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Abstract

Pathogen transmission responds differently to host richness and abundance, two unique components of host diversity.
However, the heated debate around whether biodiversity generally increases or decreases disease has not considered the
relationships between host richness and abundance that may exist in natural systems. Here we use a multi-species model to
study how the scaling of total host community abundance with species richness mediates diversity-disease relationships.
For pathogens with density-dependent transmission, non-monotonic trends emerge between pathogen transmission and
host richness when host community abundance saturates with richness. Further, host species identity drives high variability
in pathogen transmission in depauperate communities, but this effect diminishes as host richness accumulates. Using
simulation we show that high variability in low richness communities and the non-monotonic relationship observed with
host community saturation may reduce the detectability of trends in empirical data. Our study emphasizes that
understanding the patterns and predictability of host community composition and pathogen transmission mode will be
crucial for predicting where and when specific diversity-disease relationships should occur in natural systems.
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Introduction

Emerging field and laboratory data lend support to the dilution

effect, where high plant and wildlife diversity often reduces disease

severity or pathogen spread in a variety of multi-host pathogen

systems [1–5]. Although multiple mechanisms should lead to a

dilution effect, many others could underlie the opposing pattern,

termed the amplification effect [2]. To date, predicting the

generality of diversity-disease patterns in natural systems has

proven difficult, and given the complexity of host-pathogen

interactions, some have suggested that the dilution effect may be

less common than previously expected [6,7].

The specific mechanisms driving diversity-disease patterns have

been debated extensively in the literature, particularly because

various ecological and epidemiological properties of host commu-

nities can influence the spread of pathogens. For example, both

host richness and host abundance (or density) are expected to

affect diversity-disease trends [8]. A dilution effect is expected if

species rich communities have more host species that are resistant

to infection, demonstrating a role of richness per se in limiting

disease. For instance, Johnson et al. [9] experimentally controlled

host abundance, finding a direct effect of larval amphibian

richness on reducing trematode infection in American toad (Bufo

americanus) larvae. However, a dilution effect can also be seen if the

abundance of a species that strongly contributes to pathogen

reproduction and transmission (i.e. a highly competent focal host)

negatively correlates with host richness. Notably, Mitchell and

colleagues [10] found that, of 11 foliar fungal pathogens of plants,

roughly half showed a dilution effect due to reduced focal host

abundance, rather than a richness effect.

Given that both host richness and host abundance affect

pathogen transmission, the relationship between richness and total

community abundance should affect how pathogen transmission

scales with host richness. Theoretical exploration of this topic has

considered two species accumulation types: (1) additive, where

total community abundance scales linearly with richness, and (2)

compensatory, where total community abundance is invariant to

species richness [8,11]. These extreme scenarios generate unique

null expectations of how transmission should scale with diversity

[11]. However, a more realistic expectation might be that

community abundance saturates with increasing richness. For

example, saturation of total community biomass and percent cover

has been documented in various plant systems [12–14]. Despite

these observations, the effects of saturating host abundance on

pathogen transmission have not been explored theoretically or

empirically.

Saturating host abundance could lead to the intermediate result

between completely additive and completely compensatory

richness-abundance relationships, that being a non-monotonic

trend between richness and pathogen transmission. Recently,

researchers have resorted to reductio ad absurdum reasoning to argue
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that non-monotonic trends between species richness and disease

risk must occur in disease systems with observed dilution effects

[6,15]. Specifically, if zero host species were present at a site, there

would be no disease, so that adding any number of susceptible

hosts species would initially increase disease. Then, as richness

increases, an inflection point (i.e. dilution effect) may be observed

[6,15]. However a quantitative exploration of potential non-

monotonic diversity-disease trends grounded in community

ecological theory relevant to many disease systems is still lacking.

Here, we build upon previous models to explore how varying

the empirical relationship between total host community abun-

dance and host richness affects community-level disease patterns.

