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Abstract

During the COVID-19 pandemic authorities have been striving to obtain reliable predictions

for the spreading dynamics of the disease. We recently developed a multi-“sub-populations”

(multi-compartments: susceptible, exposed, pre-symptomatic, infectious, recovered)

model, that accounts for the spatial in-homogeneous spreading of the infection and shown,

for a variety of examples, how the epidemic curves are highly sensitive to location of epicen-

ters, non-uniform population density, and local restrictions. In the present work we test our

model against real-life data from South Carolina during the period May 22 to July 22 (2020).

During this period, minimal restrictions have been employed, which allowed us to assume

that the local basic reproduction number is constant in time. We account for the non-uniform

population density in South Carolina using data from NASA’s Socioeconomic Data and

Applications Center (SEDAC), and predict the evolution of infection heat-maps during the

studied period. Comparing the predicted heat-maps with those observed, we find high quali-

tative resemblance. Moreover, the Pearson’s correlation coefficient is relatively high thus

validating our model against real-world data. We conclude that the model accounts for the

major effects controlling spatial in-homogeneous spreading of the disease. Inclusion of addi-

tional sub-populations (compartments), in the spirit of several recently developed models for

COVID-19, can be easily performed within our mathematical framework.

Introduction

Infectious disease spreading models are largely based on the assumption of perfect and contin-

uous “mixing”, similar to the one used to describe the kinetics of spatially-uniform chemical

reactions. In particular, the well-known susceptible-exposed-infectious-recovered (SEIR)

model, builds on this homogeneous-mixing assumption. Computational tools that include fac-

tors such as long range human mobility have been developed to account for pandemic spread

on a global scale [1–4]. Some extensions of SEIR-like [5–9] and other models [10–18] that

account for spatial variability divided the population to different sub-populations (where the
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term “sub-population” refers to people under a certain stage of the disease, otherwise termed

“compartment”) [19]. Diffusive spreading have been used in numerous models in various lev-

els [20, 21]. To mimic the heterogeneity of human behavior more realistically, recent exten-

sions employed diffusion processes of the sub-populations that are limited to contact networks

[22]. However, the application of diffusion process for human population is unrealistic due to

its tendency to spread all populations to uniformity (be it in real space or on contact networks).

Moreover, most simple diffusive models do not include spatially-dependent population den-

sity or a spatial dependence of infection spreading parameters, which are required to model

geographically local quarantine. Thus, implementation of such dependencies using homoge-

neous models requires a division of the geographic region into multiple number of patches

[22].

Recently, we presented a general mathematical framework for epidemiological models that

can treat the spatial spreading of an epidemic [23]. The framework accounts for possible spatial

in-homogeneity of all associated “compartments”, which we termed “sub-populations”, such

as the infectious and the susceptible sub-populations. To describe the spatial spreading of

COVID-19, we have used the general framework in a 5-compartment model: susceptible,

exposed, pre-symptomatic, infectious, and recovered (SEPIR). We used the SEPIR model, with

parameters typical for COVID-19, to examine several scenarios of COVID-19 spreading,

including the effect of localized lockdowns. However, the validation of our model against the

COVID-19 spatial spreading in a specific country is still missing.

Vaccination against COVID-19 is now ongoing in many countries, despite complications

associated with shortage of supply, anti-vaccination movements, and vaccination program

during a rapidly evolving epidemic. Most strategies use age group and risk factors prioritiza-

tion, ignoring the density variation of susceptible vs. recovered sub-populations. However,

under an outbreak it is reasonable to vaccinate first in regions where the outbreak is expected

to be stronger. Our in-homogeneous SEPIR model can easily be generalized to predict the out-

come of vaccination strategies that involve such variation.

In this publication we wish to validate the in-homogeneous SEPIR model against real world

data. High spatial resolution data are difficult to obtain due to issues of personal confidentiality

[24]. We have chosen the state of South Carolina which made publicly available COVID-19

infection data and heat-maps with reasonable resolution. Information for the density variation

across the country is also readily obtained from NASA public resources. As we have shown

[23], these data are critical for the prediction of realistic infection heat-maps and for testing

them against those obtained in real-life.

