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Abstract
Pelvic organ prolapse is a common and frequently occurring disease in middle-aged

and elderly women. Mesh implantation is an ideal surgical treatment. The polypropy-

lene mesh commonly used in clinical practice has good mechanical properties, but

there are long-term complications. The application of tissue engineering technology

in the treatment of pelvic organ prolapse disease can not only meet the mechanical

requirements of pelvic floor support, but also be more biocompatible than traditional

polypropylene mesh, and can promote tissue repair to a certain extent. In this paper,

the progress of tissue engineering was summarized to understand the application of

tissue engineering in the treatment of pelvic organ prolapse disease and will help in

research.
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1 INTRODUCTION

Pelvic organ prolapse (POP) is a common debilitating condi-
tion affecting about 30–40% of women. POP is the herniation
of pelvic organs into the vagina with symptoms of bladder,
bowel, and sexual dysfunction [1]. The POP etiology is multi-
factorial; ageing, obesity, pregnancy, parity, genetics, history
of diabetes, and hypertension impact its progression [2].
Prevalence of POP varies in different geographical regions.
The annual POP incidence in the USA is reported to be 31.8%
over 2–8 years in a follow-up study in menopausal women [3].
The rate of vault prolapse is reported to be between 4.4 and
6–8% in two European countries, Italy and Austria, respec-
tively [4,5] and the mean prevalence in developing countries
is about 19.7% [6]. At present, the commonly used surgical
methods in clinical practice include autologous tissue repair
surgery and scaffold implantation surgery. The recurrence
rate of autologous tissue repair is high, so mesh implantation
becomes the focus of pelvic floor reconstruction. The purpose

Abbreviations: PFD, pelvic floor dysfunction; POP, pelvic organ prolapse.
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of using mesh in the treatment of pelvic floor dysfunction
(PFD) disease is to replace autologous tissue with mesh and
reconstruct the pelvic floor defect structure. According to
the source of the materials, it can be divided into chemical
synthetic mesh and biological mesh: synthetic mesh, such
as polypropylene mesh, is the earliest applied in pelvic floor
repair, with good mechanical properties and low recurrence
rate. However, its non-degradation and poor histocompatibil-
ity lead to a series of postoperative problems, such as graft
erosion, exposure, and infection [7]. Biological mesh has
good biocompatibility, but its mechanical properties are poor,
the graft gradually degrade, and the degradation rate is faster
than the formation rate of new tissue, resulting in decreased
mechanical ability and recurrence of PFD, thus limiting its
clinical promotion and application. Therefore, there is a void
in the clinical management of POP that requires innovative
cell-based and tissue engineering approaches. Tissue engi-
neering uses a combination of cells, biomaterials, growth
factors and/or drugs implanted into an area of tissue damage
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or loss. The purpose of the cellular component is to accelerate
repair and promote regeneration of damaged or lost tissue,
while the material provides physical support and niches to
deliver cells to the tissue. The first model used to demonstrate
proof of principle of this approach for POP repair was in a
rat skin wound repair model. It used a novel source of MSC
from the endometrium with a newly designed knit material
fabricated from FDA-approved nondegradable polyamide
dip-coated in gelatin for MSC seeding and delivery [8]. We
will summarize the research status of tissue engineering on
female pelvic floor restoration.

2 SEED CELLS

Seed cells in tissue engineering is the prerequisite of tissue
regeneration, including autograft, allograft, and heteroge-
neous groups, generally speaking, seed cells should meet
the following conditions: a wide range of sources, some
biological characteristics, and no immune rejection. Sources
of seed cells for female pelvic floor repair include fibroblasts
and stem cells.

