gradel et al., 2009).
Helicobacter is related to peptic ulceration and gastric neoplasia
(Blaser and Atherton, 2004). Shigella is related to bacterial
dysentery (Seekatz et al., 2013). The relative abundance of
streptococcus in the goitered gazelles was significantly higher
than that in the sheep. Some streptococcal species are pathogenic
and cause diseases such as pharyngitis, necrotizing fasciitis, and
streptococcal toxic shock syndrome (Athey et al., 2016).

Intragroup and Intergroup Differences in
Gut Microbiota Structures
From assessment of the gut microbiota structures (Figures 3, 4)
and the heatmap (Figure 5), the composition of all samples was
similar. The composition of WSE5 did differ, but this sample
was not removed.

At the alpha-diversity level, according to Wilcoxon tests, the
Shannon index (goitered gazelle = 8.06; sheep = 8.36; P = 0.0297),
Simpson index (goitered gazelle = 0.989; sheep = 0.992;
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FIGURE 3 | (A) Phylum level: top 10 phyla in the gut microbiota of goitered gazelles and domestic sheep. (B) Family level, top 10 families in the gut microbiota of
goitered gazelles and domestic sheep. (C) Genus level, top 10 genera in the gut microbiota of goitered gazelles and domestic sheep.

P = 0.0219), Chao 1 index (goitered gazelle = 1306; sheep = 1438;
P = 0.00064), and ACE index (goitered gazelle = 1311;
sheep = 1445; P = 0.000071) (Figure 6), the gut microbiota
in sheep was more diverse than that in goitered gazelles. From
the UPGMA tree (Bray–Curtis), the gut microbiota of goitered
gazelles and sheep clustered into two categories that were
distinctly separated (Figure 7A). At the beta-diversity level,
PCA (principal component analysis) (Figure 7B) showed clear
differences between the groups, which was confirmed by Anosim
analysis (R = 0.867, P = 0.001), indicating significant differences
between goitered gazelles and sheep. The intergroup distances
were greater than the intragroup differences. According to Lefse
analysis (Figure 8), 23 biomarkers were identified (LDA score:
4). The relative abundance of Bacteroidetes, Proteobacteria,
Christensenellaceae, Peptostreptococcaceae, Bacteroides and
Romboutsia was significantly higher in sheep, whereas
Firmicutes, Ruminococcaceae, and Ruminococcaceae_UCG-005
were significantly higher in goitered gazelles.

Comparative Analysis of Metagenome
Functions and Contributing Bacteria
We obtained a total of 401,727,108 reads, 60,259.07 M of clean
data. Q30 and Q20 were above 96 and 90%, respectively, in the
clean data. We obtained 1,800,923 ORFs with an average length
of 596.86 bp based on the metagenomic analysis.

The functions of gut microbiota in the goitered gazelles and
sheep were mainly enriched in “Metabolism” and “Cellular
Processes” (P < 0.05). Forty-nine functions were significantly
enriched in the goitered gazelles (P < 0.05) (Supplementary
Table C), mainly regarding “Carbohydrate and amino acid
metabolism.” Moreover, the relative abundance of 49 functions
in the goitered gazelles was greater than that of the sheep.
The top six were “Starch and sucrose metabolism” (ko00500),
“Cysteine and methionine metabolism” (ko00270), “Galactose
metabolism” (ko00052), “Peptidoglycan biosynthesis” (ko00550),
“Oxidative phosphorylation” (ko00190), and “Phenylalanine,
tyrosine and tryptophan biosynthesis” (ko00400). The
gut microbiota of the goitered gazelles was significantly
enriched in energy metabolism. Six significant differences

associated with Cellular Processes were observed between
the goitered gazelles and the sheep (Supplementary Table
D), including Biofilm formation – Pseudomonas aeruginosa,
Ferroptosis, Cell cycle – Caulobacter, Biofilm formation – Vibrio
cholerae, Autophagy – yeast, and Peroxisomes. The relative
abundances in the goitered gazelles were also higher than
those in the sheep.

According to species analysis with R software (Figure 9),
Firmicutes and Bacteroidetes were the dominant phyla that
contributed to “Metabolism” in both the goitered gazelles
and the sheep. The remaining phyla that contributed to
“Metabolism” were Actinobacteria, Euryarchaeota, Candidatus
Saccharibacteria, Tenericutes, Proteobacteria, Synergistetes,
and Planctomycetes. Firmicutes and Bacteroidetes were the
dominant phyla contributing to Cellular Processes, followed
by Actinobacteria, Tenericutes, Candidatus Saccharibacteria,
Euryarchaeota, and Planctomycetes.