First, we consider the effects of additive, compensatory and

saturating host abundance on pathogen transmission in simulated

multi-host communities under both density- and frequency-

dependent transmission scenarios. We predict that a more realistic

saturating abundance-richness relationship will reveal more

complex patterns, including non-monotonic relationships between

host richness and pathogen transmission. Using simulation, we

also investigate the effect of various abundance-richness relation-

ships on the detectability of diversity-disease patterns. We find that

non-monotonic relationships between host richness and pathogen

transmission can occur under certain conditions, but that high

variability could lead to low detectability of such trends.

Methods

The mathematical model used here is a multi-species extension

of the classic susceptible-infected-recovered (SIR) epidemiological

model (e.g. [8]):

dSi=dt~biNi{diSi{Si

X
j~1,n

bijIj ,

dIi=dt~Si

X
j~1,n

bij Ij{ dizaizsið ÞIi,

dRi=dt~siIi{diRi:

We assume that all host individuals are susceptible, infectious or

recovered (immune for life), designated with S, I and R,

respectively. All other parameters are defined in Table 1, and

below we describe how values for each parameter are assigned to

different host species.

Constructing a Global Host Species Pool
In many multi-host pathogen systems, host species vary in

ecological and epidemiological traits relevant to pathogen

transmission. For example, in the Lyme disease system, mammal

hosts ranging from mice to raccoons to deer can all become

infected with the bacterial pathogen and spread this pathogen to

tick vectors. To summarize a very complex system, each host

species varies in its population dynamics and in its ability to

acquire and transmit the pathogen to ticks; therefore, the

community composition of hosts is very important for determining

overall pathogen transmission, and subsequently, disease risk [16].

In our model, we attempt to construct a global host species pool

that captures the ecological and epidemiological variability seen in

generalist pathogen systems. Thus, we draw heavily upon

established trends in community ecology and allometric scaling

laws to assign host species plausible parameter values. We derived

our epidemiological model and allometric scaling laws from

Dobson [8], and integrated Roche et al.’s [17,18] methods of

generating realistic communities using Preston’s law. In contrast to

previous models, this work focuses primarily on assessing the

consequences of more realistic host richness-abundance scaling on

diversity-disease relationships.

We assembled a global pool of vertebrate host species following

Preston’s law of abundance distributions. This law generates a

lognormal distribution of species’ abundances, where most species

are rare and only a few species are abundant, a pattern observed in

many natural communities [17,19]. Preston’s law is given by:

s Pð Þ~Y0e{ zP{Mð Þ2 ,

where z is a constant, s is the number of species that are present in

the Pth rank from the modal rank, M, and Y0 is the number of

species that are present in the modal rank (Figure 1; Table 1). This

creates a Gaussian-type curve that dictates how many species have

certain population sizes (Figure 1A). Thus, species were assigned

equilibrium abundances, Ki, according to their given rank. For all

analyses, our global pool consisted of the same 49 host species.

Each species’ weight, wi, was obtained from a scaling

relationship (Table 1). We assume body size scales exponentially

with abundance, so that the most common species were the

smallest. Birth rates, bi, were derived from allometric scaling, so

that larger species reproduce less frequently [17,20]. We

additionally assumed that death rates, di, were equal to birth

rates, a common assumption of populations at equilibrium.

Pathogen induced mortality, ai, was assumed to be a proportional

decrease in mean lifespan due to infection [8]. This means that

larger species, which have lower background mortality rates, also

have lower death rates due to infection. Recovery rates, si, were

assumed to scale with death rates, so that larger species have

slower recovery rates compared to smaller species (Table 1). The

relationships among epidemiological parameters and life-history

traits are depicted in Figure S1.

Intraspecific R0, R0i, values describe the pathogen’s growth rate

in each host species’ population, by taking into account

intraspecific transmission and the average duration of infection:

R0i~
biiKi

aizsizdið Þ

in the case of density-dependent transmission. Similar to Roche

et al.’s [17] treatment of ‘susceptibility’, we drew realistic species-

specific R0i values from a right-skewed truncated gamma

distribution, ranging from zero to two, where an R0i $1 means

the pathogen can invade that species’ population. This gamma

distribution resulted in most R0i values being close to or less than 1,

so that the pathogen could not invade most host species’

populations in isolation, but a few host species could sustain

(small) epizootics. For example, white-footed mice are very

competent hosts for the pathogen that causes Lyme disease, but

most other mammal hosts (e.g. squirrels) are much less competent

[16]. Additionally, many bird species can harbor West Nile Virus,

but only a few of these species are responsible for passing infections

on to mosquito vectors [21].

