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Abstract

Endogenous damage associated molecular pattern molecules (DAMPs) released from necrotic, damaged or stressed cells are
associated with an inflammatory response. Whether the microRNA (miR) expression signature of this response is different
from that of a pathogen associated molecular pattern (PAMP)-stimulated inflammatory response is unknown. We report
here that miR-34c and miR-214 are significantly expressed in fresh human peripheral blood mononuclear cells (PBMCs)
exposed to DAMP-containing freeze-thaw lysates, or to conditioned media from serum-starved and glucose-deprived cells
(p,661024 and p,3.761023), respectively. Interestingly, only miR-34c expression was differentially expressed in PBMCs
exposed to freeze-thaw lysates or conditioned media from wildtype High Mobility Group B1 (HMGB1+/+) mouse embryonic
fibroblast (MEF) cells, when compared to cultures exposed to lysates or conditioned media from HMGB12/2 MEFs. miR-155
expression in these cultures was negligible, but was significantly expressed in PBMCs stimulated with Lipopolysaccahride
(LPS) or most other Toll-like receptor (TLR) ligands, making it the prototypic ‘‘PAMPmiR’’. Exposure to a damaged human
colorectal carcinoma cell line lysate (HCT116) similarly resulted in increased miR-34c and miR-214 levels. When PBMCs were
pre-transfected with anti-miR-34c and then exposed to lysate, expression levels of IKKc mRNA, a putative target of miR-34c,
increased, while protein levels of IKKc in cultures transfected with a pre-miR-34c were abrogated. Levels of miR-34c
expression (as well as pro-inflammatory cytokines, IL-1b and TNFa) decreased when PBMC cultures were briefly pre-
incubated with the K+ channel (inflammasome) inhibitor, glybenclamide, suggesting that inflammasome activation is
upstream of miR-34c expression in response to DAMPs. Our findings demonstrate that a specific microRNA expression
signature is associated with the inflammatory response to damaged/injured cells and carries implications for many acute
and chronic inflammatory disorders.
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Introduction

Intracellular factors released from stressed, necrotic, or dam-

aged cells (or tissues) serve as endogenous danger signals or

ligands, triggering several stress receptors, and leading to the

activation of an innate immune response [1]. These pro-

inflammatory factors are termed damage-associated molecular

pattern molecules or DAMPs [2–4]. A prototypic DAMP, high

mobility group box 1 protein (HMGB1), is a highly conserved

chromatin-binding protein, which is passively released from

necrotic cells [5]. Although HMGB1 is involved in nucleosomal

stabilization and transcriptional regulation of gene expression [6],

once released from stressed or necrotic cells, it leads to local

promotion of autophagy, the recruitment of inflammatory cells

and, with other factors, immune cell activation. Several other

DAMPs released from injured or damaged cells are also pro-

inflammatory and include the heat-shock proteins, S100 proteins,

uric acid, genomic DNA, RNA, as well as ATP [7].

MicroRNAs (miRNAs) are endogenous, small, non-protein

coding RNAs, of around 22 nucleotides in length [8]. Transcribed

as long, primary RNA sequences, they are processed into

precursor or pre-miR stem-loops of about 60 nucleotides in length

through the nuclear-specific enzyme complex, which includes the

RNAse III, Drosha, and its partner, DGCR8 [9]. The pre-miR is

actively transported from the nucleus and further processed into a

21-nucleotide duplex. Via the RNA-induced silencing complex

[10], the duplex is guided to bind target messenger RNAs

(mRNAs) leading to repression of the target’s expression by

inhibiting of translation or by targeting the mRNA for degradation

or deadenylation [11]. In humans, up to one third of protein

coding genes are predicted to be potential miRNA targets [11].
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Here, we report that when human PBMCs are exposed to

damaged HMGB1+/+ cell lysates, or conditioned media from

serum-starved and glucose-deprived cells, both hsa-miR-34c and

hsa-miR-214 are upregulated. However, in PBMCs exposed to

HMGB12/2 cell lysates, the levelsof hsa-miR-34c expressed are

significantly less. We also demonstrate that one of the functional

targets for miR-34c could be IKKc an essential signaling

intermediate of the NFkB inflammatory pathway. This data

reveal a characteristic miR expression pattern of human inflam-

matory cells in response to cell damage or injury.

Results

miR-34c and miR-214 are Differentially Expressed in
Human PBMCs Following Exposure to Damaged/necrotic
Cell Lysates

To determine the microRNA expression signature in normal

human PBMCs following exposure to sterile freeze-thawed lysates,

we exposed four individual donor PBMCs either to MEF freeze-

thaw lysates derived from HMGB1+/+ or from HMGB12/2 cells

(at 36105 cells/ml of PBMC culture). The optimal dose of

DAMP-containing lysate was obtained earlier by assaying the

TNFa released after exposure to increasing doses of lysates (Fig.