DISCUSSION

Main Factors in Alpha- and Beta-
Diversity Between the Two Species
Differences in food composition are the major determinates
of gut microbiota diversity (Ding et al., 2017; Ren et al.,
2017). The food composition of goitered gazelles and sheep
is different significantly (Chu et al., 2008; Xu et al., 2008a).
The host genome dictates the nature of the gut microbiota
(Turpin et al., 2016; Crespo-Piazuelo et al., 2019), explaining
its species variation (Ding et al., 2017; Li et al., 2017; Quan
et al., 2019). Goitered gazelles and sheep belong to Gazella and
Ovis respectively, the relationship of which is distant (Chen
and Jiang, 2013). We, therefore, speculated that significant
differences in the gut microbiota structures between goitered
gazelles and sheep would exist due to dietary and host
genetic factors.

In the winter, the dietary niches of the goitered gazelles
and sheep overlap, indicating food competition between the
two species (Chu et al., 2008). Due to human intervention,
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FIGURE 4 | (A) Phylum level: top 25 phyla in the gut microbiota samples. (B) Family level: top 15 families in the gut microbiota. (C) Genus level: top 15 genera in the
gut microbiota samples.

the food quality of goitered gazelles is poorer than that
of sheep. Sheep have a smaller range of activities and
consume larger amounts of grass of high nutritional quality.
In contrast, goitered gazelles have a wider forage range and
often consume plants of poor nutritional quality (Xu et al.,
2008a). The gut microbiota diversity is closely influenced by

host-specific feeding ecology (De Filippo et al., 2010; Zmora
et al., 2018). In winter, sheep consume higher levels of
Stipa and Ceratoides, whereas goitered gazelles consume more
Haloxylon ammodendron, Phragmites australis, Nitratia SPP, and
Reaumuria soongorica (Chu et al., 2008; Xu et al., 2008a).
Stipa has both high palatability and nutritional value, with
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FIGURE 5 | Heatmap of the top 15 bacteria in all samples (A) at the phylum level, (B) family level, (C) and genus level.

a high content of crude protein, crude fat, and nitrogen-
free extract, and low levels of crude fiber (Lu, 2016). The
levels of crude protein, crude fat, and nitrogen-free extracts
of Haloxylon ammodendron, Phragmites australis, and Nitratia
SPP were lower than that of Stipa, whereas the content of
crude fiber was higher than that of Stipa (Gao and Ji, 1996;
Wu et al., 2017; Wang and Wu, 2018). Crude protein is
the main nutrient of herbage. Crude fat and nitrogen-free
extracts provide heat and energy (Lu, 2016). We speculate that,
although the diversity and evenness index of food consumed
by the goitered gazelles were higher than those of the sheep

(Chu et al., 2008), due to the differences in nutritional structure,
the gut microbiota diversity was lower than that of sheep
(Hekmatdoost et al., 2008) and high levels of Ceratoides in
sheep contribute to the increase in bacterial diversity in rumens
(Yang et al., 2019).

The Adaptability Strategies of Sheep in
Winter
The dietary composition observed in sheep seems to provide
them an advantage to deal with harsh winter situations over
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FIGURE 6 | Comparison of alpha-diversity indexes between goitered gazelles and sheep based on the (A) Shannon, (B) Simpson, (C) Chao 1, and (D) ACE indices.

FIGURE 7 | (A) Bray–Curtis UPGMA tree. The samples are labeled in different colors. (B): Cluster analysis by PCA (principal component analysis).

the diet observed in goitered gazelles. The relative abundance
of Peptococcaceae, Christensenellaceae, and Bacteroides in the
domestic sheep was higher than that in the goitered gazelles
and these bacteria improve the utilization of food and energy.

Peptococcaceae is related to butyrate synthesis, through which
colonocytes obtain their energy requirements (Nam et al., 2018)
and increase their energy intake through the degradation
of cellulose (Li et al., 2015). Bacteroidetes can improve
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FIGURE 8 | Lefse analysis of the gut microbiota in goitered gazelles and domestic sheep. (A) Cladogram of gut microbiota communities. (B) Biomarker genes and
their LDA scores (LDA score = 4).

FIGURE 9 | (A) Relative abundance of functional genes based on KEGG database and their contributing bacteria between goitered gazelle and domestic sheep with
the same distribution at first level; (B) the relative abundance of contributing bacteria of top 5 functions showing significant differences between goitered gazelle and
domestic sheep with the same distribution according to KEGG database at third level in Metabolism; (C) the relative abundance of contributing bacteria of top 5
functions showing significant differences at third level in Cellular Processes.

both nutrient efficiency and host immunity by degrading
carbohydrates and maintaining intestinal balance (Li et al., 2017;
Zhang et al., 2018).

