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Abstract: Three new γ-ionylideneacetic acid derivatives, phellinulins A–C (1–3), were characterized
from the mycelium extract of Phellinus linteus. The chemical structures were established based on the
spectroscopic analysis. In addition, phellinulin A (1) was subjected to the examination of effects on
activated rat hepatic stellate cells and exhibited significant inhibition of hepatic fibrosis.

Keywords: ionone; Phellinus linteus; fungus; phellinulin; hepatic fibrosis

1. Introduction

Hepatic fibrosis resulted from chronic liver injury induced by viral attack, autoimmune responses,
drug-induced problems, cholestatic and metabolic diseases is a wound-healing response in which
various cytokines and molecules would activate hepatic stellate cells (HSCs) and then undergo
transformation from quiescent cells into fibrogenic cells [1–8]. Liver cirrhosis and further organ
failure may occur with poor control of fibrosis [9]. The key intermediate, activated HSCs, can
control the liberation of proinflammatory cytokines and tissue inhibitor of metallo-proteinases (TIMP)
causing collagen deposition and further fibrosis [10]. Therefore, induction of activated HSCs apoptosis
has been proposed as a potential anti-fibrotic strategy [11–13]. Emerging scientific evidences have
suggested that traditional Chinese herbs are efficacious for treating chronic liver diseases due to
their multi-ingredients, multi-mechanism of actions, and low adverse effects characteristics [14].
Phellinus linteus (Hymenochaetaceae) was usually called as “Sangwhang” in traditional Chinese
medicines, and it has been utilized extensively as healthy foods or medicines in Asia to prevent
various diseases, including cancer, ulcer, bacterial or viral infections and diabetes. In the literature,
the fruiting bodies of P. linteus had been reported to possess bioactive compounds and display
broadband bioactivities, such as cytotoxic, antioxidant, anti-inflammatory, anti-platelet aggregation,
anti-dementia, anti-diabetic, and anti-viral activities [15–20]. Various aromatic hydrocarbons including
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caffeic acid, hydroxybenzaldehyde, hispidin, hispolon, and inotilone have also been characterized from
the mycelium extracts and exhibited significant antioxidant and anti-inflammatory activities [21–27].
Recently, several articles reported the hepatoprotective and antihepatotoxic effects of the Phellinus
genus [28–32]. In our preliminary study, the ethanol extract of cultured mycelium of P. linteus (PLE)
exhibited protective effect against hepatic fibrosis in experimental animals. Therefore, in the present
study we aimed to discover natural leads from P. linteus to inhibit hepatic fibrosis. The compositions
of the constituents of the ethanolic mycelium extract were investigated. All isolated compounds as
well as the crude extract were subjected to inhibition assay of activated HSCs to evaluate the potential
for further development of treating liver fibrosis agents.

2. Results

2.1. Purification and Characterization

The dried mycelium powder of P. linteus was refluxed with ethanol and the resulted extracts were
partitioned with chloroform to afford CHCl3 and H2O soluble layers, respectively. The chloroform
layer was purified by conventional chromatographic techniques to yield three new γ-ionylideneacetic
acid derivatives (1–3) (Figure 1). Their structures were determined based on the 1D and 2D NMR, and
mass spectrometric analytical results.
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Figure 1. Chemical structures of phellinulins A–C (1–3). 