2.1 Fibroblasts
Fibroblasts is a pelvic floor support structure, the extracel-
lular matrix cells, can be drawn from the vaginal wall, lig-
ament structure, etc., and it can secrete collagen, elastin,
cytokines, etc. Jia et al. [9] found that fibroblasts were sig-
nificantly increased in growth rate and collagen expression
by stimulating them in vitro. Fibroblasts were planted on
polypropylene mesh and some biological meshes, and a col-
lagen membrane formed by extracellular matrix secreted by
fibroblasts at the implant site and between the meshes was
used to improve the biocompatibility of the mesh and reduce
complications [10–12]. Drewa et al. [13] successfully repaired
abdominal wall defects of mice by planting cultured fibrob-
lasts on polyglycolic acid (PGA) scaffolds, suggesting that
fibroblasts in tissue engineering can synthetic extracellular
matrix to achieve the goal of restoration, but women with
PFD, a large number of studies have also shown that patients
collagen metabolism are disorder, so autologous fascia of the
patients compared with the same intensity and the recurrence
rate requires authentication. A 10-year follow-up study [14]
showed that the long-term effects of TVT sling and autolo-
gous fascia graft were the same, and in fact, autologous fascia
graft had higher strength than TVT sling. Obviously, the auto-
genous fibroblast is a good seed cell.

2.2 Stem cells
Recent advances in stem cell-based therapeutics have pro-
pelled an increasingly high enthusiasm in tissue engineering.
The essential ingredients for successful tissue engineering

PRACTICAL APPLICATION
Female pelvic floor repair polypropylene mesh has
been banned in 2019 after the FDA warned of
complications such as erosion and exposure. There-
fore, tissue engineering technology for female pelvic
floor repair came into being. However, the appli-
cation of tissue engineering in the field of female
pelvic floor is rarely reviewed. In this work, we
review the application of tissue engineering in the
field female of pelvic floor, hoping to provide
theory for guiding the treatment of pelvic floor
dysfunction.

include the choice of biomaterials combined with the appro-
priate cells and growth-inducing factors [15].

2.2.1 Embryonic stem cells
Different kinds of stem cells have different functions. Embry-
onic stem cells, usually derived from embryos or fetuses,
can differentiate into any type of cell or germ layer. Human
embryonic stem cells (hESC) are derived from blastocysts
and possess a high degree of plasticity and rapid proliferation.
Theoretically, embryonic stem cells can differentiate into any
cell. However, it is technically strict to induce the targeted dif-
ferentiation of embryonic stem cells to achieve the purpose of
transplantation and reduce tumorigenicity [16]. In addition,
the immunogenicity after embryonic stem cell transplanta-
tion needs to be emphasized. These cell lines acquire human
leukocyte antigen (HLA) when they mature, so patients trans-
plant tissue engineering products from embryonic stem cells
as seed cells may need immunosuppressive therapy [17]. On
the other hand, the ethical issues involved in embryonic stem
cell transplantation also limit its application in the treatment
of pelvic floor diseases. Pluripotent stem cells, including
endometrial mesenchymal stem cells(eMSC), mesenchymal
stem cells (MSC) and adipose stem cells (ADSC) from the
blood, bone marrow, placenta, or fat tissue, have been an inter-
est for allogeneic cell-based therapies for decades [18].