Inhomogeneous SEPIR model

We briefly review the key features of the in-homogeneous SEPIR model, described in detail in

Ref. [23]. To model the spread of COVID-19 and other epidemics, the population is divided

into five compartments, termed as “sub-populations”: susceptible, exposed, pre-symptomatic,

infectious (that are symptomatic), and recovered. In this generalizations of the SEIR model,

the basic chain of infection dynamics is as follows. Healthy individuals, and those that are not

immune, are initially susceptible. They can become exposed when in contact with pre-symp-

tomatic (that are also infectious) or infectious-symptomatic people. These individuals stay in

the exposed stage for a certain period of time g� 1
0

during which they are not infectious to oth-

ers. After this initial incubation period, they become pre-symptomatic and also infectious to

healthy people. They stay as pre-symptomatic for another period of time, denoted by g� 1
1

, after

which they become symptomatic, remaining infectious. This sickness stage lasts for a period of

g� 1
2

time. At the end of this period, these individuals become recovered and also immune.
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According to the literature (concerning here only with the parent, wild-type, SARS-COV-2

virus), the mean time for the appearance of symptoms is 5 days, setting g� 1
0
þ g� 1

1
� 5 days. It

is accepted that people become infectious about 3 days before appearance of symptoms, that is,

g� 1
1
¼ 3 days, and hence g� 1

0
� 2 days [25]. The time constants g� 1

1
and g� 1

2
, describing the tran-

sitions from pre-symptomatic (infectious) to symptomatic (infectious), and from symptom-

atic-infectious to recovered, respectively, must obey g� 1
1
þ g� 1

2
¼ tI , where τI� 16.6 is the

average infectious period. It follows that g� 1
2
� 13:6 days.

The most unique feature of our model is its ability to account naturally for spatial in-homo-

geneity. The geographical area under consideration is divided into a lattice that can be square

or hexagonal, with inter-node spacing δ. At each node, the sum of the five sub-populations

equals to the nodal population number (varying from node to node), i.e. the total number of

people living in the area corresponding to that node. The spatial dependence of the number of

people in each sub-population is accounted for by inclusion of infection kinetics between

neighboring nodes (“interactions”). On a scale much longer than the inter-node spacing, all

densities become continuous. In this limit, inter-node interactions give rise to diffusion-like

infection terms in the rate equations. After proper rescaling, the model equations can be writ-

ten as [23]

@h
@t
¼ � k xð Þ

h
n
ðwþ f Þ �

h
n
~r Dk xð Þ~rðwþ f Þ
h i

;

@b
@t
¼ k xð Þ

h
n
ðwþ f Þ þ

h
n
~r Dk xð Þ~rðwþ f Þ
h i

� g0b ;

@w
@t

¼ g0b � g1w ;

@f
@t
¼ g1w � g2f ;

@r
@t
¼ g2f :

ð1Þ

The variables h, b, w, f, and r denote the number area density of susceptible (healthy),

exposed, pre-symptomatic, symptomatic, and recovered sub-populations, respectively. They

are dimensionless due to scaling by the average population density in the region under study.

These variables depend on the spatial location x (scaled by δ). Their sum obeys

hðxÞ þ bðxÞ þ wðxÞ þ f ðxÞ þ rðxÞ ¼ nðxÞ; ð2Þ

where n(x) is the total (fixed) population density at location x. We emphasize that the above

rate equations describe diffusion of the epidemic and not of people; at any point x the sum

h(x) + b(x) + w(x) + f(x) + r(x) remains constant in time.

The spatially-dependent parameters k(x) and Dk(x) originate both from infections within

each node (influencing k alone), and from infections between neighboring nodes (influencing

both k and Dk) [23, 26]. k describes the rate at which susceptible people (h) become exposed

(b) when they meet asymptomatic (w) or symptomatic (f) people. It is given by k = R0/τI,
where R0 is the well known basic reproductive number. The epidemic diffusion coefficient is

estimated to be Dk� k/5 for a square lattice. Our model thus consists of five nonlinear partial

differential equations in two spatial dimensions. They can be solved numerically with given

initial conditions and a given total population density n(x), as we present next using real-

world data from South Carolina.
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Methods

In the years 2020–2021 the COVID-19 epidemic has spread to many places around the world