2.2. Structural Elucidation of Compounds 1–3 

Compound 1 was afforded as colorless optically active powder, mp 60–63 °C and [α]D25 −111.6. 
The positive-mode HR-ESI-MS of 1 showed a pseudomolecular ion peak at m/z 259.1676 (calcd. for 
C15H24O2Na, 259.1674) constructing the molecular formula as C15H24O2. The IR absorption bands at 
1782 and 1643 cm−1 indicated the presence of lactone carbonyl and carbon–carbon double bond 
functionalities, respectively. The 1H NMR spectrum of 1 displayed three methyls at δ 0.81 (3H, s, 
CH3-14), 0.93 (3H, s, CH3-15), and 1.10 (3H, d, J = 6.1 Hz, CH3-12). There were also five methylenes  
at δ 1.24–1.29 (1H, m, H-2a), 1.38–1.42 (1H, m, H-2b), 1.54 (2H, t, J = 6.0 Hz, H-3), 1.64 (1H, td, J = 12.0 
and 3.2 Hz, H-7a), 1.75 (1H, td, J = 12.0 and 3.2 Hz, H-7b), 2.03 (2H, t, J = 6.0 Hz, H-4), 2.12–2.19  
(1H, m, H-10a), 2.63 (1H, dd, J = 10.0 and 3.0 Hz, H-10b); and three methines at δ 2.12–2.19 (2H, m, 

Figure 1. Chemical structures of phellinulins A–C (1–3).

2.2. Structural Elucidation of Compounds 1–3

Compound 1 was afforded as colorless optically active powder, mp 60–63 ˝C and [α]D
25 ´111.6.

The positive-mode HR-ESI-MS of 1 showed a pseudomolecular ion peak at m/z 259.1676 (calcd. for
C15H24O2Na, 259.1674) constructing the molecular formula as C15H24O2. The IR absorption bands
at 1782 and 1643 cm´1 indicated the presence of lactone carbonyl and carbon–carbon double bond
functionalities, respectively. The 1H NMR spectrum of 1 displayed three methyls at δ 0.81 (3H, s,
CH3-14), 0.93 (3H, s, CH3-15), and 1.10 (3H, d, J = 6.1 Hz, CH3-12). There were also five methylenes at
δ 1.24–1.29 (1H, m, H-2a), 1.38–1.42 (1H, m, H-2b), 1.54 (2H, t, J = 6.0 Hz, H-3), 1.64 (1H, td, J = 12.0
and 3.2 Hz, H-7a), 1.75 (1H, td, J = 12.0 and 3.2 Hz, H-7b), 2.03 (2H, t, J = 6.0 Hz, H-4), 2.12–2.19 (1H,
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m, H-10a), 2.63 (1H, dd, J = 10.0 and 3.0 Hz, H-10b); and three methines at δ 2.12–2.19 (2H, m, H-6 &
-9), 3.99 (1H, dd, J = 9.0 and 9.0 Hz, H-8), respectively. In the downfield region, there was also two
olefinic protons at δ 4.61 (1H, br s, H-13a) and 4.83 (1H, br s, H-13b). The 13C NMR, DEPT-135 and
HMQC spectral data displayed fifteen carbon signals including three methyl groups at δ 16.8, 25.7,
28.2, six methylene groups at δ 23.6, 31.1, 32.6, 36.4, 36.7, 110.0, three methines at δ 37.2, 49.8, 85.4, two
quaternary carbons at δ 34.6, 148.0, and one carbonyl at δ 176.6, respectively. In the HMBC spectrum of
1 (Figure 2), there were 2J, 3J-correlations from CH3-14 and CH3-15 to C-1, C-2, and C-6; from CH3-12
to C-8, C-9, and C-10; from H-4 to C-2, C-3, C-5, C-6, and C-13; from H-7 to C-5, C-6, and C-8; from
H-10 to C-8 and C-11; and from H-13 to C-4 and C-6, respectively. These spectral data established the
structure of 1 as an ionone derivative. Moreover, HMBC correlation from H-8 to C-11 confirmed the
presence of a γ-lactone ring linked through the oxygen atom between C-8 and C-11 was evidenced by
IR absorption at 1782 cm´1.

In addition, there were NOESY correlations between H-6 and H-7, H-13, CH3-15; between H-8
and H-9, CH3-12, H-13; between H-10 and CH3-12; and between CH3-14 and H-2, respectively
(Figure 2). These NOEs evidence the relative stereochemistry of 1 as shown. The successive
two-dimensional spectral experiments accomplished the proton and carbon signal assignments of 1
and conclusively its chemical structure was determined as 5-((1,1-dimethyl-5-methylenecyclohexyl)-
methyl)-4-methyl-dihydrofuran-2(3H)-one and named trivially as phellinulin A.
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Figure 2. Significant HMBC (→) and NOESY (↔) correlations of compound 1. 

