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Insulin and insulin-like peptides (ILP) help to maintain glucose homeostasis, whereas
insulin-like growth factor (IGF) promotes the growth and differentiation of cells in both
vertebrates and invertebrates. It is sometimes difficult to distinguish between ILP and
IGF in invertebrates, however, because in some cases ILP has the same function as
IGF. In the present review, therefore, we refer to these peptides as ILP/IGF signaling
(IIS) in invertebrates, and discuss the role of IIS in memory formation after classical
conditioning in invertebrates. In the arthropod Drosophila melanogaster, IIS is involved
in aversive olfactory memory, and in the nematode Caenorhabditis elegans, IIS controls
appetitive/aversive response to NaCl depending on the duration of starvation. In the
mollusk Lymnaea stagnalis, IIS has a critical role in conditioned taste aversion. Insulin
in mammals is also known to play an important role in cognitive function, and many
studies in humans have focused on insulin as a potential treatment for Alzheimer’s
disease. Although analyses of tissue and cellular levels have progressed in mammals, the
molecular mechanisms, such as transcriptional and translational levels, of IIS function in
cognition have been far advanced in studies using invertebrates. We anticipate that the
present review will help to pave the way for studying the effects of insulin, ILPs, and IGFs
in cognitive function across phyla.

Keywords: Caenorhabditis elegans, classical conditioning, Drosophila, insulin-like growth factor, memory,
Lymnaea, starvation, insulin

INTRODUCTION

In 1988, a News and Views article, titled ‘‘Invertebrate neuroendocrinology. Insulin found at
last?’’, was published in Nature (Thorpe and Duve, 1988). This article introduced another report
published in the same issue by Smit and colleagues from Vrije Universiteit, Amsterdam, describing
the discovery of an insulin-related peptide in the central nervous system (CNS) of the gastropod
mollusk Lymnaea stagnalis with convincing evidence that the functionally important peptide
structure was conserved through a long period of evolution (Smit et al., 1988). The sequence data
of this insulin-related peptide showed the presence of cysteines at positions in the A and B chains
typical for the insulin family, suggesting the formation of an insulin-like tertiary structure with
conserved (or alternative) hydrophobic core residues.
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The background regarding the ‘‘first’’ insulin discovered
in invertebrates, however, is somewhat complicated. In 1986
(2 years ahead of the study by Smit et al., 1988), Nagasawa
et al. (1986) determined the complete amino acid sequence of
4K-PTTH-II, one of the three forms of the prothoracicotropic
hormone, i.e., insulin-like peptide (ILP), of the silkworm
Bombyx mori. 4K-PTTH-II is made up of two nonidentical
peptide chains (A and B chains). This peptide has considerable
sequence homology (40%) with human insulin, and the identical
distribution of the six cysteine residues also indicates that 4K-
PTTH-II belongs to the ‘‘insulin family’’. Therefore, the definitive
structural information on ILPs was obtained in Bombyx mori
in 1986, but the first ILP DNA sequence was identified in
Lymnaea stagnalis in 1988. In any case, these two studies together
accelerated the functional analysis of ILPs in invertebrates
(Ebberink et al., 1989).

In both vertebrates and invertebrates, not only do ILPs,
including insulin, and insulin-like growth factors (IGFs) have
similar structures (Blundell et al., 1978; Rinderknecht and
Humbel, 1978; Smit et al., 1998; Brogiolo et al., 2001; Pierce et al.,
2001; Li et al., 2003; Garelli et al., 2012), but the receptors to
which they bind also have similar structures (Fernandez et al.,
1995; Roovers et al., 1995; Kimura et al., 1997). The receptors for
ILP and IGF have a structure that penetrates the cell membrane,
with a binding site for ILP and IGF on the outside of the
cell membrane. The receptor is a preformed, disulfide-bridged
dimer. The ligand binding is thought to induce a conformational
change in the receptor that initiates trans-phosphorylation of the
two cytoplasmic domains and induces tyrosine kinase activity,
thereby phosphorylating various substrates in the cell, which
triggers downstream signals that result in a cellular response.
With regard to insulin in mammals, the intracellular signaling
mechanism by which the metabolism of glucose is regulated is
well clarified (Saltiel and Kahn, 2001). IGF signals to cells that
sufficient nutrients are available for cells to undergo hypertrophy
and cell division, and these signals inhibit cell apoptosis and
increase the production of cellular proteins (Shimizu, 2021).
Although the signal transduction of IGF has been elucidated in
terms of its commonalities with insulin, little is known about
how the long-lasting cellular response caused by IGF is triggered
(Andoh, 2021).