[27]. Here we focus on South Carolina, which has been hit hard by the virus and has high qual-

ity data available in the public domain. Specifically, the South Carolina Department of Health

and Environmental Control (DHEC) provides areal maps and tabulated data of infected peo-

ple density with daily resolution [28, 29]. The number of cases is given per ZIP code (sub-

county level), and hence the state is divided into�400 small regions, providing excellent spa-

tial resolution. The second source of data is the “Covidtracking” website [30], including vari-

ous whole state (i.e. spatially integrated) quantities, such as the number of active cases, daily

new cases, and accumulated cases. The third data source we used is NASA’s Socioeconomic

Data and Applications Center (SEDAC) [31] (year 2020), from which we obtained the South

Carolina population density n(x).

We restrict ourselves to the time window between May 22, 2020 (initial time t = 0) and July

22, 2020; see the heat-maps in Fig 2 for the reported initial (May 22, 2020) and final (July 21,

2020) COVID-19 infections. During this period, no major South Carolina government orders

were issued [32]. After a long period of restrictions, a series of “opening” executive orders

commenced on April 21 and ended with the following four relevant opening orders: (i) on

May 8, (ii) on May 11, (iii) on May 22, and (iv) on June 12 [33]. Whereas the orders on May 22

and June 12 can possibly have some influence on the transmission of COVID-19 during the

period of study May 22–July 22 (noting that infection data may lag the actual infection events

up to 7–10 days), we believe they are of minor consequence. The next state government execu-

tive order is on July 10 and is of restriction type; Due to the data lag, it may affect the published

infection data only at the very last few days of the studied period. Therefore, we assume that R0

remained almost constant during the studied period and time-dependent adjustments are not

required. Indeed, this two months period is a strong test of our model since common predic-

tions using homogeneous models usually require parameter adjustments after a few weeks at

most. In addition, human mobility studies show that the mean travel distance during this

period was rather short, mostly much below 30 miles [34]. Such conditions are ideally suited

for our model, and suggest an upper bound estimate for the node size, δ = 30 miles, and that

node-to-node infections are dominant.

To obtain the population density n(x) we read the NASA SEDAC image [31, 35] and

cropped it to the relevant South Carolina region, see Fig 1. The image was converted to shades

of gray (bright meaning high population density), then scaled and rotated by 2 degrees to fit

the images from DHEC. Each pixel corresponds to a unique location x in our model. We

obtained the pixel area 3.9 km2 by counting the number of pixels within the South Carolina

borders and dividing by the state area, 82, 930 km2. The two-dimensional matrix n(x) was cal-

culated in by dividing the pixel brightness at each location x, varying between 0 and 1, by the

average pixel brightness over the area of the state.

Infection data were obtained from the South Carolina DHEC in the form of tables with the

number of confirmed cumulated cases for each zip code, defined as c. For the initial condi-

tions, we assume that the global ratio of active infections to cumulated infections, q = (W + F)/

(F + R), holds also locally, i.e. it is equal to (w + f)/(f + r). The global ratio was taken from Cov-

idtracking.com [30], and on May 22, 2020, it was equal to q = 3304/9766. Since, by definition,

c = w + f + r, we obtain for the local quantities r = c(1 − q) and f + w = cq. Further, to find sepa-

rately f and w, we assumed that each of these variables is proportional to the fraction of time of

the corresponding disease stage out of the total infection time, i.e. f ¼ cqðtI � g� 1
1
Þ=tI and

w ¼ cqg� 1
1
=tI . For h and b at t = 0 we took b = 0 and h = n − f − w − r. Lastly, to obtain all

model variables on the resolution of the NASA’s SEDAC population density map, Fig 1, model
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variables were multiplied by the ratio of local to global population densities, n(x). For example,

this converts the two panels in Fig 2 to the respective panels in Figs 3 (top-left) and 4 (bottom-

left).

It is estimated that the actual number of infected people in the community, during the stud-

ied period, is about 5–15 times larger than the number of positive RT-PCR tests, as implied by

several seroprevalence surveys of antibodies to SARS-CoV-2 around the US [36–38] and in

Israel [39]. In South Carolina, the ratio between the estimated and known infected numbers is

approximately 5 [28]. Accordingly, to estimate the actual number of infected population, the

observed density was multiplied by a factor 5. To make a valid comparison with the reported

positive RT-PCR number of infected people, we divided back the results of the simulations by

5.

