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Parkinson’s disease (PD) is the second most common neurodegenerative disorder and is characterized by the presence of
pathological intracellular aggregates primarily composed of misfolded 𝛼-synuclein. This pathology implicates the molecular
machinery responsible for maintaining protein homeostasis (proteostasis), including molecular chaperones, in the pathobiology of
the disease.There is mounting evidence from preclinical and clinical studies that various molecular chaperones are downregulated,
sequestered, depleted, or dysfunctional in PD. Current therapeutic interventions for PD are inadequate as they fail to modify
disease progression by ameliorating the underlying pathology. Modulating the activity of molecular chaperones, cochaperones,
and their associated pathways offers a new approach for disease modifying intervention. This review will summarize the potential
of chaperone-based therapies that aim to enhance the neuroprotective activity of molecular chaperones or utilize small molecule
chaperones to promote proteostasis.

1. Introduction

Parkinson’s (PD) is the second most common neurodegener-
ative disorder affecting approximately 1% of the population
over 60 [1]. People with PD typically present with cardinal
motor symptoms including bradykinesia, muscular rigidity,
rest tremor, or gait impairment but often also develop non-
motor symptoms, such as cognitive impairment and psychi-
atric symptoms. Many but not all of the symptoms associated
with PD result from loss of the dopaminergic neurons of
the substantia nigra pars compacta (SN) [2]. Currently, PD
is treated pharmacologically, by enhancing dopamine tone
(e.g., dopamine replacement with L-dopa) and, surgically, by
deep brain stimulation (DBS) [2]. As the disease progresses

L-dopa treatment is associated with disabling complications
including motor fluctuation and dyskinesia. DBS is restricted
to a select group of patients presenting with L-dopa respon-
sive motor symptoms and L-dopa-induced complications,
but without significant cognitive impairment or psychiatric
disturbance. Importantly, both interventions only provide
symptomatic relief and do not slow the progression of PD.
Consequently, there is a need for a treatment addressing the
underlying causes of the disease.

Pathologically, PD is characterized by the presence of
proteinaceous intracellular aggregates composed primarily of
𝛼-synuclein, termed Lewy pathology (Lewy bodies and Lewy
neurites). Missense mutations and multiplications of the
SNCA gene, which encodes for 𝛼-synuclein, cause heritable
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forms of PD and enhance the propensity of 𝛼-synuclein to
self-aggregate thus implicating 𝛼-synuclein aggregation in
the pathogenesis of the disease [3, 4]. While there is uncer-
tainty regarding the specific form of aggregates (“species”)
that are neurotoxic, emerging evidence suggests that 𝛼-
synuclein toxicity is conferred by soluble oligomeric species
[5–8]. Given the central role of perturbed 𝛼-synuclein aggre-
gation in PD, investigation into the nature and modification
of the molecular pathways responsible for directing protein
folding and misfolding, maintaining proper protein confir-
mation, and reducing abnormal protein aggregation, presents
a promising avenue for identifying a disease modifying
strategy.

2. Molecular Chaperones

Molecular chaperones are highly conserved proteins that
function to maintain proteostasis by directing the folding
of nascent polypeptide chains, refolding misfolded proteins,
and targeting misfolded proteins for degradation. Molecular
chaperones are also termed “heat shock proteins” (HSPs),
as initial studies found them to be upregulated in response
to high temperatures. In eukaryotes, HSPs are a large and
heterogeneous group of proteins that have been classified
into families based on their molecular weight: Hsp40, Hsp60,
Hsp70, Hsp90, Hsp100, and the small HSPs [20]. The activity
of HSP family members is modulated by another class of
proteins termed “cochaperones” which can be subdivided
based on the presence of a Bcl-2 Associated Athanogene
(BAG) domain, a tetratricopeptide (TPR) domain, or a J do-
main. Each of the families of chaperones and cochaperones
are composed of multiple proteins which, despite having
similar functions and domain compositions, often vary sig-
nificantly in terms of their expression pattern and subcellular
localization. For a recent review of the complete set of
chaperone and cochaperone proteins, see Kampinga and
Bergink (2016) [20].

Due to the number and heterogeneity of chaperone and
cochaperone proteins, the nomenclature has become com-
plex, with some chaperones receiving multiple names. As
such, a new nomenclature was developed where DNAJ,
HSPD,HSPA,HSPC, HSPH, andHSPB are the preferred pre-
fix terms for the Hsp40, Hsp60, Hsp70, Hsp90, Hsp100, and
small Hsp family members, respectively [21]. For the pur-
poses of this review, “Hsp” will be used when referring to an
entire family of Hsp chaperones and the new nomenclature
will be used when referring to specific members within a
family.