The Adaptability Strategies of Goitered
Gazelles in Winter
The relative abundance of gut microbiota related to cellulose
degradation in the goitered gazelles was higher than that of the
sheep. Firmicutes can degrade cellulose into volatile fatty acids
to provide energy for the host, whereas Bacteroidetes degrade
carbohydrates and proteins to improve the utilization rates of
the host (Li et al., 2017). Ruminococcaceae are rich in cellulase
genes (Amato et al., 2015), which enables goitered gazelles to
digest high-fiber plants, such as Haloxylon ammodendron and
Phragmites australis. A high Firmicutes/Bacteroides ratio was
relevant to energy extraction from the diet (Ma et al., 2019).
The higher relative abundance of Lachnospiraceae in the gut
microbiota of goitered gazelles contributes to homeostatic
balance, butyrate production, and pathogen elimination

(McLellan et al., 2013). The genomes of a single species of
Alistipes were enriched in carbohydrate, amino acid, and energy
conversion pathways (Preidis et al., 2015). The gut microbiota
of the goitered gazelles allows them to obtain energy through
the improved utilization of food, whereas energy compensation
strategies permit survival in harsh winter environments. The
alpha-diversity is higher in undisturbed areas (Barelli et al.,
2015). The alpha-diversity of the goitered gazelles was less than
that of the sheep, which indicates that the quality or areas of
habitats may be decreased in the goitered gazelles. We speculate
that, although the survival conditions of the goitered gazelles
were worse than those of the sheep, they can be replenished by
the gut microbiota.

Digestive strategies are also closely related to the gut
microbiota (Singh et al., 2011), with different digestive strategies
permitting adaptations for foraging (Clauss et al., 2003). The
common bacteria in herbivores are Firmicutes, Bacteriodetes,
and Proteobacteria (Cersosimo et al., 2015; Chen et al., 2017;
Guan et al., 2017). The higher resistance of wild animals may
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be associated with physiological adaptations and metabolites
produced by the gut microbiota. Wild herbivores more efficiently
process foods low in protein and high in fiber (Nelson et al.,
2003). Presently, digestive strategies are known to impact both
the gut microbiota and host adaptability, but their specific
mechanisms require further elucidation in goitered gazelles.

The functions of the gut microbiota demonstrate how goitered
gazelles improve their adaptability by enhancing the functions
of “Metabolism” and “Cellular Processes” to account for a
loss of food quality in winter compared to sheep. The sugar
metabolism in goitered gazelles is significantly higher than that
of sheep. Sugar metabolism provides energy for the host and is an
important energy source (Chen, 2019) that benefits the survival
of goitered gazelles. Drought-resistant plants, such as Reaumuria
soongorica, are consumed by goitered gazelles and are rich in
polysaccharides and polyphenols (Wang et al., 2011), which also
improve the metabolism of gut microbiota.

The Qaidam Basin is the main habitat of wild goitered gazelles
in China. Goitered gazelles are an important wild ungulate
in the Qaidam Basin, the stability of which is vital to the
biodiversity and ecosystem of the area. Understanding the living
conditions of goitered gazelles and their adaptive strategies
forms the foundation of their conservation. With developing
economic and breeding technologies, livestock numbers are
increasing, threatening the survival of wild animals, particularly
in co-inhabited areas. In this study, food competition between
wild goitered gazelles and domestic sheep was demonstrated
and due to human interference, the food quality of the wild
goitered gazelles was poorer than that of domestic sheep. The
differences in the composition of gut microbiota reflected that
wild goitered gazelles were disadvantaged by domestic sheep, but
that the gut microbiota of gazelles benefited host adaption via
compensatory strategies to enhance host adaptability, improving
the utilization rates of food and metabolic levels. This indicated
that the gut microbiota benefit host adaptability. However, the
side effects of these compensatory mechanisms for the host
require further assessment.

CONCLUSION

In this study, the composition and function of gut microbiota
between wild goitered gazelles and domestic sheep in the
Qaidam Basin were compared. We further assessed the
adaptability strategies of goitered gazelles using non-invasive
methods, which lays a foundation for the conservation of
wild goitered gazelles and the management of domestic sheep.
With the development of sequencing technologies, variations
in the gut microbiota were identified, which highlighted
the conflicts between wild and domestic animals in co-
inhabited areas. We evaluated adaptability based solely
on the gut microbiota, for which goitered gazelles in the
Qaidam Basin have not been systematically studied. In future
studies, host gene structure and diet should be analyzed in
larger sample sizes.

Since goitered gazelles typically rest in shrub areas overnight
and follow fixed movement routes during the day, the protection

of their habitats should be prioritized. The land use mode of
the Qaidam Basin should be planned and pastures with good
food quality must be preserved, reducing grazing activities in co-
inhabited areas to minimize disruption. Winter is the most severe
period for the survival of goitered gazelles and food competition
between wild goitered gazelles and domestic sheep heightens
this problem. To maintain the survival of goitered gazelles, the
animals should be fed green silage with a high protein content
during the winter. We further suggest that variations in dietary
habits and the gut microbiota in goitered gazelles and sheep
should be assessed through feces collection. However, domestic
sheep, a major economic source, should be allowed to graze.
Suitable pastures for domestic animals should be identified to
reduce conflicts with wild animals.
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