Host Density-Richness Relationships and Pathogen Transmission
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We derived intraspecific transmission rates bii corresponding to

intraspecific R0 values for each species (Table 1). Host competence

in our model is thus defined as the probability of transmission

given a contact between a susceptible and infectious individual,

regardless of species identity, which is proportional to bii and R0i.

We further assumed that R0i was negatively correlated with body

size and positively correlated with abundance. Therefore, the

smallest, most abundant host species were the most competent

hosts (e.g. [18,21]). This pattern might be expected if pathogens

have selective pressure to adapt to more common species, and/or

if larger host species (which in our model have lower population

sizes) have selective pressures to invest more heavily in pathogen

defense strategies in order to survive to reproductive age. For

example, in the Lyme disease and West Nile systems, host body

size correlates negatively with host competence [22]. Furthermore,

there is evidence that more ‘fast-lived’ and abundant amphibian

species experience higher infection intensities and more severe

pathology from trematode parasites [5,23]. A recent review of the

literature suggests that there is evidence that life history traits, such

as body size and abundance, are correlated with host competency;

however, the strength of these correlations are often unclear, and

this variability across more disease systems needs to be further

assessed [24].

Table 1. Parameter assignment and definitions for creating the species pool and epidemiological model.

Parameter Value Definition Biological Explanation

Construcing Global Species Pool (Preston’s Law)

Pi 1–8 Preston’s rank The rank for each species, which corresponds to the assigned
abundance

z 0.1 Constant derived from field data Scales the difference in abundance from one rank to the next, with the
modal rank as reference

M 3 Modal rank The mode of the distribution of abundances among all species in the
sample community

Yo 10 Number of species present
in the modal rank.

Species richness in the modal abundance rank

z 0.1 Constant derived from field data Scales the difference in abundance from one rank to the next, with the
modal rank as reference

Ki 2–256 Abundance at each rank, assigned
on a log2 scale

The abundance at carrying capacity of a particular species in the
community

s 1–10 Number of species in each rank The outcome of Preston’s law, which determines how many species
have a given equilibrial abundance

Assigning species traits

wi log(wi) =
a2blog(Pi)

Species specific weight Weight is determined by rank-abundance, so that more abundant
species are smaller

a 2 Constant Scales the relationship between species abundance and body weight

b 1 Constant Scales the relationship with species abundance and body weight

R0i 0–2 Intraspecific reproductive number of the
pathogen for each host species

Determined by a truncated gamma distribution, such that most species
are poor hosts (R0i,1). More abundant, and therefore smaller, species
are assigned higher R0i values

k 0.3 Constant Determines the scale of the gamma distribution from which R0i is drawn

y 3 Constant Determines the shape of the gamma distribution from which R0i is
drawn

Epidemiological model

bi 0.6wi
-0.27 Birth rate Species birth rate determined by allometric scaling with body size

di bi Death rate Species death rate assumed to be equal to birth rate

ai (m21)di Pathogen induced mortality Decrease in mean lifespan due to infection, proportional to death rate.
Scales with body size so that larger species have lower pathogen
induced mortality

m 1.5 Constant Determines the proportionality between species death rate and
pathogen induced mortality rate

si edi Recovery rate Species ability to recover from, and become immune to, infection

e 10 Constant Determines the proportionality between life span and recovery

bii R0i

(di+ai+si)/Ki

Per capita, intraspecific tranmission rate
under density-dependent transmission

The ability of an infected individual in the community to contact and
successfully transmit the pathogen to another individual of the same
species under the assumption of density-dependent transmission

bij cij(bii+bjj/2) Interspecific transmission rate The ability of an infected individual of one species in the community to
contact and successfully transmit the pathogen to another individual of
a different species

cij 0.05 Constant Scaling parameter controlling the amount of intra- and interspecific
transmission among species in the community

doi:10.1371/journal.pone.0097812.t001

Host Density-Richness Relationships and Pathogen Transmission
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Finally, interspecific transmission rates, bij, were calculated as

the pair-wise average of intraspecific transmission rates of species, i

and j. The strength of interspecific transmission was controlled by

a scaling parameter, cij, in the form:

bij~cij

biizbjj

2

� �
:

Because intraspecific transmission rates, bii, vary across host

species, there is some inherent heterogeneity in interspecific

transmission in our global communities, which is scaled with the cij

term.

Simulating Local Communities
We considered three different conditions governing the

relationship between species richness and community abundance,

as well as density-dependent and frequency-dependent transmis-

sion for each of the three conditions. The first condition, termed

the ‘‘additive’’ method, assumes species abundances in simulated

communities are equal to their abundance in the global pool,

which leads to a positive linear relationship between species

richness and community abundance. The second condition,

termed the ‘‘compensatory’’ method, fixes community abundance

regardless of species richness, but the abundance of all species is

proportional to their relative abundance in the global pool. In

other words, if a species is common, its abundance is adjusted to

still be common with respect to the other species in the

community. These first two conditions correspond to completely

additive and compensatory abundance assumptions, respectively,

investigated by Rudolf and Antonovics [11], but generalized to the

N species case. Importantly, the ‘‘compensatory’’ method is also

analogous to experimental designs that vary host richness but fix

total density of hosts to isolate the effect of richness. The third

assumption, termed the ‘‘saturating’’ method, imposes a curvilin-

ear relationship between community abundance and species

richness. Because of a lack of empirical data informing the nature

of such a relationship in vertebrate communities, we use two

different curvilinear relationships: asymptotic and logistic curves

(File S1).

To investigate the relationship between community composition

and pathogen transmission, we iteratively simulated local com-

munities by drawing random subsets of species from the global

pool (Figure 1B). Species richness in each local community thus

ranged from 2 to 49 species. We simulated 1000 local communities

for each set of conditions described above. To demonstrate how

this random selection process affected the distribution of life-

history traits in our communities, Figure S2 shows the mean and

variance of species weight at each value of richness.

Under each scenario described above, we calculated community

R0, a measure of potential pathogen transmission in a naı̈ve local

host community [8,25]. This metric is analogous to the

population-level R0 but is extended to incorporate interspecific

transmission. When community R0$1, the pathogen can invade

and persist in the host community. Values above 1 correspond to

larger epizootic sizes, as community R0 also correlates with

maximal infection prevalence in the community. We also

calculated the coefficient of variation of community R0 for each

value of host richness in order to assess how the variability of

pathogen transmission changes across the range of host richness.

Community R0 is calculated as the dominant eigenvalue

(spectral radius) of the N x N matrix (G) that incorporates the

rate of transmission between species and the average duration of

infection for an individual of the species transmitting the infection,

based on the SIR model:

G~

biipii
aizsizdið Þ � � �

bjipji

aizsizdið Þ
..
.

P
..
.

bij pij

ajzsjzdj

� � � � � bjj pjj

ajzsjzdj

� �

0
BBBBB@

1
CCCCCA

Figure 1. Conceptual diagram of assembling the global host community, species traits, and local communities. A, Preston’s octaves of
abundances and resulting rank-abundance of the 49 host species used in our model. B, Schematic of our methods for choosing 1000 local
communities. Species in local communities were chosen at random, ranging from richness of 2 to 49.
doi:10.1371/journal.pone.0097812.g001
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Here the p terms vary whether transmission is frequency or

density-dependent. For density-dependent transmission, p is equal

to abundance of the infecting species (rows) at the disease-free

equilibrium, Ki. For frequency-dependent transmission, p is equal

to the relative abundance of the infecting species at equilibrium, a

proxy for the relative proportion of interspecific contacts (i.e.

Ki

.PN
i Ki) [8,25].