The two main chaperone machines in eukaryotes are
Hsp70 and Hsp90, which together account for at least half of
the molecular chaperones present in eukaryotic cells [22].
The Hsp70 family members are the most studied molecular
chaperones and have received significant attention in PD due
to their abundance in Lewy bodies and their neuroprotective
effect in preclinical models of the disease [23]. Only a
subset of Hsp70 chaperones, namely, HSPA1A, HSPA1B, and
HSPA6, show stress-induced expression patterns, whereas
the other Hsp70 family members, such as HSPA8 (often
referred to as Hsc70), are expressed constitutively at baseline

conditions [20]. A signaling pathway involving the transcrip-
tional activator, heat shock factor 1 (HSF-1), regulates the
expression of inducible Hsp70 family members following
stressful stimuli (Figure 1). At baseline conditions, HSF-1 is
bound by Hsp90, maintaining HSF-1 in an inactive mon-
omeric form [24]. Following proteotoxic stress, HSF-1 dis-
sociates from Hsp90 and translocates to the nucleus where
it upregulates transcription of its target genes [25]. Once
proteostasis is reestablished, Hsp90 again sequesters HSF-
1 into its inactive monomeric form, suppressing inducible
Hsp70 expression. This crosstalk between chaperones and
the presence of both constitutively active and stress-inducible
chaperones on a negative feedback loop allows the cell to
execute continuous “house-keeping” tasks in proteostasis, as
well as respond to potentially devastating proteotoxic stress.

The primary role of Hsp70 is to ensure proper pro-
tein folding. Hsp70 accomplishes this by binding exposed
hydrophobic domains on misfolded proteins (“clients”) via
its C-terminal substrate binding domain (SBD) and then
undergoing multiple ATP hydrolysis cycles at the N-terminal
ATPase domain [26, 27]. Hydrolysis of ATP to ADP stabilizes
the Hsp70-client complex, which allows Hsp70 to hold the
client protein and increases the likelihood of spontaneous
refolding [22]. Subsequent ADP-ATP exchange reduces the
stability of the Hsp70-client complex, allowing for client dis-
sociation or subsequent ATP hydrolysis cycles. While there
aremultiplemodels of themechanism bywhichHsp70medi-
ates protein refolding, the cycling between ATP and ADP
bound states is necessary for this function [28].

The ATP hydrolysis cycle on Hsp70 is modulated by
Hsp40, HSPH2 (Hsp110), the TPR domain-containing Hsp70
interacting protein (Hip), and BAG family cochaperone pro-
teins. Hsp40s are important for both client selection and
facilitating ATP hydrolysis [29], and Hip stabilizes the ADP
bound state of Hsp70 [30]. Both BAG family members and
HSPH2 act as nucleotide exchange factors (NEFs), promoting
the release of ADP from the ATPase domain [30–32]. As
such, both Hsp40 and Hip promote Hsp70-client stability,
whereas BAG family proteins and HSPH2 destabilize the
interaction.Therefore, the relative abundance of cochaperone
proteinsmay play an important role in the dynamics ofHsp70
refolding activity. A complex interplay between the nature
of the client protein, the Hsp70 family member, and the
cochaperone proteins present likely determines the efficacy
and the mechanism by which a protein becomes refolded.