In invertebrates, many ILPs have also specific growth-
promoting roles (Kenyon, 2010). For example, Lymnaea ILP,
named ‘‘molluscan insulin-related peptide (MIP)’’, was first
identified as the product of cells noted for their role in controlling
growth in invertebrates (Smit et al., 1988). Lymnaea MIPs also
have a role in reducing the hemolymph glucose level (Mita
et al., 2014a). It is therefore sometimes difficult to discriminate
between invertebrate ILPs and IGFs. In the present article, we
refer to ILP and IGF together as ‘‘ILP/IGF signaling (IIS)’’ in
invertebrates.

IIS plays an important role in cognitive function in both
vertebrates and invertebrates (Lin et al., 2010; Chen et al.,
2011; Chambers et al., 2015). In mammals, especially humans,
insulin is mostly investigated in relation to diabetes. Nasal
administration of insulin is successfully used as a treatment for
Alzheimer’s disease, and type-2 diabetes is associated with the

risk of developing Alzheimer’s disease (Reger et al., 2008; Craft
et al., 2012; Akinola, 2016). Insulin is not thought to pass through
the blood-brain barrier, but it can be transported from the
blood into the brain via receptors on vascular endothelial cells,
which is called a receptor-mediated transporter pathway (Rhea
and Banks, 2019). The effectiveness of insulin for Alzheimer’s
disease may be explained from the viewpoint of metabolic stress
(Wakabayashi et al., 2019) as follows: metabolic stress causes the
onset of insulin resistance and lowers the removal rate of amyloid
β proteins from the brain, thereby promoting their accumulation.
Accordingly, insulin has been emphasized as a therapeutic drug
for Alzheimer’s disease.

Insulin receptors are widely expressed in the brain of
vertebrates, and insulin signaling regulates energy metabolism
in the hypothalamus, motor function in the cerebellum,
memory control, and nerve regeneration in the hippocampus,
and emotional and cognitive function control in the cerebral
cortex (Arnold et al., 2018). Administration of insulin into
the ventricles of rats promotes Akt-dependent translocation of
glucose transporter type 4 (GLUT4) in the hippocampus (Grillo
et al., 2009). Furthermore, hippocampal-specific suppression
of insulin signaling reduces long-term potentiation in the
hippocampus and significantly impairs memory and learning
ability (Grillo et al., 2015). As mentioned above, type 2 diabetes
is associated with an increased risk for Alzheimer’s disease
and impaired cognitive function (sometimes referred to as type
3 diabetes Steen et al., 2005). Insulin is a useful treatment, and
thus many studies using mammalian brains have focused on
the effectiveness of insulin against this disease. The molecular
and cellular events behind the therapeutic effect of insulin,
however, remain unknown. On the other hand, studies of the
involvement of IIS in learning and memory have been performed
in invertebrates. We therefore suggest that the studies using
invertebrates to elucidate the mechanisms of IIS are particularly
important for clarifying the function of insulin in cognition.

In the present review, we outline the studies of IIS
mechanisms of memory regulation performed in three
well-established invertebrate neuroscience model organisms,
Drosophila melanogaster, Caenorhabditis elegans, and Lymnaea
stagnalis. To the best of our knowledge, the molecular
mechanisms of memory influenced by IIS function are not
yet clarified in invertebrates other than these three species, even
in the silkworm Bombyx mori. We will present the deduced
pathways of IIS for memory by considering the experimental
results in these three species, which may help to gain insight into
the general scheme of the relationship between IIS function and
memory.

IIS AND MEMORY IN Drosophila
melanogaster

In Drosophila, IIS is involved in memory formation, circadian
rhythm formation, growth, development, reproduction,
metabolism, stress resistance, aging, and lifespan (Barber et al.,
2016; Semaniuk et al., 2021). IIS is required for both short-term
memory and long-term memory of olfactory associative learning
(Figure 1; Chambers et al., 2015). The main molecules of
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FIGURE 1 | Training protocol for olfactory associative learning in Drosophila.
Flies were exposed to odor A with an electric shock and then to odor B with
no shock. After training, flies are placed at the choice point of a T maze with
odor A or B diffused from both ends. Trained flies avoid the shock-paired
odor (i.e., odor A).