Thus, community R0 is essentially determined by each species’

host competence, abundance, and the strength of interspecific

transmission. In order to verify that our assumptions about how

life-history traits relate to host competence (e.g. positive relation-

ship between abundance and intraspecific R0) did not strongly

affect our results, we also created a ‘null’ model. For this model, we

randomized all life-history traits to eliminate associations with

intraspecific R0, R0i. We then derived intraspecific transmission

rates bii to match R0i for each species and used this community in

the simulations described above.

Figure 2. The relationship between community R0 and host species richness for six example scenarios. Panels A–D show results from
simulations based on the four different assumptions of the underlying relationship between host community abundance and richness (depicted as
inset Figures) with density-dependent transmission. Panels E and F are two examples with frequency-dependent transmission. Boxplots summarize
the findings of 1000 simulations for each panel. LOESS smoothers with 95% confidence bands were added for visual interpretation of average trends.
Not all iterations of frequency-dependent transmission are shown because they show the same qualitative trends. (Parameters used to generate
these data: Y0 = 10, z = 0.10, M = 3, a = 2, b = 1, m = 1.5, e= 10, k = 0.3, y = 3, cij = 0.05).
doi:10.1371/journal.pone.0097812.g002
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Simulating the Effects of Sample Size on Detecting
Diversity-disease Patterns

In empirical field studies, researchers are limited by sample size

and sample breadth (i.e. the number of sites that are available to

sample, and the range of host richness observed). To investigate

how abundance-richness patterns affect the detectability of

diversity-disease relationships with variable sampling effort, we

simulated sets of independent communities ranging from sets of 5

communities to sets of 45 communities and calculated community

R0 for each community in each set. For each simulated set of

communities (i.e. sets with different sample sizes) we built a general

additive model (GAM) of community R0 predicted by host species

richness using a cubic regression spline with shrinkage, using the

‘mcgv’ package in R [26,27]. This modeling approach allows for

the detection of curvilinear (including non-monotonic) trends in

the data. Due to low sample size in the smaller community sets, we

limited the maximal number of knots on the spline to three [28].

We replicated this method 20 times for each value of sample size,

totaling 820 simulations for each scenario (below).

We conducted the GAM on simulations from three different

scenarios (treatments): (1) the ‘‘additive’’ method of simulating

abundance-richness relationships under density-dependent trans-

mission, (2) the ‘‘additive’’ method under frequency-dependent

transmission, and (3) a ‘‘saturating’’ abundance-richness relation-

ship under density-dependent transmission. We limited this

analysis to only three treatments – as opposed to all of the

scenarios explored above – for statistical tractability. We used

logistic regression to determine how sample size and treatment

affected the detectability of significant relationships between

community R0 and host species richness. All simulations and

statistical analyses were conducted in R [27].

Results

Community Abundance-richness Relationships
We found that a saturating abundance-richness relationship

with density-dependent transmission led to a clear non-monotonic

trend in which there was an initial increase in community R0 (i.e.

an amplification effect), followed by a decrease in community R0

at a higher range of richness values (i.e. a dilution effect;

Figure 2C–D). The degree to which the pattern was non-

monotonic was influenced by the community abundance-richness

relationship assumed; nonetheless, the non-monotonic pattern

seemed general over a range of values for these assumptions (File

S1). This pattern persisted under our null model, with random

associations between host competence and abundance (Figure

S3C), demonstrating that our results are not sensitive to this

assumption.

As expected, with density-dependent transmission and a linear

relationship between community abundance and richness (i.e. the

‘‘additive’’ method), community R0 monotonically increased with

host richness (Figure 2A). Also as expected, when community

density was kept constant across the full range of host richness (i.e.

the ‘‘compensatory’’ method), there was a marked decrease in

community R0 as richness increased (Figure 2B). This effect was

exaggerated under our null model scenario, because in this case

some typically rare species were randomly assigned high host

competence (Figure S3B). Finally, under frequency-dependent

transmission, community R0 decreased as richness increased

regardless of the relationship between community abundance

and host richness assumed (e.g. Figure 2E–F). We also found that

the coefficient of variation in community R0 decreased markedly

with increasing host richness irrespective of the community

abundance-richness relationship and the mode of transmission

(Figure 3).