Outside of their primary function of protein refolding,
molecular chaperones also play important roles in cellular
processes such as guiding misfolded proteins for degra-
dation through the ubiquitin-proteasome system (UPS) or
autophagy-lysosome pathway (ALP), disaggregating protein
aggregates, suppressing cell death pathways, and promoting
mitochondrial health (Figure 1). Hsp70-mediated protein
degradation via the UPS is largely regulated by cochaperone
proteins, namely, the C-terminal Hsp70 interacting protein
(CHIP), which is both anHsp70 cochaperone and anE3 ubiq-
uitin ligase, thus providing a mechanistic link between the
chaperone system and the UPS [33, 34]. HSPA8 (Hsc70),
in conjunction with lysosomal-associated membrane protein
2A (LAMP2A) and multiple cochaperones, can also facilitate
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Figure 1: Proposed role of molecular and small molecule chaperones in proteostasis. At baseline, Hsp90 is bound to HSF-1, maintaining its
inactive state. In the presence of proteotoxic stress, or the addition of Hsp90 inhibitors (i.e., geldanamycin, 17-AAG, and SNX compounds),
active HSF-1 dissociates from Hsp90 and translocates into the nucleus where it induces Hsp70 expression. Inducible Hsp70 family members
direct proteasomal degradation through a pathway mediated by CHIP, Parkin, and other E3 ligases. This process is inhibited by BAG
family members and promoted by small molecule HSF-1 activators including celastrol and carbenoxolone. In response to proteotoxic
stress, chaperones also direct misfolded proteins for degradation via the autophagy-lysosome system, through interactions with various
cochaperones (chaperone-mediated autophagy). Chaperone/cochaperone complexes can also function to disaggregate already formedprotein
aggregates. The pharmacological chaperones, ambroxol, and isofagomine increase glucocerebrosidase (GCase) activity in the lysosome to
further promote the process of chaperone-mediated autophagy. Chaperone functions within the endoplasmic reticulum and mitochondria
are regulated by the specific members of the Hsp70 family, HSPA5 and HSPA9, respectively.

protein degradation via the ALP through a process termed
chaperone-mediated autophagy (CMA) [35, 36] (Figure 1).
Moreover, a chaperonemachine composed of Hsp70, HSPH2
(Hsp110), and Hsp40 has a demonstrated “disaggregase”
activity by which it can remove misfolded proteins from al-
ready formed aggregates [37, 38]. The close relationship
between molecular chaperones and protein aggregation has
led to their investigation in many neurodegenerative pro-
teinopathies, including PD.

3. Molecular Chaperones in
Parkinson’s Disease

3.1. Molecular Chaperones Modulate 𝛼-Synuclein Aggregation
and Toxicity. Early evidence implicating molecular chaper-
ones in the pathobiology of PD stemmed from the observa-
tion byAuluck et al. (2002) thatHsp70 overexpression attenu-
ated𝛼-synuclein-mediated dopaminergic neurodegeneration
in a Drosophila model [39]. This suggests that Hsp70 may
play a neuroprotective role in PD. Subsequently,McLean et al.
(2002) illustrated that multiple chaperone proteins colocalize

with Lewy bodies and that the overexpression of several
Hsp40 andHsp70 familymembers antagonizes the formation
of 𝛼-synuclein aggregates in vitro [40]. Molecular chaper-
ones were further implicated in the pathobiology of PD by
the observation that mutations within the promoter region
upstream of both constitutively expressed and inducible
Hsp70 family members increase the risk of PD in a patient
population [41]. Furthermore, mutations in the mitochon-
drial Hsp70, HSPA9 (mortalin), were recently suggested to
promote the development of PD [42–44]; however, other
groups suggest mutations in HSPA9 are not a frequent cause
of early-onset PD as they are also found in patient controls
[45].

Since these initial studies, the capacity of Hsp70 over-
expression to ameliorate 𝛼-synuclein aggregation and toxi-
city has been well characterized. Independent groups have
shown that Hsp70 overexpression can attenuate 𝛼-synuclein-
mediated cell death in yeast [46] and reduce high molecular
weight aggregates and toxicity in rodent models of PD [47,
48]. Hsp70 overexpressionwas shown to be protective against
cell deathmediated by themitochondrial complex I inhibitor,
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1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), both
in vitro [49] and in vivo [50]. Although 𝛼-synuclein aggre-
gation is not a feature of this toxin model, 𝛼-synuclein is
required forMPTP-induced cell death as demonstrated by the
resistance of 𝛼-synuclein null mice to MPTP [51]. Mitochon-
drial HSPA9, however, may play a role in the mitochondrial
defects caused by the pathological A53T mutant 𝛼-synuclein
as HSPA9 knockdown protects against the mitochondrial
fragmentation and increased susceptibility to the complex I
inhibitor, rotenone, induced by A53T overexpression [52].

In parallel with the Hsp70 overexpression results, recent
studies have demonstrated that microRNA (miRNA)mediat-
ed translational repression of Hsp70 exacerbates 𝛼-synuclein
aggregation and toxicity in vitro [53] and that miRNAs
targeting Hsp70 are upregulated in brain regions with Lewy
pathology [54]. Furthermore, the Hsp70 family members
HSPA8 (Hsc70) and HSPA9 have lower expression in the
SN (HSPA8/9) [55] and leukocytes (HSPA8) [56, 57] of PD
patients relative to healthy controls, suggesting that chaper-
one levels and function may have a role in the pathogenesis
of PD.