IIS—ILPs (Dilps), insulin receptor (InR), and insulin receptor
substrate (CHICO)—are well studied in mutants. InR and
CHICO are required for short-term memory based on studies
of chico mutants (Naganos et al., 2012), for intermediate-term
memory-based on studies of InR mutants (Tanabe et al., 2017),
and for long-term memory based on studies of RNA interference
for inR and chico (Chambers et al., 2015). Drosophila has eight
types of Dilps (Nässel et al., 2013, 2015; Nässel and Vanden
Broeck, 2016). In addition to binding to the receptor tyrosine
kinase InR, Dilps can also interact with G protein-coupled
receptors. For example, Dilp7 and Dilp8 activate the relaxin
receptor-like LGR4 and LGR3, respectively (Colombani et al.,
2015; Gontijo and Garelli, 2018; Mita, 2019; Veenstra et al., 2021;
Veenstra, 2021). Moreover, Dilp3 functions in intermediate-term
memory of aversive olfactory conditioning (Tanabe et al., 2017).
In aged flies, a Dilp3 deficit causes memory loss.

The insulin receptor, InR, is involved in protein synthesis-
independent ‘‘larval’’ anesthesia-resistant memory (lARM;
Eschment et al., 2020). InR expressed in the mushroom body
Kenyon cells suppresses lARM formation and contributes to
the formation of protein synthesis-dependent longer-lasting
memory in Drosophila larvae.

Mutant studies have demonstrated that the insulin receptor
substrate CHICO plays an important role in olfactory associative
learning (Naganos et al., 2012). CHICO was found to be essential
for the development of a CNS region required for olfactory
associative learning. CHICO also functions in food-finding
latency (Egenriether et al., 2015). The food-finding latency differs
between young and aged flies, with a shorter latency in aged flies.
Even in young flies, however, the latency becomes shorter if they
are starved or if the insulin signaling is reduced in chico mutants.
Conversely, the latency of aged flies becomes longer when insulin
signaling is enhanced. Learning deficiencies in chico mutants are
due to a decrease in cAMP signaling (Naganos et al., 2016).

In 2013, a relationship between starvation and food aversive
learning was demonstrated by Hirano and Saitoe (Hirano

et al., 2013; Hirano and Saitoe, 2013). When cAMP-response
element-binding protein (CREB) binds to cAMP-regulated
transcriptional coactivator (CRTC), CREB upregulates some
genes (Yin et al., 1994, 1995). CRTC is activated when insulin
signaling is downregulated in starved flies (Wang et al., 2008).
Thus, starved flies exhibit food aversive learning in one trial
because of downregulation of the insulin signaling pathway
and upregulation of the CRTC signaling pathway. Using chico
mutants, Hirano et al. (2013) found that CRTC accumulated in
the mushroom body nuclei (i.e., neurons necessary for memory),
and reported that this mutant exhibited 1-trial learning even
when satiated.

IIS AND MEMORY IN Caenorhabditis
elegans

IIS in Caenorhabditis elegans is involved in longevity, stress
tolerance, and memory formation (Kenyon et al., 1993; Paradis
et al., 1999; Stein and Murphy, 2012; Sasakura and Mori,
2013). The main components of the C. elegans IIS pathway
include INS-1 (1 of 40 ILPs), DAF-2 (insulin receptor),
AGE-1 (phosphoinositide 3-kinase: PI3K), DAF-16 (forkhead
box protein O: FOXO), DAF-18 (phosphatase and tensin
homolog deleted on chromosome 10: PTEN), and AKT-1
(serine/threonine kinase; Paradis et al., 1999; Pierce et al., 2001;
Li et al., 2003; Tomioka et al., 2006; Murphy and Hu, 2013;
Kaletsky et al., 2016; Kim and Webb, 2017). Several reports
have demonstrated a relationship between IIS and memory in
C. elegans. In IIS mutants, the declines with aging in isothermal
tracking, motor activity, and positive butanone associative
learning were suppressed, whereas the defects occurred in
salt chemotaxis learning and benzaldehyde-starvation avoidance
learning (Murphy and Hu, 2013). IIS controls salt chemotactic
learning due to two types of changes, an increased Ca2+ response
and decreased synaptic release, in the properties of a salt-sensing
neuron, ASER, after prolonged NaCl exposure (Oda et al.,
2011). A neuropeptide encoded by an insulin-like gene, ins-11,
negatively regulates neuronal signaling that controls avoidance
behavior toward a pathogen (Pseudomonas aeruginosa; Lee and
Mylonakis, 2017).