Finally, we used shape-files taken from the United States Census Bureau [40] to allocate the

number of cases to the proper geographical location, and digitized the cases into the same grid

(matrix) as the one used for the population density. In Fig 2 (top) we depict the cases heat-map

as a visual presentation of the initial conditions used in the simulations.

To solve the set of coupled rate equations Eq (1), we used the same two-dimensional grid of

the DHEC data. The gradient and divergence operators were discretized according to standard

finite difference formulations. To propagate the equations in time we used an explicit scheme

with a sufficiently small time differential.

To calculate the Pearson’s correlation coefficient (CC) between observed and predicted

heat-maps [41] we defined Idata� Idata(xj) as the infected matrix of the sum f + r + w taken

Fig 1. Population density of South Carolina. Bright spots correspond to highly populated regions. Population outsides of

the state’s limit was ignored (large dark areas). Adapted from the Center for International Earth Science Information

Network—CIESIN—Columbia University. NASA Socioeconomic Data and Application Center (SEDAC) (Creative

Commons Attribution 4.0 International License).

https://doi.org/10.1371/journal.pone.0268995.g001
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Fig 2. Infection maps taken from the South Carolina DHEC. The top figure corresponds to the initial time of the

simulation (t = 0), while the bottom, two months later, is the last time. The top figure serves as the initial condition for

the simulations.

https://doi.org/10.1371/journal.pone.0268995.g002
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Fig 3. Comparison of infection dynamics between the data from the DHEC (left column) and the theoretical model (right column).

In both columns, images correspond to the sum f(x) + w(x) + r(x). The heading for each panel shows the date, starting from May 22, 2020,

corresponding to relative times t = 0, t = 12, and t = 24 days. See later times in Fig 4.

https://doi.org/10.1371/journal.pone.0268995.g003
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Fig 4. Comparison of infection dynamics—Continuation of Fig 3 for relative times t = 36, t = 48, and t = 60 (dates June 27, July 9,

and July 21, respectively).

https://doi.org/10.1371/journal.pone.0268995.g004
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from the DHEC data, and Isim� Isim(xj) as the sum f + r + w from the simulations. The Pear-

son’s CC is then defined as

rðIdata; IsimÞ ¼
1

N � 1

XN

j

ðIdata � �I dataÞðIsim � �I simÞ
sIdata

sIsim

: ð3Þ

The index j runs over all pixels (x coordinates), 0� j� N, and N is the total number of pix-

els in the images. �Idata and �I sim are the averages of Idata and Isim, respectively, and sIdata
and sIsim

are their standard deviations.

Results

Figs 3 and 4 depict a comparison between six pairs of reported vs predicted South Carolina

heat-maps from the period under study. May 22, 2020 serves as the zero time for simulation

and therefore the two top images are the same. The visual similarity between the South Caro-

lina heat-maps and the simulations for the subsequent dates, including the very late date of

July 21, is evident.

To make this comparison more quantitative, we calculated the Pearson’s CC as defined in

Eq (3). Table 1 shows the Pearson’s CC values, ρ(Idata, Isim), for all the six dates corresponding

to the heat-maps in Figs 3 and 4. Not surprisingly, the CC value is 1 for the initial conditions

(top pair panels in Fig 3). For the subsequent dates, the CC values are slowly descending—

which is quite reasonable as errors accumulate in time—yet remain close to unity. For July 21

(2020) we find ρ(Idata, Isim), which is still quite high, recalling that we ran our simulation for 60

days without any intermediate tweaking of the model parameters. Fig 5(a) supplements

Table 2 to all dates in the studied period, using a fitted interpolation formula.

To further confirm the similarity between predicted and observed heat-maps, we per-

formed a root mean square analysis, see Fig 5(b). The variable on the vertical axis, Err, is

defined as follows:

Err ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X

j

ðIdata � IsimÞ
2

s

: ð4Þ

Err gives an estimate of the overall “error” in our predictions. Perfect match should ideally

yield Err = 0. Notably, the error here is below 0.01 (except at the very last days of the simula-

tion), which is five times smaller than the maximum of Idata, indicating small differences

between prediction and observation.