In contrast, the endoplasmic reticular Hsp70 family
member, HSPA5 (GRP78/BiP), was found to be more abun-
dant in the cingulate gyrus and parietal cortex of individuals
with Dementia with Lewy Bodies (DLB) or PD with Demen-
tia (PDD) relative to individuals with Alzheimer’s disease
(AD) and healthy controls [58]. The increase in HSPA5 in
the cingulate gyruswas positively correlatedwith𝛼-synuclein
abundance, leading the authors to suggest thatHSPA5may be
upregulated to mitigate 𝛼-synuclein toxicity [58].This notion
is supported by the observations that miRNA-mediated
HSPA5 depletion enhances rotenone-induced cell death in
vitro [59], and HSPA5 knockdown exacerbates the toxicity of
AAV-delivered 𝛼-synuclein in rats [60]. Moreover, multiple
studies have demonstrated that HSPA5 overexpression can
suppress 𝛼-synuclein aggregation and toxicity in vitro and in
vivo [61, 62].

The mechanism by which Hsp70 attenuates 𝛼-synuclein
aggregation and toxicity seems to be dependent on both its
refolding activity and its function in protein degradation via
the UPS and ALP. Mutations that alter the ATPase function
of Hsp70 (K71S) abolish its protective effect on 𝛼-synuclein
toxicity, indicating thatHsp70 folding activity is necessary for
its protective function [48]. Interestingly, this mutation has
no effect on the capacity of Hsp70 to suppress 𝛼-synuclein
aggregation [48], suggesting that Hsp70 uses distinct mech-
anisms to attenuate either the aggregation or the toxicity
of 𝛼-synuclein. In addition to antagonizing the aggregation
of 𝛼-synuclein, Hsp70 may also facilitate the disaggregation
of already formed 𝛼-synuclein aggregates, similar to the
Hsp70 “disaggregase” activity that has already been well
characterized in other models of protein aggregation [38].
For example, Gao et al. (2015) recently demonstrated that an
Hsp70 machine composed of HSPA8, DNAJB1, and HSPH2
could effectively disassemble preformed 𝛼-synuclein fibrils in
vitro and in C. elegans [37] (Figure 1).

Hsp70/cochaperone complexes also mitigate 𝛼-synu-
clein-mediated toxicity by promoting the degradation ofmis-
folded 𝛼-synuclein via either the UPS or ALP. Several studies

have suggested that CMAmay be playing an important role in
mitigating 𝛼-synuclein toxicity and aggregation [35, 63, 64].
Enhanced 𝛼-synuclein expression in both transgenic and
paraquat models of PD results in a concurrent enhancement
of LAMP2A and HSPA8 expression and a greater movement
of 𝛼-synuclein into the lysosomes [63]. Moreover, both
LAMP2A and HSPA8 have lower expression in the SN of PD
patients [55], and a recent study demonstrated a correlation
between the loss of LAMP2A and 𝛼-synuclein aggregation
in postmortem PD brains [65]. Interestingly, the observed
decrease in LAMP2A and HSPA8 expression anatomically
overlaps with an increase in miRNAs capable of translation-
ally repressing both LAMP2A andHSPA8 [54], further impli-
cating miRNAs in PD-associated chaperone dysregulation.

Outside of CMA, the Hsp70 cochaperone, CHIP, plays
an important dual function in 𝛼-synuclein degradation, as
it can target 𝛼-synuclein for degradation by either the pro-
teasome or lysosome via its TPR domain or U-box domain,
respectively [66]. CHIP may mediate this through ubiquiti-
nation of 𝛼-synuclein and suppression of oligomer formation
[67]. However, not all Hsp70 cochaperones promote 𝛼-
synuclein degradation. In contrast, overexpression of the
BAG family member, BAG5, antagonizes CHIP-mediated
𝛼-synuclein ubiquitination, which prevents the ability of
CHIP to suppress oligomer formation [67] and also enhances
𝛼-synuclein-mediated toxicity [68]. Therefore, the balance
between multiple cochaperones may assist Hsp70 in triaging
whether to refold or degrade a client substrate, and a dis-
ruption in the relative abundance or activity of cochaperones
may compromise the chaperone system and subsequently
proteostasis.