Nematodes grown under abundant food conditions show
positive taxis (i.e., attraction behavior) to NaCl, whereas they
show negative taxis (i.e., an avoidance behavior) to NaCl when
grown under conditions of starvation but in the presence of
NaCl. This is called salt chemotaxis learning (Figure 2; Saeki
et al., 2001). This behavioral change does not occur in the case
of starvation in the absence of NaCl or in the case of satiation
in the presence of NaCl. In other words, when nematodes
approach salt and fail to obtain food, they learn to avoid salt.
In this learning, INS-1, DAF-2, and AGE-1 in the IIS pathway
play important roles. These molecules function during the adult
stage of C. elegans development after completion of the neural
circuit formation. Nematodes deficient in INS-1 do not acquire
this learning (Kodama et al., 2006; Oda et al., 2011). Ohno
et al. (2014) reported that activation of the INS-1/DAF-2/PI3K
pathway in a chemosensory neuron, ASER, altered the neuronal
characteristics; e.g., a change in synaptic vesicle release from
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FIGURE 2 | Training protocol for salt chemotaxis learning in C. elegans.
Worms exhibit positive chemotaxis (attraction behavior) to NaCl under normal
conditions, whereas worms subjected to prolonged exposure to NaCl under
starvation conditions exhibit negative chemotaxis (avoidance behavior) to
NaCl.

ASER. This associative learning was enhanced by IIS. DAF-2 has
two splicing isoforms (DAF-2a and DAF-2c), and DAF-2c was
found to function in taste-avoidance learning (Tomioka et al.,
2022). Nagashima et al. (2019) demonstrated that the DAF-2c-
dependent pathway acts in parallel with DAF-16.

IIS is important not only for learning by NaCl stimulation
but also for learning by odor (benzaldehyde) stimulation (Lin
et al., 2010). The dramatic change in odorant preference of a
nematode after exposure to a high concentration of benzaldehyde
in the absence of food is a result of associative learning in
which the nematode forms an association between benzaldehyde
and starvation (Nuttley et al., 2002). This behavioral plasticity
is called benzaldehyde–starvation associative plasticity. Lin
et al. (2010) demonstrated that nematodes with mutations in
components of IIS pathways are defective in benzaldehyde-
starvation associative plasticity and that IIS plays a more
significant role in memory retrieval than in memory acquisition.
INS-1 can act on multiple neurons and AGE-1 acts on
benzaldehyde-sensing amphid wing C (AWC) sensory neurons
to direct benzaldehyde–starvation associative plasticity. That
is, these findings dissociate the behavioral roles of IIS in the
regulation of learning vs. memory recall and help to elucidate the
molecular mechanisms involved in this associative plasticity in C.
elegans.

On the other hand, in associative learning between
presentations of temperature and starvation, INS-1 acts on

an interneuron involved in isothermal tracking behavior,
antagonizes DAF-2 and AGE-1 and evokes food-related
thermotactic plasticity (Murakami et al., 2005, Murakami, 2007).
This learning ability declines with age. The age-related decay
in age-1 and daf-2 mutants, both of which exhibit increased
DAF-16 activity, is delayed. These effects are counteracted in
daf-16 mutants. These results suggest that age mutations (age-1
and daf-2 mutations) influence learning behavior in several ways.