2.2.2 Induced pluripotent stem cells
In 2006, potentialization and maintaining pluripotency viral
candidate cells into the mouse skin after screening, are finally
Oct4, Sox-2, c-Myc, and Klf4 can be introduced into the four
transcription factor genes. To fiberize mature rat skin dimen-
sional cell reprogramming into embryonic stem embryonic
stem cells (ESCs)-like cells, called inducible pluripotent
stem cells (iPSCs) [19] .hiPSC has the ability of self-renewal,
which refers to the “infinite” proliferation ability that is
produced in the mother’s cells by the symmetrical division,
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and can also be called “immortality”; it has the potential of
multidirectional differentiation can differentiate into mature
cells with different phenotypes. hiPSC have a complete
genome, that is, they contain all the genetic information of
the source cells. Compared with other stem cells, hiPSC are
derived from autologous cells or other types of cells, so it can
avoid immune rejection caused by allogeneic transplantation;
in addition, it does not need to be taken from the cell mass in
the early embryo of mammals, which prevents embryo ethical
controversy caused by stem cells. hiPSC can be differentiated
into embryoid bodies containing various germ layer sources
under appropriate stimulation, and can be induced into
disease-related functional cells, such as insulin-secreting
cells, hematopoietic cells, nerve cells, etc. hiPSC technology
is mainly simulated from the genetic aspects of the human
body, so it is difficult to construct an ideal in vitro cell model
and perform cell therapy for diseases with environmental
factors as the leading role. The mechanism of differentiation
after transplantation of hiPSC into the body is not clear.
Autologous transplantation of induced pluripotent stem cells
has been reported to be immunogenic [20]. Currently, induced
pluripotent stem cell technology can be used to induce cells
to differentiate into desired targets in vitro. However, little
is known about the differentiation mechanism of the differ-
entiated cells after transplanted into the body. Therefore, the
mechanism of induced differentiation of induced pluripotent
stem cells needs to be further studied. In addition, there is cur-
rently no specific detection system to evaluate the efficiency
and safety of functional cells after transplantation. Although
hiPSC technology increases the source of stem cells, it also
increases the risk of cell mutations, which affects the safety of
hiPSC. Nowadays, the research on the technical mechanism
of induced pluripotent stem cells has gradually shifted from
the level of transcription factor-related transcriptome and
proteome to epigenetics. The variation induced by classical
methods induced by pluripotent stem cells mainly comes
from chromosomal abnormalities and gene copies There are
several aspects such as number mutation and point mutation.
Studies have shown that Brg1 and BAF155 in the embryonic
stem cell-specific chromatin remodeling complex BAF can
coordinate the reprogramming of fibroblasts with the three
factors Oct4, Sox2, and Klf4. These chromatin remodeling
is not only conducive to Oct4 gene regulation, on the other
hand, also enhances the ability of the Oct4 protein to bind to
the promoter regions of Sall4, Tcf3, and Dppa4 genes. Some
mutations also occur during the induction process, and some
somatic cells are damaged during the induction process. The
induction itself also causes an increase in copy mutations,
and the longer the culture time, the more the accumulation
of mutations. In addition, different detection methods have
different results for the genetic stability of genetic analysis
techniques have found more genetic abnormal hiPSC. Mod-
ern molecular abilities of hiPSC than traditional cytogenetic

analysis techniques. The potential carcinogenicity of hiPSC
factors has increased people’s concerns about the safety of
clinical application of hiPSC technology to a certain extent,
but it has also stimulated in-depth research on inducible
factors by researchers. It has been reported that >40% of
genes that exhibit mutations at the level of genetic mutations
are associated with tumors [21]. The study found that the six
induction factors (Oct3/4, Sox2, c-Myc, Klf4, Lin28, Nanog)
used in induced pluripotent stem cell technology, except
Lin28 has not been found to be related to tumorigenesis, the
remaining five are oncogenes, whose overexpression is often
associated with tumors [22]. C-Myc is a proto-oncogene [23]
that can be detected in a variety of tumors and can promote
cell proliferation and transformation [24]. Nakagawa studied
the combination of Oct4, Sox2, and Klf4 and found that
the lack of c-Myc can lead to its cell induction disorder, its
tumorigenicity inhibits reprogramming, and it also increases
the frequency of cell transitions during the passage of hiPSC.
When Myc transgene continues to play a role in hiPSC, it can
also increase the risk of tumor formation. Oct3/4 can induce
cells to change into embryonic stem cells away from tumor
cells, and its forced expression can maintain the morphology
of embryonic stem cells [25]. In recent years, the research of
hiPSC has attracted much attention from the scientific and
medical communities, and has worked hard to overcome the
problems of immunity and ethics, and successfully obtained
induced hiPSC. However, due to the inability to solve the
safety, efficiency, and mechanism of hiPSC differentiation
in the technology, it is limited to theoretical and laboratory
research, and it has not been applied to the clinic. How to
safely and efficiently induce hiPSC into the type required by
patients and transplant them, how to establish a good disease
model, and establish a high-throughput drug screening
platform involve basic research in all aspects, facing huge
difficulties and challenges.