Taken together, the capacity of Hsp70 and its cochap-
erones to refold, disaggregate, and target for degradation
potentially toxic 𝛼-synuclein species suggests that molecular
chaperones may have a central and multifaceted role in the
pathobiology of PD. Since multiple chaperones are down-
regulated, sequestered into protein aggregates, or face age-
related loss-of-function in the brains of people with PD, it is
possible that the depletion and dysfunction of molecular
chaperones may further contribute to the progression of PD.

3.2. Molecular Chaperones and Other PD-Relevant Proteins.
The potential role of chaperones in the pathobiology of PD is
broadened by their capacity to regulate the stability and func-
tion of PD-relevant proteins other than 𝛼-synuclein, includ-
ing LRRK2 (PARK8), PINK1 (PARK6), parkin (PARK2), and
DJ-1 (PARK7). LRRK2 plays a regulatory role in vesicular
trafficking, microtubule dynamics and mitochondrial health
[69]. Mutations in LRRK2 are associated with autosomal
dominant PD, and common genetic variants are associated
with an increased risk of developing sporadic PD [70]. Patho-
logical mutations in LRRK2 are associated with autophagy
dysfunction (including CMA dysfunction), proteasome dys-
function, and mitochondrial stress. The pathogenic G2019S,
R1441C, and Y1699C LRRK2 mutations were shown to
enhance the clearance of the trans-Golgi network (TGN) via
a protein complex including the chaperone proteins Hsp70
and BAG5 plus Rab7L1 and Cyclin G Associated Kinase
(GAK), which are both located in risk loci for sporadic
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PD [71]. TGN dynamics have a close relationship with the
ALP suggesting that this chaperone-dependent clearance of
the TGN by LRRK2 could explain how pathogenic LRRK2
mutations disrupt autophagy. CHIP and Hsp90 have been
shown to play important and opposing roles in regulating
LRRK2 stability, as CHIP mediates the ubiquitination and
proteasomal degradation of LRRK2,whereasHsp90 stabilizes
it [72]. Ko et al. (2009) demonstrated that the toxicity of
mutant LRRK2 could be enhanced by CHIP knockdown
and attenuated by CHIP overexpression. Moreover, Hsp90
inhibitionwith the pharmacological agent 17-AAG (discussed
below) was also protective against mutant LRRK2-mediated
toxicity [72], presumably by promoting the degradation of the
toxic gain-of-function mutant proteins. The G2385R LRRK2
variant is a risk factor for PD. G2385R LRRK2 demonstrates
increased binding to Hsp90 and enhanced CHIP-dependent
degradation resulting in lower steady state levels compared to
wild-type LRRK2 [73]. Taken together, these results suggest
that the interaction between chaperones and LRRK2 may
regulate LRRK2 function, and these interactionsmay be com-
promised with PD-related mutations or variants of LRRK2.

Hsp70 and Hsp90 family members also regulate the
stability of PINK1 and Parkin. PINK1 and Parkin function
together in a pathway responsible for the selective autophagic
clearance of damaged mitochondria, a process termed
mitophagy [74]. The E3 ubiquitin ligase activity of Parkin
also facilitates proteostasis via the UPS. Hsp90 regulates the
processing and stability of PINK1, and the Hsp90 family
member HSPC5, commonly known as TNF Receptor Associ-
ated Protein 1 (TRAP1), promotes mitochondrial health and
compensates for the mitochondrial dysfunction caused by
PD-associated PINK1mutations [75]. Conversely, PINK1 and
parkin mediated mitophagy protects cells against increased
susceptibility to mitochondrial stress that results from the
knockdown of mitochondrial HSPA9 [76, 77]. HSPA1L and
the cochaperones, BAG2 and BAG4, have all been shown
to modulate PINK1-Parkin mediated mitophagy [78, 79].
Outside of mitophagy, Hsp70 supports Parkin by preventing
it from being sequestered [68] and acts in concert with CHIP
to promote the E3 ubiquitin ligase activity of Parkin following
proteotoxic stress [80]. In contrast, the cochaperone BAG5
inhibits Parkin E3 activity, which may provide a mechanistic
explanation as to how BAG5 enhances dopaminergic neu-
rodegeneration [68].

Molecular chaperones have also been shown to interact
with DJ-1. Upregulation of DJ-1 results in a concurrent in-
crease in Hsp70 expression [81], and PD-associated DJ-1
mutations enhance the association of DJ-1 with cytosolic
Hsp70, HSPA9, and CHIP [82]. Furthermore, a recent study
demonstrated that the cochaperone BAG5 interacts with DJ-1
and decreases its stability [83]. In turn, BAG5 suppresses the
protective effect of DJ-1 on cell death caused by rotenone [83].