S1A). Levels of other pro-inflammatory cytokines (IL-1b and IL-6)

released from donor PBMCs also changed when exposed to the

damaged/necrotic lysates (Fig. S1B). Additionally, TNFa released

from HMGB1+/+ lysates was (to some extent) due to the presence

of HMGB1 as pre-incubation of lysates with a neutralizing

HMGB1 antibody at 10 ug/ml limited TNFa release from human

donor PBMCs (Fig. S1C). Furthermore, pre-incubation with a

blocking TLR2 antibody limited TNFa release when compared to

cultures pre-treated with a control isotype antibody (Fig. S1D).

TNFa release was diminished when cultures were exposed to

boiled or hydrogen peroxide-treated HMGB1+/+ lysates (Fig. S2),

indicating that the active DAMPs are proteins, which must have a

native conformation and remain in a reduced state for activation

of the inflammatory response.

For microRNA profiling, control cultures were either treated

with LPS at 100 ng/ml, or left untreated for 48 hrs, respectively.

Total RNA (with microRNA) was isolated and applied to low-

density TaqMan PCR-based arrays (TLDAs), each array designed

to detect 384 specific human microRNAs (GEO Accession

Number, GSE37399). Relative quantification of miR expression

was presented with respect to untreated cultures, and normalized

to an internal RNA control, snoRNA U48. Statistically significant

miRs were defined by an F-test among four treatment groups

(n = 4/group) with p value ,0.005. From this analysis, three

differentially expressed microRNAs were revealed, namely, miR-

214 (permutation p value 3.761023), expressed specifically in

human PBMCs exposed to either HMGB1+/+ or HMGB12/2

lysates, and miR-34c (permutation p value 661024), expressed in

PBMCs exposed to HMGB1+/+ lysates alone (Table 1). Human

PBMC cultures stimulated with 100 ng/ml of LPS revealed

increased expression of miR-155 (permutation p value 4.261023)

as previously reported [12]. We also performed an F-test on the

dCt values from all four treatment groups. This statistical analysis

further revealed that miR-125b and miR-10b were upregulated in

cultures exposed to either damaged lysate, while hsa-miR-34a

expression was down-regulated in both LPS and lysate treated

cultures (Table 2). Hierarchical clustering analysis of microRNA

profiling confirmed that hsa-miR-34c is preferentially upregulated

in PBMCs exposed to HMGB1-containing lysates but not

HMGB12/2 lysates (Figure 1A, upper panel). Hsa-miR-214

expression clustered with other miRs (such as miR-10b and

miR-125b) when donor PBMCs were exposed to both types of cell

lysate (Figure 1A, middle panel). Confirmed by our F-test analysis

using dCt values, hsa-miR-34a expression was down-regulated in

all donor PBMCs after exposure to cell lysates or LPS, but

relatively more so in LPS stimulated cultures (Figure 1A, lower

panel). The LPS-induced microRNA signature was formed by a

large cluster of miRs, including miR-155 and miR-187, as can be

seen in the third panel, Figure 1A. Interestingly, hsa-let-7e, miR-

146a, and miR-193a were over-expressed in both LPS and MEF

lysate exposed PBMCs, indicating that they might represent the

common miRs in DAMP- and PAMP-mediated inflammation.

Together these data suggest that hsa-miR-214 expression is a

general ‘‘DAMPmiR’’ expressed in human PBMCs exposed to

damaged cells, while hsa-miR-34c is a miRNA that is sensitive to

the presence of HMGB1 in damaged cells.

From the microRNA profiling data, fold expression values (as

log 2–transformed RQ values) for the statistically significant

microRNAs (hsa-miR-34a, miR-34c, miR-214, and miR-155)

were calculated for each donor after exposure to lysates or LPS

(Figure 1B). The fold expression changes for hsa-miR-34c in donor

PBMCs exposed to HMGB12/2 lysates varied from 0.1 to 0.78

fold, and 2.0 to 4.5 fold following exposure to HMGB1+/+ lysates.

The fold expression changes for hsa-miR-214 varied from 2.8 to

5.7 in donor PBMCs exposed to HMGB12/2 lysates, while in

donor PBMCs exposed to HMGB1+/+ lysates, it varied from 2.9 to

7.3 fold. Fold expression changes of hsa-miR-155 in LPS-

stimulated donor cultures varied between 1.45 to 2.55 fold. These

findings were confirmed by measuring the levels of these miRs

individually using TaqMan microRNA RT-PCR assays in two

independent donors following exposure to damaged lysates or

LPS. Figure 1C shows the fold expression changes (as log 2-

transformed values) for hsa-miR-34a, miR-34b, miR-34c, miR-

214 and miR-155 under these conditions. The fold increase in hsa-

miR-34c expression was from an average of 3.4 fold (in donors

exposed to HMGB12/2 lysates), compared to an average of 5.7

fold (in donors exposed to HMGB1+/+ lysates).