2.2.3 Endometrial mesenchymal stem cells
A rare type of perivascular mesenchymal stem cells found
in the endometrium, which can be easily obtained from
endometrial biopsy or even postmenopausal women [26,27].
Ulrich et al. have demonstrated in phase IV clinical trials
that postmenopausal women can regenerate endometrial tis-
sue [28]. Many clinical trials of MSC therapies exploit their
anti-inflammatory and immunomodulatory properties. eMSC
also have significant immunomodulatory function, influenc-
ing macrophage switching from M1 inflammatory to a M2
wound healing phenotype in rodent models used to assess
new biomaterials for treating POP [29,30]. The M2/M1 ratio
is crucial for the success of implanted mesh. eMSC have
beneficial effects on subcutaneously implanted nondegrad-
able eMSC/PA/G tissue engineering constructs, reducing the
release of host macrophage inflammatory cytokines, TNF-𝛼
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and IL-1b in both C57BL6 and immunocompromised NSG
mice. eMSCs can be a good choice for seed cells.

2.2.4 Skeletal muscle stem cells
Ho et al. [31] based on cell therapy for pelvic floor dysfunc-
tion, they were used in vitro culture of mice skeletal muscle
stem cells (MDSC) that seeded on decellularized matrix from
pig small intestinal submucosa (SIS) implanted in rats vagina,
MDSC differentiated into smooth muscle cells, and promote
the vaginal tissue repair. Boennelycke et al. [32] seeded fresh
muscle fiber fragments on biodegradable PLGA scaffolds,
constructed tissue engineering meshes, and implanted them
under the abdominal skin of rats. After 8 weeks, new muscle
fibers grew and the scaffolds were degraded. Muscle satel-
lite cells on newly isolated muscle fibers may be the key cells
responsible for tissue regeneration, whether it can replace
myogenic stem cells in the treatment of POP is still controver-
sial, but in animal studies, isolated autologous muscle tissue
or muscle fragments have been used in the treatment of SUI
[33] and abdominal hernia [34]. In the treatment of female
urinary disease, researchers and clinicians have been trying
to use injection to induce urethral sphincter muscle regenera-
tion, in vivo study showed that cells can survive a period after
injection, reconstruction’s process is similar to normal skele-
tal muscle regeneration process, new nerve fibers, smooth
muscle cells, loose stromal tissue, and blood vessels formed.
MDSC can be a good candidate for POP.

2.2.5 Mesenchymal stem cells
Easy to be isolated, cultured, and amplified from bone
marrow or adipose tissue, have been widely used in the repair
and regeneration of damaged tissues [35,36]. In gynecolog-
ical and urologic diseases, bone marrow stromal stem cells
(BMSC) and adipose stromal stem cells (ADSC) were used
in animal models to repair urethral sphincter for SUI [37,38].
Zou et al. [39] successfully improved the symptoms of SUI in
rats by implanting BMSC. Dolce et al. [40] demonstrated that
BMSC grew well on PGA mesh and reduced the degree of
abdominal adhesion in rats, improving the biocompatibility
of the mesh. MSC are pluripotent and can be differentiated
into different lineages such as bone, cartilage, fat cells,
tendons, ligaments, and smooth muscle. The direction of
differentiation is driven by the microenvironment of the
implant site. In this way, autologous MSC, especially the
readily available ADSC, may be an ideal candidate for POP
repair. To date, nearly 500 clinical trials using mesenchymal
stem cells (MSC) have treated more than 2000 patients [27].
They were use autologous or allogeneic mesenchymal stem
cells as cell suspensions to inject. many involve intravenous
inject. So far, despite there were many reasonable preclinical
evidence, the therapeutic effect of these trials is marginal.
Consensus on the therapeutic mechanism of mesenchymal