In summary, chaperones not only modulate 𝛼-synuclein
but are implicated in multiple pathways that mediate the
pathobiology of PD. Significant progress has been made in
terms of understanding how chaperones and cochaperones
can be manipulated to attenuate or reverse PD pathology.
More recently, a mutation in J domain-containing cochaper-
one, DNAJC13, has been identified as a cause of autosomal

dominant PD, further supporting a potentially important
role for chaperone proteins in the pathogenesis of PD [84].
Considering their ability to protect against𝛼-synuclein aggre-
gation and neurodegeneration in preclinical models, as well
as their effects on other PD-related proteins, the chaperone
systems represent a suitable target for the design of novel
therapeutics that have the potential to slow the progression
of PD.

4. Potential Chaperone-Based Strategies for
Treatment of PD

4.1. Small Molecule Chaperones. Small molecule chaperones
are low molecular weight compounds that exhibit their own
chaperone function by enhancing protein stabilization and
folding processes and by antagonizing protein aggregation
[10, 85]. These compounds are distinct frommolecular chap-
erones in that they are neither proteins nor components of
the cell’s primary response mechanism to proteotoxic stress.
Small molecule chaperones are subdivided into two groups:
chemical chaperones and pharmacological chaperones [10].
Chemical chaperones are classified as either osmolytes or
hydrophobic compounds and typically promote protein fold-
ing nonspecifically by creating a chemical environment that
encourages proteins to acquire the proper conformation [10].
In contrast, pharmacological chaperones bind directly to
their target protein(s) to modulate its conformation and
stability [10, 85].

Osmolyte chemical chaperones include free amino acids
and their derivatives, polyols, and methylamines. They are
often enriched in conditions of environmental stress and
denaturation to promote protein homeostasis and qual-
ity control processes [86]. Examples of relevant osmolytes
include trehalose and mannitol. Oral 2% trehalose solution
has demonstrated high effectiveness in a mouse model of
Huntington’s disease (HD) [87]. Similar to PD, HD is a
neurodegenerative movement disorder associated with pro-
tein aggregation. Specifically, trehalose treatment resulted in
decreased aggregation of the protein implicated in HD, hunt-
ingtin, and improved motor dysfunction [87]. More recently,
it was shown that 2 and 5% oral trehalose solutions amelio-
rate the behavioural deficits and neurochemical pathology
associated with a preclinical rat 𝛼-synuclein PD model [88].
Mannitol, which is currently widely used clinically as an
FDA-approved osmotic diuretic [16] (Table 1), can reduce 𝛼-
synuclein aggregation in vitro, in Drosophila, as well as in
the hippocampus, basal ganglia, and SN of transgenic mouse
models of PD [17, 89]. Moreover, mannitol-mediated reduc-
tion of 𝛼-synuclein aggregation correlates with significant
neuroprotection and correction of behavioural deficits [17,
89]. The hydrophobic compound 4-phenylbutyrate (PBA)
is another FDA-approved drug that serves as a chemical
chaperone with beneficial in vitro and in vivo effects on
𝛼-synuclein aggregation and neurodegeneration [90]. This
compound can be given via oral supplementation and is
currently used for urea cycle disorders [17]. Though PBA
can penetrate the blood brain barrier (BBB), work with
HD mouse models has demonstrated that high doses are
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Table 1: Examples of relevant therapeutics that either target endogenous molecular chaperones, exert their own chaperone function, or have
promise for applying chaperone therapies in humans and their progress in preclinical research and clinical trials (CTs).

Chaperone therapies Compounds Current clinical trials (CTs) Clinical utility
HSF-1 modulators

Trigger HSF-1 activation
induces downstream Hsp70
expression [9]

Celastrol Short-term CTs for
rheumatoid arthritis [10]

Limited: strong human
toxicity [9]

Carbenoxolone Phase II CTs in UK for
psoriasis [10]

Potential: trials in PD
patients needed

Hsp90 inhibitors

Inhibits the interaction
between Hsp90 and HSF-1,
leading to increased Hsp70
expression and activity
[11, 12]

Geldanamycin
Limited: in vivo toxicity,
poor solubility, and BBB

penetration [13, 14]