The high variability in our simulations, as well as the saturating

abundance-richness pattern affected the probability of finding a

significant relationship between community R0 and richness with

increasing sample size (Figure 4). Across all three treatments – (1)

‘‘additive’’ with density-dependent transmission, (2) ‘‘additive’’

with frequency-dependent transmission, and (3) ‘‘saturating’’

abundance-richness relationship with density-dependent transmis-

sion – the probability of finding a significant relationship increased

markedly with sample size (z = 18.37, P,0.0001; Figure 4).

Furthermore, we were overall less likely to find significant

relationships between community R0 and richness in the case of

a saturating abundance-richness relationship, compared to the two

additive cases (additive, density-dependent: z = 10.56, P,0.0001;

additive, frequency-dependent: z = 4.37, P,0.0001; Figure 4).

The main effects of sample size and treatment explained much of

the variation in finding significant trends (pseudo-R2 = 0.38). We

included an interaction between treatment and sample size in the

initial model, but this term was insignificant and was dropped from

the final model.

Discussion

Evaluating the generality of diversity-disease relationships in

nature is a difficult task due to the complexity of host-parasite

interactions, challenges involved in achieving replication, and

extrinsic environmental factors influencing pathogen transmission

[7,29,30]. Using a multi-host species epidemiological model, we

found that the relationship between total host community

abundance and host richness can mediate how pathogen

transmission scales with host richness. Particularly, saturating host

abundance-richness relationships can lead to situations in which

the community R0 of a pathogen with density-dependent

transmission increases over low ranges of host richness but

decreases over higher ranges. Moreover, across all abundance-

richness patterns and the two pathogen transmission modes

explored in this study, the variation observed in community R0

was much higher in low richness communities compared to

speciose communities. We also found that community density

saturation may reduce the detectability of statistically significant

diversity-disease relationships.

Here we demonstrate that understanding the ecology of

fundamental host community dynamics can improve predictions

about when and where to expect the dilution effect to occur. Our

model results support previous predictions that generalist patho-

gens with density-dependent transmission are likely to increase in

prevalence when species additions are additive and decline when

they are compensatory [8,11]. We find that frequency-dependent

transmission disease dynamics did not respond to abundance-

richness relationships, because transmission is independent of host

density. By contrast, for the case of saturating community

abundance-richness relationships with density-dependent trans-

mission, we found an amplification effect for the portion of the

curve where host communities accumulate species abundance

additively. Then, as more speciose communities start to saturate

and transition to compensatory species additions, we observe a

dilution effect.

An important assumption in our model is that host competence

was strongly, positively correlated with species abundances. While

this assumption is pervasive in the diversity-disease literature, the

few studies explicitly testing for such a relationship show mixed

results [24]. A recent modeling study showed that variability in the

strength of the relationship between host competence and

Host Density-Richness Relationships and Pathogen Transmission
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extirpation risk (assumed to be correlated with life-history traits

such as abundance) can lead to mixed dilution and amplification

effects when communities are completely subtractively or substi-

tutively disassembled [24]. Using a complementary null model,

our results show that regardless of the assumed relationship

between host competence and species abundance (or other life-

history traits), a saturating relationship between total community

abundance and species richness can result in non-monotonic

diversity-disease trends with density-dependent transmission. This

observation of non-monotonic diversity-disease trends with satu-

rating abundance-richness relationships is general because of how

species abundances accumulate with species richness. At low

richness, we are seeing dynamics driven by additive abundance-

richness relationships, which then transition to being driven by

compensatory relationships as the community saturates. This

general pattern persists under the null model due to the strong

influence that density has on community R0 (via contact rates),

independent of the relationships among demographic parameters

that result from allometry, life history trade-offs, or pathogen

adaptation. Therefore, we propose that as long as abundance

saturates with richness, and density-dependent transmission

occurs, a non-monotonic diversity-disease trend is likely.