Differential Expression of miR-34c in Donor PBMCs
Exposed to a Necrotic Human Carcinoma Cell Lysate

To exclude the possibility of confounding factors introduced by

the use of xenogeneic fibroblasts, we next exposed normal donor

PBMCs to necrotic freeze-thaw lysates from the human colorectal

carcinoma cell line HCT116. Lysates were made from wild-type

HCT116 and HCT116 that had been stably transfected with

shRNA for HMGB1, respectively. Both TNFa release and hsa-

miR-34c expression increased significantly following exposure to

HMGB1+/+ lysates with respect to HMGB12/2 lysates (Figure 2).

As observed previously with necrotic lysates, hsa-miR-214

expression increased in donor PBMCs exposed to both types of

HCT116 lysate. These results support the observation that both

hsa-miR-34c and hsa-miR-214 are upregulated when human

PBMCs are exposed to damaged or necrotic cells, where hsa-

miR34c appears to be responsive to the presence of HMGB1.

Expression of Hsa-miR-34c and Hsa-miR-214 does not
Increase in Human PBMCs Stimulated with Specific
Pathogen-activated Molecular Pattern Molecules (PAMPs)
or TLR Ligands

To determine whether any PAMPs or TLR ligands are

associated with miR-34c or miR-214 expression changes in donor

PBMCs, we stimulated the cells with various PAMPS or known

TLR ligands. Fig. 3 shows the fold expression changes (as log2-

transformed values) of miR-34a, miR-34c, miR-214, and miR-155

Expression of Human DAMPmiRs

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e38899



Expression of Human DAMPmiRs

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e38899



after stimulation of donor PBMCs with various concentrations of

TLR ligands. Expression of miR-34c and miR-214 was negligible

in all samples stimulated with the various TLR ligands. However,

the expression of miR-155 was common to many TLR ligand-

stimulated PBMC cultures, especially those stimulated with LPS,

poly I:C, Pam3CSK4, and R-848. These findings demonstrate

that the ‘‘DAMPmiRs’’, miR-34c and miR-214, are specific to

PBMCs exposed to damaged cell lysates and that miR-155 may be

considered a ‘‘PAMPmiR’’.

IKKc is a Potential Functional Target of Hsa-miR-34c
One of the computational targets in the Sanger Database

(http://microrna.sanger.ac.uk/cgi-bin/targets/) for hsa-miR-34c

is the regulatory non- enzymatic scaffold protein NEMO (NF-

kappa B essential modulator also known as IKKc (or Ik Kinase

gamma). The computational binding energy level of hsa-miR-34c

to IKKc 39 untranslated region (39-UTR) is extremely low, about

222 kcal/mol (see Table S1), indicating the binding potential

between the two sequences is very high. IKKc is an important

intermediate recruited in canonical (or classical) NF-kB signal

transduction pathways [13]. It is activated upon stimulation of

several DAMP or PAMP recognition receptors. We hypothesize

that hsa-miR-34c may be required for fine-tuning expression of

IKKc, a key signal transduction intermediate in the expression of

multiple immunity or inflammation associated genes. To investi-

gate any changes in IKKc levels in human PBMCs transfected

with anti-miR-34c or pre-miR-34c and exposed to MEF lysates,

IKKc mRNA levels were assessed by real-time RT-PCR. Levels of

hsa-miR-34 expression in pre-miR-34c transfected PBMCs were

confirmed by the increase in fold expression of this miR using

TaqMan microRNA real-time RT-PCR. There was an increase in

fold expression from 2.161.97 to 15.961.85 (log2-transformed

fold expression values) in cells pre-transfected with pre-miR-34c

and exposed to HMGB12/2 lysates (Fig. 4B), suggesting targeting

of the seed sequence, preventing miR-34c-mediated degradation

of IKK mRNA. As shown in Fig. 4A, transfection of anti-miR-

34clead to a highly significant increase in IKKc mRNA expression

after exposure to either HMGB1+/+ or HMGB12/2 lysates (RQ

values calculated with respect to PBMCs transfected with negative

control oligos and exposed to respective lysates). These findings

support the notion that IKKc may be a direct target of hsa-miR-

34c. Shown below is the alignment of the miRNA sequence and

the 39UTR of IKKc, with high level of complementarity at the

seed region (in bold).

IKKcmRNA3’UTR position 19-25ð Þ
5’-CGGCCAGUGCAAGGCCACUGCCU-3’

3’-CGUUAGUCG - AUUGAUGUGACGGA-5’

hsa-miR-34c

Interestingly, miR34c seed region sequence is highly conserved

in humans and chimpanzees, as shown in Fig. S4, suggesting a

possible major alteration in relatively recent evolutionary time.

We also evaluated the protein levels of IKKc in PBMCs

following pre-miR-34c or anti- miR-34c transfection and subse-

quent exposure to HMGB1+/+ or HMGB12/2 lysates. Fig. 4C

shows a significant reduction in the amount of IKKc protein

expressed in PBMCs pre-transfected with pre-miR-34c and

exposed to HMGB1-containing lysates for 24 hrs.