Transcriptome analysis using adult C. elegans revealed
IIS/FOXO and CREB transcriptional targets required specifically
for memory and their tissue-specific expressions (Lakhina et al.,
2015; Kaletsky et al., 2018). A nematode CREB homolog, crh-
1, is required for long-term memory, but not for learning
or short-term memory. The molecular mechanisms involving
CREB were clarified in studies of positive butanone associative
learning in C. elegans (Kauffman et al., 2011). Nematodes
integrate the signals of butanone and food to enhance chemotaxis
to butanone (Torayama et al., 2007). Expression of crh-1
decreases with age and its expression and activation correlate
with memory performance. The relationship between this
crh-1 pathway and the IIS pathway, however, is intricate.
Insulin receptor daf-2 mutants exhibit improved memory
capacity in early adulthood and maintain learning ability
with age. On the other hand, the eat-2 mutant, which is
a model of dietary restriction, exhibits impaired long-term
memory in young adulthood and this low capability level
is maintained with age. That is, rather than changes in
the expression and activation of learning-related genes, it
is a change in the expression and activation of crh-1 that
influences the IIS pathway and dietary restriction pathway
in the decreased learning and memory observed with aging
(Kauffman et al., 2010).

IIS AND MEMORY IN Lymnaea stagnalis

Although the molecular tools available for use in gastropod
mollusks are not as advanced as those for application in
Drosophila and C. elegans, the contribution of the studies
using mollusks to the elucidation of learning and memory
mechanisms is significant (Kandel, 2001; Alkon et al., 2005). For
example, Aplysia and Limax are well-known to be capable of
associative learning (Yamanaka et al., 2021; Momohara et al.,
2022). Furthermore, the pond snail Lymnaea stagnalis can be
classically or operantly conditioned for many different types of
behaviors (e.g., feeding and aerial respiratory behaviors; Sunada
et al., 2017a; Crossley et al., 2019; Fodor et al., 2020; Itoh et al.,
2021; Pirger et al., 2021; Rivi et al., 2021a,b). As described in
the ‘‘Introduction’’ Section, ILP in Lymnaea was recognized as
the first ILP with its DNA sequence revealed in invertebrates
(Smit et al., 1988; Thorpe and Duve, 1988), leading to extensive
studies of the relationship between insulin function and memory
formation in Lymnaea (Pirger et al., 2014; Kojima et al., 2015;
Benjamin and Kemenes, 2020).

In particular, Lymnaea has the ability to learn a conditioned
taste aversion (CTA), which is formed by pairing the application
of a sucrose solution as a conditioned stimulus (CS) and
the application of a KCl solution or an electric shock as an
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FIGURE 3 | Training protocol for conditioned taste aversion (CTA) in Lymnaea. After a sucrose solution (CS) is paired with a KCl solution (US), the sucrose solution
does not elicit a feeding response in snails.

unconditioned stimulus (US; Figure 3; Kojima et al., 1997;
Nakai et al., 2020a). The sucrose solution evokes an innate
feeding response, whereas the KCl solution or electric shock
induces a withdrawal response. After repeated paired CS-US
presentations, the sucrose solution (CS) no longer evokes
the feeding response (Totani et al., 2020a). This CTA lasts
longer than a month (Kojima et al., 1996). Because temporal
changes in memory are generally classified into short-term
memory, intermediate-term memory, and long-term memory
(Rosenzweig et al., 1993), Lymnaea CTA is considered to be
consolidated into long-term memory because of pharmacologic
evidence requiring a de novo protein-synthesis processes (Nakai
et al., 2020b).

Studies of the relationship between ILPs and memory in
Lymnaea began with Azami’s work in 2006, which demonstrated
that the expression of some genes was upregulated or
downregulated following the formation of CTA and its long-term
memory (Azami et al., 2006). In particular, upregulation of
MIPs was observed in the CNS isolated from snails exhibiting
CTA. Murakami et al. (2013a,b) then hypothesized that MIPs
play an important role in altering the activity of feeding neural
circuits that result in CTA (Hatakeyama et al., 2013). Applying
MIPs or mammalian insulin to the isolated CNS induces
long-lasting changes in synaptic efficacy (i.e., enhancement)
between a key neuron for CTA (the cerebral giant cell: CGC)
and a follower neuron (the B1 motor neuron). The B1 motor
neuron innervates the salivary gland and plays a role in
radula protraction (McCrohan and Benjamin, 1980a,b; Straub
and Benjamin, 2001). These synaptic efficacy changes correlate
with the consolidation of CTA into long-term memory in
the snail CNS. This synaptic enhancement is blocked by the
application of a human insulin receptor antibody, which is
considered to block the binding between insulin (or MIPs)
and human insulin receptors (or MIP receptors; Taylor et al.,
1987). Injection of this human insulin receptor antibody into
the snail abdomen before CTA learning blocks long-term
memory formation, but not learning (Murakami et al., 2013a).
A difference between the neurons critical for learning and
those critical for long-term memory was also found in a
CGC ablation study (Sunada et al., 2017b). The somata of
the CGCs are not necessary for learning acquisition, whereas
theyare necessary for long-term memory formation. Thus, both

MIPs and the CGC somata play key roles in the memory
consolidation of CTA.