A saturating abundance pattern is more likely in vertebrate

communities when resources are abundant with a low number of

species, but competitive interactions become more pronounced as

species richness increases. For example, using three different

theoretical models, Lehman and Tilman [31] found that a

saturating relationship between total community biomass and

Figure 3. The coefficient of variation of community R0 at each value of richness for the simulated communities shown in Figure 2.
The underlying relationships between community abundance and richness are shown as inset Figures. Parameters are as in Figure 2.
doi:10.1371/journal.pone.0097812.g003

Host Density-Richness Relationships and Pathogen Transmission
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richness emerges due to competitive interactions among species.

Other abundance-richness relationships not explored in this study

could emerge due to particular community dynamics that vary

with host richness or are tied to particularly influential species. For

instance, predators may influence disease dynamics more strongly

than competitors in certain systems, and therefore the shape of

richness-abundance relationships may depend on the richness of

communities that predators tend to occupy. Additionally, the

presence of ecosystem engineers or keystone species may affect the

shape of abundance-richness relationship in ways specific to

particular study-systems. It will be important for future ecological

and disease studies to determine how total host abundance scales

with richness as communities both assemble and disassemble, and

the predictability of these trends across disease systems, in order to

evaluate how often curvilinear or non-monotonic community R0-

richness patterns might occur in nature.

Our model findings also emphasize that the range of host

richness values observed in a field study could be important for

determining the specific diversity-disease relationship that is

detected. For example, Guo et al. [14] showed that non-

monotonic relationships between biomass production and grass-

land plant richness exist, but only when a wide enough range of

richness is sampled. In our model, if the host community size is

smaller than that required for the community to begin saturating

(e.g., if host community ,20 species in Figure 2D), an

amplification effect would be the logical expected outcome of

diversity loss, but this expectation would change if more speciose

communities were sampled. It should be noted, however, that in

our model, the threshold of 20 species before a dilution effect is a

product of the model structure and assumptions. Identifying

possible saturation thresholds in natural communities is an

important consideration when generating null expectations for

how diversity loss contributes to disease risk for pathogens with

density-dependent transmission. Future field and laboratory

studies could assess these expectations by manipulating host

abundance-richness patterns and observe if non-monotonic

relationships can arise across a wide range of host richness.

This model also supports the idea that, in some instances, host

species identity can be more important for driving diversity-disease

relationships than richness per se [7,32]. We found that regardless

of the abundance-richness relationship and transmission mode

assumed, the variability in community R0 declined markedly with

increasing host richness. We can attribute this pattern to a

sampling effect that emerged due to the fact that the number of

unique communities that could be assembled at low values of

richness exceeded those at higher values of richness. This means

that, by chance, combinations of species with very high

competence or very low competence could be present at low

values of richness, suggesting that species identity plays an

important role in low-richness communities. This emergent

property conforms to various biological traits that show similar

declines in variability with increasing richness due to statistical

sampling effects, termed the ‘variance reduction effect’ [33].

Mitchell and colleagues [10] found a similar pattern of decreasing

variability in fungal pathogen load in plant communities with

increasing richness, which they also attribute to stochastic species

dominance at low host richness. Therefore, it could be the case

that host species identity is more important for determining

pathogen transmission in communities of low richness, compared

to more speciose communities. This could be especially true in

cases where host species with high pathogen competence tend to

occupy species poor communities more frequently than species

with low pathogen competence (e.g. [5]).

Saturating abundance-richness relationships could also obscure

diversity-disease patterns in the field due to sampling issues. For

example, we found that the non-monotonic community R0-

richness pattern produced by a saturation scenario translated into

finding fewer significant regressions across a range of sample sizes,

even when using general additive models that can detect such

curvilinearity (Figure 3). Additionally, the high degree of variation

observed in the ‘‘additive’’ case with frequency-dependent

transmission resulted in many non-significant regressions, even

though the general pattern between community R0 and host

richness was clearly negative (Figure 2E). Furthermore, the power

to detect diversity-disease relationships would be lower in real

studies where metrics of disease or host diversity are estimated,

rather than known exactly (as in the case with our model and

community R0).