Levels of miR-34c and miR-214 Expression (and Pro-
inflammatory Cytokine Release) Increased After Exposure
of Donor PBMCs to Conditioned Media from Serum-
starved and Glucose-deprived Cells

Human donor PBMCs were exposed to conditioned media

from serum-starved and glucose-deprived HMGB1+/+ or

HMGB12/2 MEF cells, as described in the methods. Total

mRNA was isolated from donor PBMCs and Taqman miR PCR

was carried out for miR-34c, mir-214, miR-155 and the

endogenous nucleolar control RNA, RNU48. As shown in Fig. 5,

both miR-34c and miR-214 were significantly expressed in

cultures exposed to the conditioned media, compared to untreated

cultures. However, miR-155 was expressed only in those cultures

treated with LPS. Exposure of PBMCs to conditioned media with

heat shock at 42uC further increased levels of miR-214 expression.

Interestingly, levels of miR-214 were differentially expressed in

PBMCs exposed to HMGB1+/+ or HMGB12/2 conditioned

media, but was not significantly affected when exposed to the

respective lysates. It is plausible this difference may be due to the

Figure 1. Expression of hsa-miR-34c and hsa-miR-214 is a hallmark of human PBMCs exposed to necrotic cell lysates. A: Hierarchical
clustering or heat map of microRNA expression signatures (after real-time TaqMan RT-PCR array profiling) in donor PBMCs exposed to cell lysates
and/or LPS. Total RNA extracted from PBMC cultures was run on microRNA TaqMan low-density arrays (TLDAs). B: Figure depicting changes in fold
expression as log 2-transformed RQ (relative quantity) values of the statistically significant miRs (p values shown in Table 1) from each of the four
donors, after exposure to the respective conditions. All values were calculated from 22ddCt (RQ values) where the endogenous control was snoRNA
U48. C: Differential expression of hsa-miR-34a, miR-34b, miR-34c and other miRs when donor PBMCs are exposed to HMGB1+/+ or HMGB12/2 lysates
for 8 hrs. Data shown are average6s.d., of two independent experiments, each from a different donor, measured in triplicates, where ** indicates
p,0.01, by paired Student’s t test.
doi:10.1371/journal.pone.0038899.g001

Table 1. Statistically significant miRs from microRNA profiling data after an F test of fold change in expression values.

microRNA
(KO1) Geometric mean
of RQ2

(WT1) Geometric mean
of RQ

(LPS) Geometric
mean of RQ p-value

Permutation Parametric

miR-155 1.36 1.45 3.97 4.261023 4.661024

miR-34c 1.39 6.71 1.14 661024 1.461023

miR-214 13.27 28.9 1.56 3.761023 4.861023

1necrotic cell lysates 2RQ is fold change in expression calculated from 22ddCt.
doi:10.1371/journal.pone.0038899.t001
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different modes of cell death under each condition leading to the

release of different profile/levels of DAMPs in either of these

conditions. Levels of the pro-inflammatory cytokines, IL-1b and

TNFa were also increased in those cultures exposed to

conditioned media (Fig. S3).

Figure 2. Differential expression of TNFa and hsa-miR-34c in human donor PBMCs following exposure to wild-type (wt) HCT116 or
HMGB1 stable knock-down (kd) lysates. A: HCT116 cells were stably transfected with a shHMGB1 vector in the presence of Puromycin (100 ug/
ml). The clone with complete knockdown of HMGB1 (indicated by the arrow) was chosen to make necrotic lysates. B: TNFa ELISA showing differential
release of TNFa in human donor PBMC cell cultures following exposure to HCT116 lysates (wild-type, wt or HMGB1 knockdown, kd) for 24 hrs. The
amount of HCT116 lysates used was 104 cells/ml of human PBMC culture. Data shown are the average6s.d. of three independent experiments, each
from a different donor, measured in triplicates, where **indicates p,0.01, by Student’s t test. C: Fold changes in expression (as log-2-transformed RQ
values) of hsa-miR-34c and hsa-miR-214 in donor PBMCs exposed to the indicated HCT116 necrotic lysates for 48 hrs. Values were measured using
TaqMan real-time RT-PCR. Data shown are the average6s.d. of three independent experiments, each from an individual donor, measured in
triplicates, where **indicates p,0.01, and where ***indicates p,0.001, by paired Student’s t test.
doi:10.1371/journal.pone.0038899.g002
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Levels of miR-34c Expression (and Pro-inflammatory
Cytokines) Decreased After Pre-incubation with the
Inflammasome Inhibitor, Glybenclamide

When PBMC cultures were pre-incubated with 50 mM

glybenclamide for 30 minutes, and exposed to conditioned media

from serum-starved and glucose-deprived cells with heat shock,

levels of miR-34c expression decreased significantly in both donor

PBMC cultures (Fig. 5). This indicates that the inflammasome,

shown to be activated when immune cells are exposed to necrotic/

damaged cells [14], is important for the activation of miR-34c.