Compound 2 was obtained as optically active syrup and [α]D25 −70.4. In the HR-ESI-MS 
analytical data, 2 displayed a sodiated ion peak at m/z 255.1362 (calcd. for C15H20O2Na, 259.1361) and 
its molecular formula was determined as C15H20O2 with six degrees of unsaturation which is two 
more than that of 1. The UV maximum at 260 nm and IR absorption bands at 1744 and 1647 cm−1 
indicated the occurrence of an extended α, β-unsaturated carbonyl moiety. The 1H and 13C NMR 
spectral characteristics also suggested 2 to possess the ionone basic skeleton. The significant 
differences between 2 and 1 were only two methyl groups at δ 0.84 (3H, s, CH3-14) and 0.92 (3H, s, 
CH3-15), and three more olefinic protons at δ 5.86 (1H, s, H-10), 6.24 (1H, dd, J = 16.0 and 9.6 Hz, 
H-7), and 6.40 (1H, d, J = 16.0 Hz, H-8) could be found in 2. In the HMBC spectrum of 2, there  
were 2J, 3J-correlations from CH3-14 and CH3-15 to C-1, C-2, and C-6; from CH2-12 to C-9, C-10, and 
C-11; from H-4 to C-5 and C-13; from H-7 to C-8 and C-9; from H-8 to C-6, C-7, C-9, and C-12; from 
H-10 to C-11 and C-12; and from H-13 to C-4 and C-6 respectively. These spectral characteristics 
indicated that 2 is also an ionone derivative as 1. The 3J-HMBC correlation from H-12 to C-11 
constructed the formation of a γ-lactone ring between C-11 and C-12. NOE correlations of 
H-6/CH3-15 and H-7/CH2-12 in the NOESY spectrum determine the relative stereochemistry of 2. 
The complete assignments of all the proton and carbon signals were furnished with the aid of  
other two-dimensional spectral analysis and therefore the chemical structure of 2 was constructed  
as (E)-4-(2-(1,1-dimethyl-5-methylenecyclohexyl)vinyl)furan-2(5H)-one and named trivially as 
phellinulin B. 

Compound 3 was yielded as colorless optically active syrup with [α]D25 −84.0. The 
positive-mode HR-EI-MS of 3 showed a molecular ion peak at m/z 507.3086 corresponding to a 
molecular formula of C30H44O5. The mass spectrometric data implied the existence of an ionone 
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Compound 2 was obtained as optically active syrup and [α]D
25 ´70.4. In the HR-ESI-MS analytical

data, 2 displayed a sodiated ion peak at m/z 255.1362 (calcd. for C15H20O2Na, 259.1361) and its
molecular formula was determined as C15H20O2 with six degrees of unsaturation which is two more
than that of 1. The UV maximum at 260 nm and IR absorption bands at 1744 and 1647 cm´1 indicated
the occurrence of an extended α, β-unsaturated carbonyl moiety. The 1H and 13C NMR spectral
characteristics also suggested 2 to possess the ionone basic skeleton. The significant differences between
2 and 1 were only two methyl groups at δ 0.84 (3H, s, CH3-14) and 0.92 (3H, s, CH3-15), and three more
olefinic protons at δ 5.86 (1H, s, H-10), 6.24 (1H, dd, J = 16.0 and 9.6 Hz, H-7), and 6.40 (1H, d, J = 16.0 Hz,
H-8) could be found in 2. In the HMBC spectrum of 2, there were 2J, 3J-correlations from CH3-14 and
CH3-15 to C-1, C-2, and C-6; from CH2-12 to C-9, C-10, and C-11; from H-4 to C-5 and C-13; from H-7
to C-8 and C-9; from H-8 to C-6, C-7, C-9, and C-12; from H-10 to C-11 and C-12; and from H-13 to C-4
and C-6 respectively. These spectral characteristics indicated that 2 is also an ionone derivative as 1.
The 3J-HMBC correlation from H-12 to C-11 constructed the formation of a γ-lactone ring between
C-11 and C-12. NOE correlations of H-6/CH3-15 and H-7/CH2-12 in the NOESY spectrum determine
the relative stereochemistry of 2. The complete assignments of all the proton and carbon signals
were furnished with the aid of other two-dimensional spectral analysis and therefore the chemical
structure of 2 was constructed as (E)-4-(2-(1,1-dimethyl-5-methylenecyclohexyl)vinyl)furan-2(5H)-one
and named trivially as phellinulin B.