Peptide purification of MIP I–III and V and the additional
finding of a MIP VII transcript indicate that five types of
MIPs function in Lymnaea (Smit et al., 1991, 1993, 1996; Li
et al., 1992a,b,c). Their expression is observed in the growth-
controlling neuroendocrine light green cells (LGCs) and canopy
cells of the cerebral ganglia (Meester et al., 1992; Smit et al.,
1992, 1998; Hatakeyama et al., 2000). The cDNA structure of
a putative tyrosine kinase receptor for MIPs has also been
clarified (Roovers et al., 1995). Many of the typical insulin
receptor features, including a cysteine-rich domain, a single
transmembrane domain, and two cytoplasmic domains for trans-
phosphorylation to induce tyrosine kinase activity, are also
conserved in the predicted 1607-amino acid protein in Lymnaea.
Extensive screening of cDNA and genomic libraries together with
Southern blot analyses have revealed the presence of a single
putative MIP receptor gene and suggest that different MIPs bind
to the same receptor (Smit et al., 1996).

As described earlier, MIPs reduce the hemolymph glucose
concentration in Lymnaea (Mita et al., 2014a), and thus the
relationship among the actions of MIPs, nutritional status,
and CTA learning ability should be examined (Totani et al.,
2020b). Mild starvation (i.e., 1-day food deprivation) results
in the best learning and memory for CTA, whereas heavy
starvation (i.e., 5-day food deprivation) prevents snails from
learning or remembering (Aonuma et al., 2018a). Injecting
the snails with mammalian insulin to reduce the hemolymph
glucose concentration results in better learning and memory
in 5-day food-deprived snails, but injecting glucose into 5-day
food-deprived snails does not alter their inability to learn
and remember (Mita et al., 2014a,b). On the basis of these
observations, the ‘‘insulin spike hypothesis’’ (i.e., a rise in the
insulin concentration in the CNS of snails) was proposed for
the formation of CTA and its long-term memory (Mita et al.,
2014a,b; Kojima et al., 2015).

Evidence to support this hypothesis was obtained in 2020
(Totani et al., 2020c). As mentioned above, 1-day food-deprived
snails exhibit the best CTA learning and memory, whereas
5-day food-deprived snails do not express good memory. CTA
and its long-term memory, however, are indeed formed in
5-day food-deprived snails, but memory recall for the CTA is
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prevented by the effects of food deprivation. Long-term memory
recall in 5-day food-deprived snails is expressed following
7 days of feeding and then 1 day of food deprivation. Totani
et al. (2020c) revealed that this 1 day of food deprivation
before the memory test in snails increased the mRNA levels
of MIP II, a major MIP, in the CNS. Instead of this 1-day
food deprivation, injection of insulin into snails activates
CTA neurons and mimics the food deprivation state before
a memory test. Together, these results suggest that a spike
in insulin release recapitulates the optimal internal state for
long-term memory recall following CTA training in snails
(Totani et al., 2020c).

The neurocircuit involved in CTA in Lymnaea has been
examined from the viewpoint of some neurotransmitters, such as
monoamines (Yamanaka et al., 2000; Kawai et al., 2011), and the
relationship between monoamines and insulin in CTA learning
ability has been examined (Aonuma et al., 2016, 2017; Totani

et al., 2019). One monoamine, serotonin (5-hydroxytryptamin;
5-HT), is known to be involved in decision-making in Lymnaea
(Aonuma et al., 2020). Although the snails with 1-day food
deprivation exhibit the best learning and memory for CTA,
immersion of 1-day food-deprived snails in 5-HT impairs
CTA learning and memory by increasing the 5-HT content.
Furthermore, injection of mammalian insulin into these snails
reverses this impairment (Aonuma et al., 2018b). That is, insulin
rescues the CTA deficit, which may be due to a decrease in the
5-HT content in the CNS. Totani et al. (2022) further examined
why CTA learning ability is worse in 5-day food-deprived
snails than in 1-day food-deprived snails and how the CNS
5-HT concentration increases in 5-day food-deprived snails
(returns to basal levels). They measured the concentration of
tryptophan (i.e., 5-HT precursor) in the hemolymph and CNS,
and demonstrated that the CNS tryptophan concentration was
higher in 5-day food-deprived snails than in 1-day food-deprived