Levels of pro-inflammatory cytokines (IL-1b and TNFa) also

decreased after pre-incubation with glybenclamide (Fig. S3).

Discussion

An inflammatory response to stressed or damaged cells/tissues

occurs under various pathological conditions, including ischemia/

reperfusion, bone fracture, aneurysm, autoimmune disease, and

within the stressed/necrotic tumor microenvironment. Although

there may be a clear lack of pathogenic infection in these

conditions, the immune system is activated as a result of

‘‘misplaced self’’ molecules released from damaged/stressed cells.

In this study we utilized HMGB12/2 and HMGB1+/+ cell lysates

to see whether the expression profile of inflammatory miRs in

human PBMCs is different when exposed to either lysate.

It is interesting to note that the levels of expression of various

DAMPs (such as heat shock proteins) are different in HMGB1+/+

cells compared to those without HMGB1 [15], indicating that

HMGB1 plays a global transcriptional role in the expression of

multiple genes, including genes for inflammatory proteins.

It is highly pertinent that microRNAs associated with the fine

tuning of chronic sterile inflammatory pathways are elaborated.

Knowledge of these miRs could be utilized as potential therapeutic

and diagnostic tools in diseases associated with tissue injury and

chronic inflammation.

In cancers that are not primarily associated with infection,

chronic inflammation is an important factor in the promotion of

tumorigenesis [16]. Interestingly, deletion of NEMO, an impor-

tant regulator of NFkB signaling in inflammation, leads to

heightened development of hepatocellular carcinoma [17]. Here,

we demonstrate that NEMO is a functional target of an

inflammation-associated miR, miR-34c.

Using a Taqman microRNA profiling low-density PCR array

we identified several microRNA genes, including miR-34c, miR-

214, miR-210, miR-125b and miR-10b in human PBMCs, which

are involved in the inflammatory response to damaged cells. We

show that miR-34c expression in human PBMCs is dependent on

the presence of HMGB1 within cells serving as a source of lysates

or conditioned media from stressed cells. We also demonstrate that

the miRs induced in response to damaged cells are separate and

distinct from those miRs upregulated in response to LPS, although

some miRs (like miR-146a and let-7e) are common for both

pathways. Increased expression of miR-34c has been reported in

Duchenne Muscular Dystrophy, where muscle damage occurs at

large scales [18], indicating that miR-34c may be a diagnostic

biomarker of internal tissue damage.

One of the validated functional targets for miR214 is PTEN, a

phosphatase and tensin homolog and a gene often deleted in

many forms of cancer [19,20]. High levels of miR-214 expression

in human pancreatic tumors [20] have been observed, indicating

that miR-214 may be a general marker of damage-associated

inflammation, particularly in highly metastatic tumors etiologi-

cally associated with chronic inflammation, such as pancreatic

cancer. It will be interesting to test whether the expression of

miR-214 in inflammatory tumors is functional in promoting

tumor growth.

High levels of miR-214 expression have been reported in a murine

model of renal ischemia reperfusion injury [21]. This indicates that

miR-214 may be a specific biomarker for internal tissue damage/

injury. Some of the other ‘‘DAMPmiRs’’ that clustered together

with miR-214 include miR-125b and miR-10b, where the latter can

Figure 3. hsa-miR-34c and hsa-miR-214 are expressed at negligible levels in human PBMCs stimulated with various PAMPS or TLR
ligands. Fold changes in expression of the indicated miRs in donor PBMCs (as log 2-transformed values) after stimulation with LPS (TLR4 ligand,
100 ng/ml), Imiquimod (TLR7 ligand, 1 ug/ml), CpG ODN 2216 (TLR 9 ligand, 1 ug/ml), Pam3CSK4 (TLR 2/1 ligand, 100 ng/ml), Flagellin (TLR 5 ligand,
100 ng/ml), poly I:C (TLR 3 ligand, 50 ug/ml), R-848 (TLR 7 and TLR 8 ligand, 1 ug/ml) respectively for 48 hrs and measured using TaqMan real-time
microRNA RT-PCR. Data shown are average6s.d., of two independent experiments, each from a different donor, measured in triplicate.
doi:10.1371/journal.pone.0038899.g003
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be involved in metastasis [22,23]. Importantly, miR-125b deregu-

lation has been observed in breast cancer [24].