stem cells does not exist yet. Nevertheless, there are some
hypotheses to explain the observed clinical benefits of MSC
[41], (1) the intrinsic ability to differentiate into different cell
lineages, (2) producing an array of soluble bioactive factors
for cell maintenance, survival, and proliferation, and (3)
regulating immune responses and (4) migrating recruitment
site to alleviate injury and promote reconstruct [42]. In some
reported cases, MSC seems to avoid allograft rejection in
both human and animal models [43–47]. More practically,
the allogeneic cell source must be able to demonstrate its
reliable ability to elicit meaningful therapy under the immune
capacity for patient allogeneic tissue, which includes reliable
cell homing and partial dose accumulation or retention at sites
of interest for sufficient time to complete reconstruct [48]. It
is currently estimated that less than 3% of injected stem cells
remain in the injured myocardium 3 days after the ischemic
injury injection [49]. In addition, most cells transplanted
into the target tissue will die within the first few weeks. The
effective transformation of mesenchymal stem cell therapy
is currently hindered by the clinical inability to target these
therapeutic cells to specific tissues with reasonable efficiency
and significant transplantation and retention [50]. Traditional
MSC therapies are inject cell suspensions derived from adher-
ent cells obtained from cultured plastics using proteolytic
enzymes. Proteolytic free cells take a long time to recover
from harvesting, suspension, and loss of cell connections,
associated matrices, and cell receptors. MSC maintained in
a 2D culture system has been shown to gradually lose its
inherent proliferation potential, colony formation efficiency,
and differentiation ability with passage [51–53]. In addition,
as proteolytic enzyme treatment destroys the adhesion com-
ponents and mechanism of endogenous mesenchymal stem
cells, homing to the target tissue region is impaired [54,55].
Integrating healing physiology and regenerative potential are
key factors in reducing low cell retention and embedding into
target tissues and organs for a successful cell therapy [56].

2.3 The security of stem cells
In a recent study, ADSCs and their exosomes separated from
cancer patients were safe and had therapeutic benefits, sug-
gesting that expanded ADSCs donated by cancer patients were
not affected by patients’ conditions, including cancer [57].
Although ADSCs are precursors to many cell types, their
vital important function is chemical signal and induce dif-
ferentiation into specialized cells, including dermal fibrob-
lasts and keratinocytes [58]. Fat cells themselves derived from
ADSCs were successfully injected subcutaneously to treat
soft tissue diseases [59,60]. In one study, treated patients with
ADSC and followed for one year without adverse events [61].
Although total fat tissue transplantation has been successfully
used to treat finger ulcers in patients with systemic sclero-
sis, a 10 years of tumor follow-up after fat transplantation
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showed no increased cancer risk in patients [62]. A meta-
analysis of 1453 fat transplant patients with mean follow-up
of 16.3 months (range:1–56 months) for breast reconstruc-
tion showed no increased incidence of breast cancer [63]. In
vitro and in vivo studies have shown that MSCs can inhibit
tumor growth, which is expected since MSCs can build ECM,
while normal ECM inhibits tumor growth through a process
of dynamic reciprocity [64]. In vitro studies have shown that
in human cells, adipose tissue rather than fat-derived stem
cells can significantly increase the growth rate of breast can-
cer xenograft tumors [65]. In vitro, studies on 3D culture
of ADSCs further demonstrated their safety in breast tissue,
because under the stimulation of breast epithelial cell line HL-
100 [66]. ADSCs formed a structure similar to acinar and
showed the characteristics of epithelial differentiation [67].
The relatively safety characteristics of ADSCs, including their
nuclear stability as they proliferate, make these cells a valu-
able tool for cancer therapy [68], including the provision of
paclitaxel to cancer patients [69]. Patients with an average age
of about 50 years received autologous ADSCs injection for
osteoarthritis and were followed up for 1 year, with no adverse
events, improved pain degree, and reduced disease progres-
sion [70]. In a phase II trial, patients were followed up for
6 months after injection of allogeneic ADSCs for perianal fis-
tula, most patients did not observe related adverse events, and
the fistula was closed [71]. In another phase II trial, patients
were followed up for 2 years after the injection of ADSCs allo-
graft to treat Chron fistula, with no adverse reactions, and 80%
of patients healed completely [72]. In phase IIb double-blind,
randomized, placebo-controlled studies of ADSCs injection
into osteoarthritis, no significant improvement, or adverse
events were observed during the 6-month follow-up [73].
Therefore, the safety of ADSCs and their secretors has been
well confirmed in humans even when injected [74].