Compound 3 was yielded as colorless optically active syrup with [α]D
25 ´84.0. The positive-mode

HR-EI-MS of 3 showed a molecular ion peak at m/z 507.3086 corresponding to a molecular formula of
C30H44O5. The mass spectrometric data implied the existence of an ionone dimer and it was supported
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by the 1H and 13C NMR in which showed spectral characteristics similar with the presence of two
ionone units. The 1H NMR spectrum of 3 displayed six methyls, six aliphatic methylenes, and six
olefinic protons; however, only one set of terminal olefinic methylene was found at δ 4.53 (1H, s,
H-13a) and 4.76 (1H, s, H-13b). This indicated that the terminal olefinic methylene in one of the ionone
units was replaced by other functional group and it was proved by the occurrence of one oxygenated
methylene at δ 3.79 (1H, d, J = 11.0 Hz, H-131a) and 3.97 (1H, d, J = 11.0 Hz, H-131b). In the HMBC
spectrum of 3, there were 2J, 3J-correlations from CH3-14 and CH3-15 to C-1, C-2, and C-6; from CH3-12
to C-8, C-9, and C-10; from H-4 to C-13; from H-6 to C-1, C-5, C-7, and C-8; from H-7 to C-9; from H-8
to C-6, C-10, and C-12; from H-10 to C-8 and C-12; and from H-131b to C-41, C-51 and C-11, respectively.
In addition, there were 2J, 3J-correlations from CH3-141 and CH3-151 to C-11, C-21, and C-61; from
CH3-121 to C-81, C-91, and C-101; from H-61 to C-11, C-71, and C-81; from H-71 to C-91; from H-81 to C-61,
C-101, and C-121; from H-101 to C-81 and C-121, respectively. The 3J-HMBC correlation from H-131a and
H-131b to C-11 (δ 167.1) determined the linkage of dimer to be through oxygen atom between C-11
and C-131. The 2J-HMBC correlation from H-131 to oxygenated quaternary carbon C-51 (δ 73.0) also
proved the presence of hydroxy group at C-51. All the protons and carbons assignment and relative
stereochemistry were performed with other 2D spectral analysis and the chemical structure of 3 was
unambiguously constructed as shown (Figure 1) and named trivially as phellinulin C.

3. Discussion

Plenty of evidences demonstrate that dimethylnitrosamine (DMN) and transforming growth
factor-1 (TGF-1) can activate the quiescent hepatic stellate cells and transform them to proliferating
myofibroblast-like cells to afford hepatic accumulation of extracellular matrix and result in liver
fibrosis [33–36]. To evidence the inhibitory effect of PLE against in vivo hepatic fibrosis, the histological
variations in rat liver tissues were examined and the results proved the protective effect (data not
shown). Therefore, PLE and the purified compound phellinulin A (1) were further examined for their
inhibitory activities on activated rat HSCs (Table 1) and the level of myofibroblast marker, α-smooth
muscle actin (α-SM-actin; α-SMA) was evaluated [37]. At the tested concentration (40 µM), phellinulin
A (1) exhibited the significant effects against the activated rat HSCs with the inhibition percentage of
67% (Figure 3). Thus the fruiting bodies of P. linteus could have potential for the inhibition of activated
HSCs and develop as an anti-hepatic fibrosis drug in the future.