It is interesting to note that many tumors have been associated

with miR-155 over- expression [20]. This may be a specific marker

for infection in that particular phenotype of cancer, and an

Figure 4. Changes in IKKc mRNA and protein expression levels in human PBMCs pre-transfected with pre-miR-34c or anti-miR-34c
and exposed to HMGB1+/+ or HMGB12/2 lysates. A: Changes in fold expression (as log 2-transformed RQ values) of IKKc mRNA levels in human
PBMCs transfected with pre-miR-34c-5p or anti-miR-34c-5p and exposed to damaged HMGB1+/+ or HMGB12/2 lysates for 8 hrs. Data shown are
average6s.d., of two independent experiments and normalized to the untreated (UT) samples transfected either with control miR, pre-miR-34c or
anti-miR-34c, where ***indicates p,0.001, by paired Student’s t test. B: Data shown are 48 hrs after transfection of pre- miR-34c and negative control
precursor oligos into donor PBMCs. Values were measured using TaqMan real-time RT-PCR and normalized to sno RNA U48. Data shown are the
average6s.d. of two independent experiments, each from a different donor, measured in triplicates, where ***indicates p,0.001, by paired Student’s
t test. C: Decreased protein expression of IKKc after transfection with pre-miR-34c (lane 3) or increased protein expression of IKKc after transfection
with anti-miR-34c (lane 2) and exposure to damaged HMGB1+/+ cell lysates for 24 hrs.
doi:10.1371/journal.pone.0038899.g004
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indication that the source of chronic inflammation in these tumors is

mainly due to infections. However, miR-155 expression has also

been associated with the EMT (epithelial and mesenchymal

transition) and invasiveness of cancer cells [25]. Down-regulation

of miR-34a expression has been implicated in multiple cancers [26].

In our study, miR-34a was significantly down-regulated in

human PBMCs exposed to damaged lysates, in contrast to miR-

34c upregulation. Our findings indicate that miR-34c expression is

due to the inflammatory response in human PBMCs and partly

dependent on the presence of HMGB1 in cells from which

damaged lysates or conditioned media were obtained. Interest-

ingly, recent information suggests that deprivation of growth

factors and deprivation of glucose differed in their signaling

pathways [27] to promote autophagy. Possibly both HMGB1 and

the miRs that we have identified may play a common role in

driving autophagy and the response to inflammation [28]. Given

the critical role of miRs in promoting the response to DAMPs, we

also would speculate that cytokine stimulation of immune cells by

potent agents such as Interleukin 2 [29,30,31] might also enhance

autophagy as a global response to cell stress. Thus, microRNAs

form another level of homeostatic control for the multiple gene

networks involved in biological processes. It is therefore important

to decipher which miRs are key switches that affect the variable

phenotypes observed in health and disease. Our findings clearly

indicate that miR-34c and miR-214 are specifically expressed in

human PBMCs following exposure to sterile cell lysates or

conditioned media from stressed cells, but not when exposed to

PAMPs as TLR ligands. Hence, the design of agents targeting

‘‘DAMPmiRs’’ could be considered a potential therapeutic tool to

limit aberrant sterile acute or chronic inflammation resulting from

damaged or necrotic tissue.

Materials and Methods

General Statistical Analysis of Data
In brief, real-time TaqMan RT-PCR array profiling was

performed in donor PBMCs exposed to cell lysates and/or LPS

run on microRNA TaqMan low-density arrays (TLDAs). Various

PAMPS or TLR ligands with fold changes in expression of

individual miRs in donor PBMCs for 48 hrs were measured using

TaqMan real-time microRNA RT-PCR. Changes in IKKc
mRNA and protein expression levels in human PBMCs pre-

Figure 5. Expression levels of miR-34c and miR-214 are changed when donor PBMCs are exposed to conditioned media from dying
cells. A: Changes in miR-34c, miR-214 and miR-155 expression in PMBCs (from one donor) exposed to conditioned media from HMGB1+/+ and
HMGB12/2 MEF cells. PBMCs were pre- incubated with 50 mM glybenclamide (Glyb) for 30 minutes before being exposed to conditioned media (MEF
CM) for 48 hrs. Heat shock (HS) was carried out at 42uC for 2 hrs. Data shown are average6s.d. from one independent experiment in triplicate,
normalized to untreated control samples and RNU48 as endogenous control. B: Changes in miR-34c, miR-214 and miR-155 expression in PBMCs from
another donor exposed to conditioned media. Data shown are average6s.d. from one independent experiment in triplicate, normalized to untreated
control samples and RNU48 as endogenous control, where **indicates p,0.01, *indicates p,0.05, by paired Student’s t test. The two respective
groups compared in Figure 5 are for each miR expression graph, the treatment at the beginning of the straight line with the treatment at the end of
the line. The control lane is the first treatment in each graph, which is indicated by the white bar.
doi:10.1371/journal.pone.0038899.g005
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transfected with pre-miR-34c or anti-miR-34c and exposed to

HMGB1+/+ or HMGB12/2 lysates were evaluated. Expression

levels of miR-34c and miR-214 were assessed in conditioned

media from stressed (hypoxia, serum starvation) cells. Changes in

miR-34c, miR-214 and miR-155 expression in PMBCs pre-

incubated with 50 mM glybenclamide (Glyb) for 30 minutes before

being exposed to conditioned media (MEF CM) for 48 hrs were

used to assess the inflammasome pathway. Statistical analysis was

carried out using 2 tailed, paired Student’s t test to compare two

variables. The cut off p value for the Student t test was set at

,0.05 level of significance.