17-AAG CTs for cancer treatment,
discontinued

Limited: poor BBB
penetration [13]

17-DMAG CTs for cancer treatment,
discontinued

Limited: human toxicity
[15]

SNX-2112 Potential: trials in PD
patients needed

Chemical chaperones

Nonspecific compounds
that benefit protein
stabilization and folding
and antagonize protein
aggregation [10]

Osmolytes (i.e., 2%
trehalose, mannitol)

Mannitol is FDA-approved
osmotic diuretic [16]

Limited: high
concentration dose likely
needed for use in PD

patients

Hydrophobic compounds
(i.e., 4-PBA)

4-Phenylbutyrate is
FDA-approved, currently

used for urea cycle
disorders [17]

Limited: HD mouse model
indicates needing high

doses near max tolerability
for human benefits [18]

Pharmacological
Chaperones
Specifically bind target
protein for
chaperone-mediated
proteostasis [10]

Pharmacological
chaperones (i.e., ambroxol,

isofagomine)

Limited: high doses likely
required for benefits in PD

patients

Gene therapy

Nonpharmacological
modulation of chaperones

Adeno-associated virus
vector of gene delivery

Several CTs for
viral-mediated gene

delivery in PD patients

Potential: safety of gene
therapy has been

established in PD patients
[19]. It will require
identification of

appropriate chaperone
targets

required to achieve benefits, which would likely translate to
the maximum tolerability dosage for humans [18].

Pharmacological chaperones, such as ambroxol and
isofagomine, can cross the BBB and have been demonstrated
to increase the enzymatic activity of glucocerebrosidase
(GCase) [91] (Figure 1). Mutations in the GBA gene, which
encodes for GCase, are associated with an elevated risk of
developing PD and decreased GCase activity in lysosomes.
This reduction in GCase activity is associated with increased
𝛼-synuclein aggregation likely due to impairment of the
ALP [92]. By enhancing GCase activity, pharmacological
chaperones reduce 𝛼-synuclein accumulation in vitro and
in the SN of mice [91, 93, 94]. Like chemical chaperones,
pharmacological chaperones also require high doses to be
beneficial which may limit their treatment efficacy.

4.2. HSF-1 Modulators. Endogenous molecular chaperone
function can be modulated pharmacologically with com-
pounds that augment endogenous chaperone levels. Several
HSF-1 modulators including celastrol and carbenoxolone
can trigger HSF-1 activation, leading to downstream induc-
tion of Hsp70 expression [9] (Figure 1). Celastrol has been
demonstrated to be effective against protein aggregation
and toxicity in various neurodegenerative disease models,
including dopaminergic neuroprotection in a Drosophila
model of PD [95].However, this compound has been tested in
short-term clinical trials for rheumatoid arthritis [10], and its
clinical applicability may be restricted due to its toxicity [9].
Carbenoxolone has demonstrated the ability to attenuate 𝛼-
synuclein and ubiquitin aggregation in vitro and in vivo [13,
96, 97]. Thus, it may have potential as a chaperone-mediated
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therapeutic option for PD. Carbenoxolone has reached phase
II clinical trials in the UK for psoriasis treatment [10] so some
safety and tolerability data should soon be available.

4.3. Hsp90 Inhibitors. The naturally occurring small mole-
cule antibiotic, geldanamycin (GA), inhibits the interaction
between Hsp90 and HSF-1, leading to increased Hsp70
expression [11] (Figure 1). In vitro cell studies have demon-
strated the capability of this compound to decrease 𝛼-
synuclein aggregation and reduce cell toxicity [98], and its
neuroprotective effects have been shown in Drosophila and
MPTP mouse models of PD [14, 99]. However, translation
of this drug to the clinical setting is prevented by its in vivo
toxicity, poor solubility, and limited penetration through the
BBB [13, 14]. Other analogues of GA include 17-AAG and
17-DMAG, which similarly prevent 𝛼-synuclein aggregation
and toxicity, but are more potent and less toxic than GA
[12, 100]. However, 17-AAG and 17-DMAG were both tested
in separate clinical trials relating to cancer treatment and
were discontinued due to hepatotoxicity and limited efficacy
[101]. Moreover, 17-AAG has poor permeability of the BBB,
limiting its pharmacological usage for neurodegenerative
diseases [13, 15] (Table 1). Consequently, compound library
screening for smallmoleculeHsp90 inhibitors with improved
pharmacokinetics, including BBB permeability, have led to
the identification of SNX compounds [13].These compounds
are associated with an increase in Hsp70 activity in the brain
and a reduction in 𝛼-synuclein oligomerization and toxicity
in vitro [12]. An in vivo study using a rat model of PD has
also demonstrated benefits of these compounds on rescuing
striatal dopamine levels but not dopaminergic cell loss [102].
Although preclinical work suggests that there is therapeutic
potential for the use of these compounds in PD, further drug
development is required before translation to clinical trials.