Table 1. Inhibitory effects of P. linteus (PLE) and phellinulin A (1) on activated rat hepatic stellate
cells (HSCs).

Sample Cell Viability (Fold of Base) Inhibition Percentage (%)

Control 0.53 ˘ 0.01 –
TGF 1.65 ˘ 0.03 –

TGF + PLE a 1.19 ˘ 0.02 28%
TGF + 1 b 0.54 ˘ 0.01 67%

The data were presented as mean ˘ S.D. a Test concentration: 40 µg/mL; b Test concentration: 40 µM; –:
Not determined.
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4. Materials and Methods

4.1. General

Melting points were recorded on a Yanagimoto MP-S3 apparatus (Kyoto, Japan) without
corrections. Optical rotations were determined by the JASCO DIP-370 digital polarimeter
(Tokyo, Japan). UV spectra were measured at room temperature with a Hitachi UV-3210
spectrophotometer (Tokyo, Japan), respectively. IR spectra were obtained with a Shimadzu FT-IR
DR-8011 spectrophotometer (Kyoto, Japan). 1H and 13C NMR spectra were examined and recorded by
a Bruker AV-500 NMR spectrometer (Billerica, MA, USA). Chemical shifts are expressed as δ values
(ppm) using tetramethylsilane as an internal standard. The ESI-MS and HR-ESI-MS were taken
on a Bruker Daltonics APEX II 30e spectrometer (positive-ion mode) (Billerica, MA, USA). The EI
and HR-EI mass spectra were measured on a JEOL JMS-700 spectrometer (Tokyo, Japan). Column
chromatography was conducted on 70–230 mesh and 230–400 mesh silica gels, and pTLC (preparative
thin layer chromatography) was performed on Merck precoated Si gel 60 F254 plates (Darmstadt,
Germany), and the spots on TLC was visualized by UV light.

4.2. Materials

The fermentation cultivated mycelium dried powder of P. linteus was provided and identified from
Gene Ferm Biotechnology Co., Ltd. in Taiwan in August 2003. A voucher specimen (Wu 2003010001)
has been deposited in the Herbarium of National Cheng Kung University, Tainan, Taiwan.

4.3. Extraction and Isolation

The dried mycelium powder of P. linteus (PL, 1.0 kg) was refluxed with ethanol (4 L ˆ 5 ˆ 4 h).
The extract was then filtered with Whatman No. 1 filter paper, and the ethanol extracts were combined
and concentrated at 40 ˝C under reduced pressure to obtain the ethanol extract (PLE, 500 g). PLE
was further dissolved in water and partition with chloroform to give chloroform (PLEC, 220 g) and
water extracts (280 g). The PLEC extract was purified by silica gel column chromatography eluted with
n-hexane: ethyl acetate (4:1) to afford six fractions (Frs. 1–6). Fr. 3 was chromatographed on a silica gel
column (chloroform: methanol = 29:1) to obtain 1 (21 mg) and 2 (3 mg), respectively. Fr. 5 was isolated
by silica gel column chromatography with mixing eluent of 90% chloroform in acetone and further
purified by pTLC to result in 3 (1 mg).

4.3.1. Phellinulin A (1)

Colorless powder, mp 60–63 ˝C; [α]D
25 ´111.6; IR (neat) vmax 2932, 2870, 1782, 1643, 1215,