Isolation of Donor Human Peripheral Blood Mononuclear
Cells (PBMCs)

Human PBMCs were isolated from normal donor buffy coats

acquired from the Central Blood Bank, Pittsburgh, PA, in

accordance with and approval by the University of Pittsburgh,

Institutional Review Board. Ficoll-PaqueTM PLUS from GE

Healthcare, Piscataway, NJ, USA (or Lymphocyte Separation

Medium, from Mediatech Manassas, VA, USA) was used in a

standard density centrifugation separation. Cells were re-suspend-

ed in IMDM, supplemented with 100 U/ml of Pencillin/

Streptomycin and 10% (v/v) heat-inactivated fetal calf serum

(FCS). For experiments, cells were seeded at 16106 cells/ml in

2 ml per well in 6 well plates.

Cell lines & Reagents
Murine Embryonic Fibroblast (MEF) cells, which were either

HMGB12/2 or HMGB1+/+ were obtained from Dr. Marco E.

Bianchi, Italy [32]. A human colon epithelial carcinoma cell line

(HCT116) was obtained from Dr. Bert Vogelstein, Johns Hopkins

University [33] and was stably transfected with HMGB1 shRNA

(Sigma, St. Louis, MO) in the presence of 100 ug/ml puromycin

(Invivogen, Carlsbad) to obtain a stable HMGB1 knockdown cell

line. Polymyxin B was purchased from Sigma (St. Louis, MO).

The HMGB1 antibody was a generous gift from Dr. Thomas A.

Ferguson’s laboratory (St. Louis, MO). The TLR2 antibody was

purchased from Abcam (Cambridge, MA). The TLR ligand set II

(specific for human TLRs) was purchased from Alexis Biochem-

icals, EnzoLife Sciences International, Inc. (Plymouth Meeting,

PA).

Preparation of MEFs or Colorectal Cancer Cell Line
HCT116 Freeze-thaw Lysates

Sub-confluent MEF or HCT116 cells were resuspended in ice-

cold 16PBS, with 1 mM PMSF and centrifuged at 10,000 g for

1 min at 4uC. The cells were re-suspended in cold non-denaturing

lysis buffer (600 mM KCl, 20 mM Tris-Cl, pH 7.8 and 20% (v/v)

Glycerol) at a concentration of about 1006106 cells/1.3 ml of lysis

buffer, supplemented with 1 mM PMSF, protease inhibitors and

1 mM DTT. The samples were dropped into liquid nitrogen until

completely frozen and placed on ice to thaw slowly. When thawed,

the samples were briefly vortexed at maximum speed. This was

repeated 3 times. At this point, all cells were nonviable as

determined by Trypan blue staining. The cell suspension was

centrifuged at 10,000 g at 4uC for 10 minutes to pellet debris, and

supernatants aliquoted into small volumes and frozen at 280uC.

For an equivalent of 36105 cells/ml of cell lysates in culture,

about 7 ml of the supernatant was added to 2 mls of PBMC culture

in 6-well plates.

Preparation of Conditioned Media and Treatment with
Glybenclamide

2236106 of MEF cells (either HMGB12/2 or HMGB1+/+)

were seeded in 20 cm diameter plates in 10% FBS in IMDM

(supplemented with Pen/Strep) 2 days before adding RPMI

without glucose. This resulted in about 9 million cells/cell type/

plate after 2 days. 2 days later, the plates were washed twice with

16PBS and 20 ml of RPMI without glucose was added to each

plate. The cells were incubated for 24 hrs. After 24 hrs, the RPMI

without glucose from each plate was collected, and centrifuged at

400 g for 5 mins. To 20 ml of RPMI without glucose, 10% FBS

(v/v) (2 ml of stock serum), 0.2 ml of glucose solution (from

100 mg/ml stock) as well as 0.2 ml of Penicillin/Streptomycin

stock solution was added. The conditioned media were stored on

ice until it was added to 2 million of freshly isolated hPBMCs per

well in a 6-well plate for 24 hrs for ELISA and 48 hrs for miRNA

Taqman PCR. Heat shock was carried out at 42uC for an

additional 2 hrs after incubation of MEF cells in serum and

glucose-free RPMI. PBMCs were pre-treated for 30 minutes with

50 mM of Glybenclamide before incubation with conditioned

media.

Analysis of microRNA Profiling Data
The ABI Taqman SDS v2.3 software was used to obtain raw Ct

values. The raw Ct values from each sample were converted to

RQ or 22ddCt values. Briefly, ddCt values were calculated from:

(Ctsample – Ctendog. cont.) – (Ctuntreated – Ctendog. cont.), log2

transformed and used for analysis. The endogenous internal

control was the small nucleolar RNA U48, snoRNU48. Statistical

analysis was performed using the F-test to determine the

differentially expressed miRs with statistical significance and

visualized by hierarchical clustering using ClusterTM and Tree-

viewTM software. Statistical analysis was also performed on dCt

values, where the Ct value of the endogenous control, small

nucleolar RNA U48, was subtracted from each sample’s Ct value.