Fig 6 compares the total (integrated) number of cases predicted by the theory against the

actual reported values. The dashed red curve is the number of cases [30] while the blue curve is

Table 1. Pearson’s correlation coefficient between the reported (left column) and simulated (right column) cases

shown in Figs 3 and 4. The correlation coefficient decays in time but is still high even after 60 days.

Time (days) Date Pearson’s correlation coefficient

0 22 May, 2020 1

12 3 Jun, 2020 0.9722

24 15 Jun, 2020 0.9135

36 27 Jun, 2020 0.8456

48 9 Jul, 2020 0.777

60 21 Jul, 2020 0.7774

https://doi.org/10.1371/journal.pone.0268995.t001
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the theory. Time t = 0 corresponds to May 22, 2020; by definition of the initial conditions, the

theoretical value is the same as the reported one. The agreement between the simulation and

the reported numbers is quite good, even though during the whole 60 days simulation time the

basic reproduction rate and other model parameters were held constant. The final simulated

number of cases, 49, 085, is 6% above the reported number, 46, 275.

Fig 5. (a) Pearson correlation coefficient between simulation and observation from Eq (3) vs time. A high value of correlation coefficient

means good agreement. By definition of the initial conditions, the correlation starts from the maximum value, 1. It then monotonously

decays with time. (b) Estimated root-mean-square error Err as defined in Eq (4). The error starts from zero and increases with time.

https://doi.org/10.1371/journal.pone.0268995.g005

Table 2. Summary of variables of the model [Eqs (1) and (2)] and their respective time scales.

Variable name incubation time details

h density of susceptible (healthy)

b g� 1
0
¼ 2 days density of exposed

w g� 1
1
¼ 3 days density of pre-symptomaticand infectious

f g� 1
2
¼ 13:6 days density of symptomaticand infectious

r density of recovered

n density of total population

https://doi.org/10.1371/journal.pone.0268995.t002
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Discussion and conclusions

In this paper we have tested the in-homogeneous SEPIR model against spatial data from South

Carolina and found remarkable agreement of the infection heat-maps. The visual agreement

between the model and the data is confirmed by the large Pearson’s correlation coefficient.

The implementation of the current approach to the COVID-19 pandemic in other parts of the

world requires extended and high resolution data of the geographic spread of the pandemic, to

serve as the models’ initial conditions for the five sub-populations. Also required by the model

is a high resolution data of the geographic population density.

Fig 6. Total number of active cases (‘F’ + ‘W’) in South Carolina vs time. Blue line is the model simulation and red dashed curve is the number

provided by Covidtracking. The model input is the total number of active cases at time t = 0 (May 22, 2020), 3895. The final number of cases of the

model is 49, 085, about 6% above the reported number, 46, 275. We assumed the basic reproductive rate R0 = 1.9 to be constant throughout the whole

inspected time.

https://doi.org/10.1371/journal.pone.0268995.g006

PLOS ONE Comparison of the inhomogeneous SEPIR model and data from South Carolina

PLOS ONE | https://doi.org/10.1371/journal.pone.0268995 June 9, 2022 11 / 14

https://doi.org/10.1371/journal.pone.0268995.g006
https://doi.org/10.1371/journal.pone.0268995


The model’s general mathematical framework can be easily implemented in essentially all

“multi-compartment” (i.e. several sub-population) models developed so far for the COVID-19

pandemic [13, 17, 42]. It may be also used to predict the effect of vaccination, by adjusting the

local fraction of susceptible sub-population h(x)/n(x), thereby helping to improve vaccination

strategies. We hope that further use and development of our approach will assist fighting the

COVID-19 and other pandemics. Further improvements of our model are currently

underway.

Supporting information

S1 Video. Movie clip made from the daily South Carolina infection maps. Data was pro-

vided per ZIP code by the state’s DHEC. Darker shades correspond to larger fraction of con-

firmed cases out of the total population.

(AVI)

S2 Video. Movie clip made from solution of the governing equations Eq (1). The initial con-

ditions were the DHEC infection data from May 22, 2020. Darker shades correspond to larger

fraction of confirmed cases out of the total population.

(AVI)
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