1150 cm´1; 1H NMR (CDCl3, 500 MHz) δ 0.81 (3H, s, CH3-14), 0.93 (3H, s, CH3-15), 1.10 (3H, d,
J = 6.1 Hz, CH3-12), 1.24–1.29 (1H, m, H-2a), 1.38–1.42 (1H, m, H-2b), 1.54 (2H, t, J = 6.0 Hz, H-3), 1.64
(1H, td, J = 12.0, 3.2 Hz, H-7a), 1.75 (1H, td, J = 12.0, 3.2 Hz, H-7b), 2.03 (2H, t, J = 6.0 Hz, H-4), 2.12–2.19
(1H, m, H-6), 2.12–2.19 (2H, m, H-9 and H-10a), 2.63 (1H, dd, J = 10.0, 3.0 Hz, H-10b), 3.99 (1H, dd,
J = 9.0, 9.0 Hz, H-8), 4.61 (1H, br s, H-13a), 4.83 (1H, br s, H-13b); 13C NMR (CDCl3, 125 MHz) δ 16.8
(C-12), 23.6 (C-3), 25.7 (C-14), 28.2 (C-15), 31.1 (C-7), 32.6 (C-4), 34.6 (C-1), 36.4 (C-2), 36.7 (C-10), 37.2
(C-9), 49.8 (C-6), 85.4 (C-8), 110.0 (C-13), 148.0 (C-5), 176.6 (C-11). ESI-MS m/z (rel. int.) 259 ([M + Na]+,
100); HR-ESI-MS m/z 259.1676 ([M + Na]+, calcd for C15H24O2Na, 259.1674).

4.3.2. Phellinulin B (2)

Yellow syrup, [α]D
25 ´70.4; UV (MeOH) λmax (log ε) 260 (4.71) nm; IR (neat) vmax 2936, 2866,

1744, 1647, 1451, 1150 cm´1; 1H NMR (CDCl3, 500 MHz) δ 0.84 (3H, s, CH3-14), 0.92 (3H, s, CH3-15),
1.33–1.39 (1H, m, H-2b), 1.47–1.51 (1H, m, H-2a), 1.55–1.63 (2H, m, H-3a and H-3b), 2.07 (1H, td,
J = 14.0, 7.0 Hz, H-4a), 2.25 (1H, td, J = 14.0, 7.0 Hz, H-4b), 2.59 (1H, d, J = 9.6 Hz, H-6), 4.52 (1H, br
s, H-13a), 4.80 (1H, br s, H-13b), 4.99 (2H, s, H-12), 5.86 (1H, s, H-10), 6.24 (1H, dd, J = 16.0, 9.6 Hz,
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H-7), 6.40 (1H, d, J = 16.0 Hz, H-8); 13C NMR (CDCl3, 125 MHz) δ 23.0 (C-3), 23.8 (C-14), 29.3 (C-15),
34.1 (C-4), 35.7 (C-1), 38.7 (C-2), 58.3 (C-6), 70.5 (C-12), 109.6 (C-13), 114.4 (C-10), 123.2 (C-8), 140.4
(C-7), 148.5 (C-5), 162.0 (C-9), 174.0 (C-11); ESI-MS m/z (rel. int.) 255 ([M + Na]+, 100); HR-ESI-MS m/z
255.1362 ([M + Na]+, calcd for C15H20O2Na, 255.1361).

4.3.3. Phellinulin C (3)

Colorless syrup, [α]D
25 ´84.0; UV (MeOH) λmax (log ε) 264 (4.57) nm; IR (neat) vmax 3499, 2943,