Real-time TaqMan RT-PCR for Specific microRNAs
Reverse transcription of specific microRNAs (from 10 ng of

total RNA) was carried out using the RT-loop primers for each

type of microRNA and the TaqMan microRNA RT kit from

Applied Biosystems, according to instructions. The TaqMan

primer part numbers from Applied Biosystems used for hsa-miR-

34a, hsa-miR-34b, hsa-miR-34c, hsa-miR-155, hsa-miR-214, and

RNU48 (snoRNA U48) were: 4373278, 4373037, 4373036,

4373124, and 4373085, respectively. cDNA obtained from this

step was used to do real- time TaqMan PCR using the real-time

primers provided on the ABI 7900HT Fast real- time PCR system

(Applied biosystems), according to instructions. Ct values were

converted to fold expression changes (RQ or 22ddCt values)

following normalization to an internal small nucleolar RNA U48

(or snoRNA U48) and to the untreated (UT) control.

Enzyme-linked Immunosorbent Assay (ELISA)
PBMC culture medium supernatants were collected 24 hrs after

exposure to cell lysates, or conditioned media from serum-starved,

glucose-deprived cells, or to 100 ng/ml Lipopolysaccharide (LPS,

Serotype O55:B5, Sigma), or left untreated. Human TNFa ELISA

kit (Pierce or BD Biosciences) or IL-1b ELISA (BD Biosciences)

was used to assay the respective cytokines. For antibody

treatments, lysates were pre-incubated on ice for 1 hour with

antibody (10 mg/ml for HMGB1 antibody and 3.5 mg/ml for

TLR2 antibody) before exposure to PBMC cultures. Culture
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medium supernatants were also assayed using the Luminex

(Austin, TX) multiplex assay.

Transfection of Human PBMCs with Pre-miR-34c or Anti-
miR-34c Oligos

Donor PBMCs seeded at 156106 cells/2 mls/well in 6-well

plates were transfected with 5 nM (final concentration) of pre-miR

negative control oligos (AM17110), miR-34c-5p precursor

(PM11039), or anti-miR inhibitor oligos (AM11039), (Applied

Biosystems, Foster City, CA), using siPORT Lipid transfection

reagent (Applied Biosystems/Ambion, Austin, TX). These singles-

stranded RNA-based inhibitors are chemically modified to

increase stability and activity. After 48 hrs, the PBMCs were

exposed to 36105 cells/ml of HMGB1+/+ or HMGB12/2 cell

lysate or left untreated for 24 hrs, and the PBMCs were lysed in

lysis buffer (20 mM Tris base, 150 mM NaCl, 1 mM EDTA,

1 mM EGTA, 2 mM Na3VO4, 1% NP-40,10% Glycerol,

pH 7.4) and probed for human IKKc (molecular weight approx.

52 kDa) using antibody CST 2685 (Cell Signaling Technology,

Beverly, MA).

Quantitative Real-time RT-PCR for IKKc mRNA
For quantification of IKKc mRNA or hsa-miR-34c expression

after 48 hrs of transfection, total RNA (with microRNA) was

isolated using the miRNeasy mini kit (Qiagen) after exposure to

damaged HMGB1+/+ or HMGB12/2 lysates for 8 hrs. About

2.5 ug of total RNA was treated with DNase (TURBO DNA-free,

Ambion) to remove any genomic DNA, and SuperScript III

Platinum SYBR Green one-step real-time RT-PCR kit (Invitro-

gen) was used with primers specific for human IKKc (SABios-

ciences, Frederick, MD). Fold expression (RQ values) levels were

calculated with respect to b-Actin Ct values as an internal control.

Isolation, Quantification and Quality Control of Total RNA
with microRNA

The miRNeasy Mini Kit from Qiagen, (Valencia, CA) was used

to isolate total RNA from each sample. Total RNA was quantified

using a NanoDrop UV spectrometer and RNA integrity was

determined using the 2100 Bioanalyzer (Agilent Technologies),

with RNA 6000 Nano LabChip kit (Caliper Technologies) and

RNA 6000 Reagents and supplies. Total RNA samples with an

RNA integrity number of $8 were used for real-time PCR

analysis.

microRNA Profiling with TaqMan Low-density PCR Arrays
(TLDAs)

384-sample TLDAs for microRNAs were used from Applied

Biosystems. Explained briefly, 100 ng of total RNA was reverse

transcribed according to ABI microRNA TLDA Reverse Tran-

scription Reaction protocol. Samples were diluted 62.5 fold and

loaded onto each port of the TLDA. The TLDA was loaded into

the 7900 HT Sequence Detection system, and the default PCR

program for TLDAs was used as directed in the instructions.
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