Our findings also have implications for the experimental design

of studies that are investigating diversity-disease relationships. In

our simulations, when the total abundance of the host community

was kept constant (i.e. completely compensatory additions), a

dilution effect is invariably seen, as long as interspecific

transmission rates are low (Figure 2B). This scenario is analogous

to experiments that fix host density or abundance to isolate the

effects of host richness. This pattern occurs because as richness

Figure 4. Results of GAM to test the effect of community abundance-richness relationships and pathogen transmission mode on
community R0-richness relationships across a range of sample sizes. A–C, Proportion of simulations where the GAM was significant versus
sample size, for the three treatments: A, ‘‘additive’’ method with density-dependent transmission; B, ‘‘additive’’ method with frequency-dependent
transmission; and C, ‘‘saturating’’ method with density-dependent transmission. The horizontal dashed lines in A–C show the total proportion of
significant cases across all sample sizes (i.e. out of 820 simulations) for each of the three treatments. Parameters of generated local communities
follow those specified in Figure 2.
doi:10.1371/journal.pone.0097812.g004
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increases, each species’ density declines, resulting in less within-

species transmission. If interspecific transmission is low, then these

epizootics do not readily spill over, causing smaller community-

wide epizootics. Researchers should measure interspecific trans-

mission rates before designing an experiment that attempts to

isolate the effects of host richness on disease trends, especially in

systems of generalist pathogens with density-dependent transmis-

sion. Experimental designs should also, in as much as possible,

incorporate host abundance and species composition data from

the field to more accurately represent natural transmission

dynamics in the lab.

Conclusion
Evidence from field, experimental and theoretical studies

increasingly suggests that the details of host community compo-

sition, and not just species richness per se, are important for driving

diversity-disease patterns. Previous research has shown that total

host richness and the abundance of hosts can moderate disease

patterns, and that host species identity can be a more important

predictor of disease risk than host richness. Here we have

demonstrated that an often-overlooked metric of host community

composition – the scaling of total host community abundance with

host richness – may drive previously unpredicted non-monotonic

richness-pathogen transmission relationships. These non-linear

trends, as well as generally high variability in pathogen transmis-

sion in depauperate host communities, tend to hinder pattern-

detection with low sample sizes.

Our model adds to a growing body of work that suggests that

finding generalizable diversity-disease patterns in the field across

host-pathogen systems may be more difficult than previously

appreciated. However, in our model, high variability in pathogen

transmission is often driven by the random nature of local

community composition. More data are needed to understand

how communities assemble and disassemble in terms of host

richness, host abundance and host competence. For instance, it

has been proposed that depauparate communities may be

primarily inhabited by highly abundant, competent host species

[3,5]. Joseph et al. [24] suggest that it is reasonable to expect that

on average more competent hosts occupy species poor commu-

nities due to host life history traits and pathogen evolution, but

that even slight variability around competence-extirpation risk

relationships can cause mixed disease dilution and amplification

throughout community disassembly. Bringing community ecolo-

gists and disease ecologists together in order to better understand

the predictability of host community composition and host

competence - as well as their relative contributions to diversity-

disease trends - would greatly aid in building more informative

models of when and where diversity should affect disease.
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Figure S1 A pairs plot depicting the relationships
among species’ epidemiological and life-history traits.
Each data point is a separate species in the global pool.
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Figure S2 An example of, A, the mean and, B, the
variance of species’ weights present in random assem-
bled local communities. This figure was generated with an

‘‘additive’’ abundance-richness relationship, although the pattern

is qualitatively similar with a saturating abundance-richness

relationship.
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Figure S3 Selected results of the ‘null’ model in which
there are random associations between host compe-
tence, abundance, and other life-history traits. A,

‘‘additive’’ abundance-richness relationship; B, ‘‘fixed’’ abun-

dance-richness relationship; and C, ‘‘saturating’’ abundance-

richness. All panels were simulated with density-dependent

transmission and parameters as in Figure 2 of the main text.

(TIF)
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