2870, 1694, 1609, 1242, 1150 cm´1; 1H NMR (CDCl3, 500 MHz) δ 0.82 (3H, s, CH3-151), 0.83 (3H, s,
CH3-15), 0.89 (3H, s, CH3-14), 1.06 (3H, s, CH3-141), 1.19–1.21 (1H, m, H-21a), 1.26–1.37 (2H, m, H-2a
and H-41a), 1.49–1.51 (2H, m, H-21b and H-31a), 1.56–1.60 (1H, m, H-2b), 1.71–1.78 (2H, m, H-31b and
H-41b), 1.79 (1H, d, J = 10.0 Hz, H-61), 1.97–2.06 (1H, m, H-4a), 2.17–2.26 (1H, m, H-4b), 2.30 (3H, s,
CH3-121), 2.31 (3H, s, CH3-12), 2.54 (1H, d, J = 9.4 Hz, H-6), 3.79 (1H, d, J = 11.0 Hz, H-131a), 3.97 (1H, d,
J = 11.0 Hz, H-131b), 4.53 (1H, s, H-13a), 4.76 (1H, s, H-13b), 5.71 (1H, s, H-10), 5.74 (1H, s, H-101), 6.08
(1H, d, J = 9.4 Hz, H-81), 6.11 (1H, d, J = 9.4 Hz, H-8), 6.28 (1H, dd, J = 9.7, 7.8 Hz, H-7), 6.35 (1H, dd,
J = 15.8, 10.0 Hz, H-71); 13C NMR (CDCl3, 125 MHz) δ 14.2 (C-121), 14.2 (C-12), 17.4 (C-31), 22.3 (C-141),
23.3 (C-3), 23.6 (C-15), 29.4 (C-14), 32.3 (C-151), 34.4 (C-4), 34.4 (C-11), 35.7 (C-41), 35.7 (C-1), 39.0 (C-2),
41.2 (C-21), 55.3 (C-61), 58.1 (C-6), 71.4 (C-131), 73.0 (C-51), 108.9 (C-13), 117.1 (C-101), 117.2 (C-10), 135.2
(C-8), 135.5 (C-71), 136.9 (C-7 and -81), 149.5 (C-5), 153.6 (C-9), 154.6 (C-91), 167.1 (C-11), 170.4 (C-111).
EI-MS m/z (rel. int.) 507 ([M]+, 100); HR-EI-MS m/z 507.3086 ([M]+, calcd for C30H44O5, 507.3083).

4.4. Determination of the Inhibition Effect on Activated Rat Hepatic Stellate Cells

4.4.1. Cell Culture and MTT Assay

The immortalized rat myofibroblast cell line HSC-T6 was a gift kindly provided by Dr. Scott L.
Friedman (Mount Sinai School of Medicine, New York, NY, USA). The HSC-T6 cells were cultured
in Waymouth medium with 10% fetal bovine serum (FBS) at 37 ˝C in a humidified atmosphere of
5% CO2. HepG2 cells were cultured with Dulbecco’s Modified Eagle’s medium (DMEM) containing
10% FBS for 24 h. Cell viability was examined by MTT assay. Totally 1 ˆ 105 cells were seeded in
24-well plates for 24 hours (h) and made quiescent by cultivation in medium containing 0.2% FBS
overnight. After treating with 40 µM of phellinulin A (1) for 72 h, tetrazolium salt mixed isopropanol
solution was added to the wells and the resulting mixture was more incubated at 37 ˝C for 4 h [34].
The optical density of the dissolved solution was recorded at 570 nm by the spectrophotometer, and all
the experiments were performed at least in triplicate.

4.4.2. Western Blot Analysis

Proteins were isolated on 10% denatured gels and transferred to PVDF membranes and then
incubated for 1 h with blocking solution of 5% nonfat milk-TBST solution. The membranes were
further immersed in the same solution containing an antibody against glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and α-SMA (Santa Cruz, Dallas, TX, USA) overnight. After washing with
the mixture of tris-buffered saline and Tween® 20 (TBST) (Cell Signaling Technology, Danvers, MA,
USA) four times, the membranes were cultured with the 5% nonfat milk-TBST solution containing
peroxidase-labeled anti-rabbit IgG (Santa Cruz, Dallas, TX, USA) for 2 h. After washing in TBST five
times, enhanced chemiluminescence substrate (ECL) (PerkinElmer™, Waltham, MA, USA) was used
for protein detection. The intensity of each band was quantified using GeneTools Image Software
(Syngene, Cambridge, UK), as GAPDH was used as the internal control. The Western blot experiments
were conducted in triplicate.

4.4.3. Statistical Analysis

The experimental data were expressed as the mean ˘ standard deviation (SD) of three parallel
measurements (SigmaPlot 8.0; SPSS Inc., Chicago, IL, USA).
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