4.4. GeneTherapy. Gene therapy represents a nonpharmaco-
logical approach to enhance chaperone function by exoge-
nously elevating chaperone levels. Viral vectors (including
adeno-associated virus (AAV) and lentivirus) have been
demonstrated to be more efficient than nonviral vectors for
gene delivery [103] and have been widely used to efficiently
transduce postmitotic cells such as neurons, providing stable
long-lasting expression [104]. AAV vectors are nonreplicat-
ing, rarely integrate, elicit minimal inflammation or toxicity
in the brain, and do not induce disease, making it safe
for clinical use [105–107]. Furthermore, intrinsic properties
of the vector as well as the use of specific promoters can
be engineered to regulate gene expression levels and cell-
specificity [108].

Viral-mediated overexpression of chaperones has been
demonstrated to increase survival of dopaminergic neurons
in preclinical rodent models of PD [36, 39, 47, 50, 68, 109].
Another chaperone molecule with potential for gene therapy
is the yeast, Hsp104, which has demonstrated disaggregase
capacity [110]. Jackrel et al. (2014) engineered a highly
active Hsp104 mutant that disassembles preformed protein
aggregates from preexisting inclusions more rapidly and
suppresses dopaminergic neurodegeneration in C. elegans
more effectively than native Hsp104 [111]. Moreover, lentiviral

delivery of yeastHsp104 to the SN in a ratmodel attenuated𝛼-
synuclein toxicity [110], suggesting a similar approach could
be taken in human patients. It should be noted, however, that
although AAV vectors themselves elicit minimal immune
response, foreign transgenic proteins may result in astrocyte
and microglia activation with neuroinflammation and a
potential neurotoxic response [112].This can potentially limit
the delivery of more specific or efficacious reengineered
proteins, such as Hsp104.

Several clinical trials have demonstrated the safety of
AAV- and lentivirus-mediated gene delivery in humans with
PD [19] (Table 1). Although these trials mostly overex-
press neurotrophic factors or deliver enzymes to enhance
dopamine production, they provide proof-of-principle that
chaperones could be modulated using viral vectors in
humans. An alternative, less invasive approach for gene deliv-
ery involves the use of magnetic resonance imaging-guided
focused ultrasound (MRIgFUS) to open the BBB. This
method can be combined with the IV administration of a
liposome-microbubble conjugated system containing genetic
material, which allows for the targeted transfection of specific
neuroanatomical regions [113]. MRIgFUS has been used in
rodent models for gene delivery to the SN [113, 114]. Since the
pathology of PD is not limited to the SN, viral delivery tomul-
tiple brain regions may be required for effective chaperone-
based therapies. The minimally invasive nature of MRIgFUS
maymake it amore feasible delivery strategy than stereotactic
injections.

5. Conclusions

Given the significant amount of evidence implicating molec-
ular chaperones in the pathobiology of PD, this family of pro-
teins may be a rational target in the design of novel therapeu-
tics. While there is a high degree of complexity in molecular
mechanisms of the Hsp70 and Hsp90 chaperone machines
and the cochaperone proteins that regulate them, preclinical
studies have clearly demonstrated that these proteins can
be specifically and effectively targeted to slow or prevent
disease progression. Currently, themajor obstacle in applying
these therapies to the patient population has been toxicity
and reduced BBB penetrance. As such, gene therapy has
emerged as a viable method by which to modulate chaperone
activity within the brain. Preclinical and clinical trials have
demonstrated the efficacy of intracranial gene delivery using
viral vectors, indicating that this is a safe and effectivemethod
to specifically target molecular chaperones. Novel minimally
invasive techniques, such as BBB permeabilization using
MRIgFUS, represent a means by which pharmacological and
genetic chaperone therapy delivery can be optimized, while
minimizing the risk conferred to the patient. Significant work
remains to be done in the preclinical domain to optimize
methods to target chaperone proteins but the potential for
the development of a novel therapeutic approach that slows
neurodegeneration in PD remains high.
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