FIGURE 4 | Scheme of deduced ILP/IGF signaling cascades for memory enhancement. There are three main pathways: (1) Akt/PKB phosphorylates CREB (e.g.,
CREB1 in Lymnaea), resulting in gene expression. (2) Akt/PKB phosphorylates FOXO, inducing its secession from DNA. (3) Akt translocates GSV to the membrane,
resulting in the expression of GLUT4. The ILP/IGF receptors are called InR in Drosophila, DAF-2/IGFR (insulin/IGF-1 transmembrane receptor) in C. elegans, and
MIPR in Lymnaea. Abbreviations: Akt/PKB, Akt/protein kinase B; CREB, cAMP response element-binding protein; FOXO, forkhead box protein O; GLUT4, glucose
transporter isoform 4; GSV, GLUT4 storage vesicle; IRS, insulin receptor substrate; PI3K, phosphoinositide-3-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate;
PIP3, phosphatidylinositol 3,4,5-trisphosphate; PTEN, phosphatase and tensin homolog deleted on chromosome 10 (i.e., PIP3 phosphatase).
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snails, whereas the hemolymph tryptophan concentration
was not affected by the duration of food deprivation. This
finding suggests the existence of a mediator of the CNS
tryptophan concentration independent of food deprivation. This
mediator was then identified as ‘‘autophagic flux’’ in the CNS
under different food deprivation conditions. The tryptophan
concentration in the hemolymph and the autophagic flux in
the CNS cooperatively regulate CTA learning ability affected by
different durations of food deprivation.

PERSPECTIVE AND CONCLUSION

These findings together provide a perspective of the deduced
scheme for involvement of the insulin pathway in cognitive
function in invertebrates (Figure 4). We note two kinds of
transcription factors in IIS: CREB and FOXO, which are well
analyzed in the above-mentioned three species of invertebrates.
ILP/IGF binding to its receptor tyrosine kinase drives the
phosphoinositide-3-kinase (PI3K)-Akt/protein kinase B (PKB)
pathway (Belfiore et al., 2009; Hay, 2011). The PI3K-Akt/PKB
pathway regulates CREB for gene expression (Du and Montminy,
1998; Thiel et al., 2021). In Lymnaea, activation of CREB plays
a critical role in the formation of long-term memory (Ribeiro
et al., 2003; Sadamoto et al., 2004, 2010), and at the mRNA level,
the amount of suppressor CREB (e.g., Lymnaea CREB2) is more
abundant than the amount of activator CREB (e.g., Lymnaea
CREB1; Wagatsuma et al., 2005). The other transcription factor,
FOXO, is ‘‘inactivated’’ by the PI3K-Akt/PKB pathway (Lin et al.,
2001; Hay, 2011). FOXO, however, is involved in learning and
memory formation in a starved state (Nagashima et al., 2019).
That is, the function of FOXO remains a mystery, and likely
has two different roles. Akt translocates GLUT4 storage vesicles
(GSVs) to the membrane, resulting in the expression of GLUT4.
GLUT4 is glucose transporter isoform 4 and is suggested to be
involved in memory formation (Grillo et al., 2009).

In conclusion, here we have reviewed the relationship between
insulin and memory in Drosophila, C. elegans, and Lymnaea.
We propose that the mechanisms underlying the involvement of
insulin in cognition in invertebrates occur across phyla, including
humans, although findings of the molecular mechanisms in
mammals are scant. It is important to note that learning ability
depends on the state of starvation in invertebrates. Short-term
fasting in mammals also enhances cognition, including memory
consolidation (Dias et al., 2021), whereas obesity impairs
cognition and increases the risk of dementia in humans (Shinjyo
and Kita, 2021). Extensive studies using invertebrates can provide
important insight into the advantages of short-term fasting
in humans. In addition, by using invertebrates, it is easier to
investigate the complex interplay between the specific roles of
insulin and not only cognitive abilities but also longevity and
stress tolerance. This insight is also important for translational
medical studies.
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