2.4 The low immunogenicity of stem cells
ADSCs have also been shown to modulate immune function
in a number of beneficial ways, rejecting the ability of
ADSCs secretory bodies to improve the survival rate of skin
allografts. A large number of studies have shown that ADSCs
can inhibit the proliferation of activated T cells regardless
of direct contact with ADSC-T cells [75], while ADSCs
secretory alone can inhibit the proliferation, differentiation,
and activation of T cells [76]. Co-culture of peripheral blood
mononuclear cells and ADSCs can inhibit pro-inflammatory
T cells and induce it with regulatory phenotype and anti-
inflammatory response characteristics [77,78]. Mesenchymal
stem cells have low immunogenicity and are often used
in allogeneic applications without immunosuppression.
However, recent studies have shown that subsequent doses
of mesenchymal stem cells can be more rapidly removed
from the body. One advantage of autologous mesenchymal

stem cells is their inherent compatibility with host tissue,
allowing repeated administration. In the current study, to our
knowledge, we have shown that autogenous eMSC last the
longest, with about 6% surviving 30 days in vivo. The longer
mesenchymal stem cells remain in the body, the greater
their role may be, especially in repairing damaged tissues or
regulating the response of allografts or meshes [79].

3 BIOLOGICAL SCAFFOLDS

In nature, cell behavior and tissue structural development
occur within the nanoscale architecture of the extracellu-
lar matrix (ECM). Vaginal wall anatomy shows that simple
method of stem cell injection therapy to repair damaged tis-
sue is not feasible, for most mammalian cells need adhesive
matrix, researchers are turning to biological scaffolds with
ECM-like topography that more closely represent the vaginal
ECM. Biological scaffold materials provide such a 3D matrix
structure in which cells can adhere, proliferate, and differen-
tiate with high efficiency. Tissue engineering biological scaf-
fold materials should meet the following conditions [80]: (1)
good biocompatibility, benefit to cell adhesion, proliferation,
no toxicity, no immunogenicity; (2) biodegradable; (3) has
a certain mechanical strength and guide tissue regeneration;
and (4) a certain porosity and the appropriate size of the aper-
ture. Tissue engineering biological scaffold materials used in
pelvic floor dysfunction diseases include the following cate-
gories: synthetic materials and natural materials.

3.1 Synthetic materials
Including synthetic polymers. The most widely used synthetic
polymers in tissue engineering are polyhydroxy acids [81,82],
including polylactic acid (PLA), polyglycolic acid (PGA) and
its copolymer (PLGA). These synthetic polymers are naturally
non-toxic, and the degradation reaction is chemical hydroly-
sis. The products are lactic acid and glycolic acid, which are
cleared by metabolism of the body [83]. Since its degradation
is not dependent on the enzyme concentration in the local
tissue environment, its degradation in vivo is controllable
[84]. By changing the ratio and polymerization parameters
of PLA, the properties of the synthesized polymer, such as
tensile strength, young’s modulus and degradation rate, can
greatly meet the requirements of tissue engineering. In fact,
these materials have been successfully applied in urethral
tissue formation and bladder replacement [85–87]. In addi-
tion, hydrogels based on synthetic polymers can continuously
release bioactive factors into tissues to regulate the differ-
entiation of stem cells implanted on 3D polymer scaffolds
[88]. Polycaprolactone (PCL) is another synthetic polymer
based on hydroxyalkanic acid, which has been approved by
FDA for clinical due to its excellent biocompatibility, low
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immunogenicity, hydrolysis under physiological conditions,
and other excellent properties, and has attracted much atten-
tion in tissue engineering [89,90]. Although the synthesis
of polymeric biomaterials has the excellent properties of
biological scaffold, but some kinds of polymers, such as poly
hydroxy esters, may produce acid degradation products, this
change in pH can affect the behavior of the cells and survival
[91], and cause of the abnormal tissue and inflammatory
response [92]. In addition, due to a lack of biological function
domain, synthetic polymer itself are usually do not have
immunogenicity, but at the same time, it cannot make the cell
adhesion. Today’s various synthetic technologies have opti-
mize the synthetic polymer, the biological activity area cou-
pling to the scaffold, so that they can produce bioactive bionic
scaffold, for example, serum coating containing collagen or
synthetic polymer scaffolds can make cells and extracellular
matrix (ECM) deposition [93,94]. In other cases, synthetic
polymer scaffolds are prepared and modified by covalently
fixing extracellular matrixderived molecular fragments to
promote cell adhesion and enhance directed differentiation
of stem cells [95]. In addition, the addition of biological
activators on the surface of synthetic polymer scaffolds is one
of the most effective ways to induce cell-ECM-like-material
interaction [96]. Biodegradable polymer scaffolds with func-
tional groups were established on the surface of the material
to initiate the required cell-material interaction [97]. Ideally,
an excellent cell scaffold, not only causing immune rejection,
but have both excellent mechanical and biological properties:
it contains a variety of tissues and cytokines, and provides an
appropriate microenvironment to promote tissue regeneration
[98]. This kind of material chemistry has exerted a fundamen-
tal and increasingly important influence on material science.
In fact, the shape, size, structure, mechanics, porosity, surface
texture, and other physical properties of scaffolds, once
placed in the body’s cellular microenvironment, will have a
profound impact on the biological functions of biomaterials.

3.2 Natural materials
Natural biomaterials can generally be divided into two
categories: protein biomaterials (such as collagen, silk
fibroin, gelatin, fibonectin, keratin, etc.) and polysaccharide
biomaterials (such as hyaluronic acid, cellulose, glucose,
alginate, chondroitin, chitin and its derivatives chitosan, etc.).
Protein-based biomaterials are usually acquired from animal
and human, including bioactive molecules that mimic the
extracellular environment, whereas polysaccharide-based
biomaterials are mainly derived from algae, such as AGAR
and alginate, or from microbial sources, such as dextran and
its derivatives [99,100]. Another type of natural biomaterials
is tissue-derived biomaterials, such as acellular matrix mesh,
which is a new type of allogeneic biomaterials. Cell adhesion
is mediated by specific integrin ligand interactions between

the cell and its surrounding ECMs [101], so, the extracellular
matrix of the basement membrane and dermis is an excellent
biological scaffold, removing the immunogenicity while
retaining the complete structure for cell adhesion and prolif-
eration. The disadvantage is the lack of mechanical strength
and degradation rate, resulting in the recurrence of prolapse
[102]. To overcome these limitations, tissue engineering
scaffolds have recently been redesigned and manufactured to
mimic natural ECM ligands. These scaffolds are commonly
used in vitro as natural ECM analogues to promote cell-ECM
interaction [103,104]. For many years, it has been recognized
that the quality of decellularization process is directly related
to the immune response after scaffold implantation, so
researchers have optimized the decellularization process to
completely remove cell components and retain bioactive
factors while maintaining ECM integrity [105,106]. In the
past few decades, there has been a great deal of research
on biological information and components of natural ECM
in biomaterial design. Based on its space mode, chemical
composition and function, ECM components can usually
be divided into two categories: the basement membrane
(BM) and the stromal matrix (SM). The basilar membrane
contains type IV collagen, laminin, basilar membrane glycan,
aggregates, nesters, and other macromolecules that play a key
organizational role in providing a membranous matrix for
tissue’s peripheral cells, including wrapping blood vessels as
support for epithelial cells and maintaining cell polarity [107].
The matrix is composed of larger fibrous structures, which are
the main structural of ECM. Although without cell compo-
nents, ECM have various cytokines and biological signaling
molecules, once implanted into the weak of pelvic floor tissue
as tissue engineering products, these bioactive substances
are released and play a natural role in cell regulation, thus
providing the information necessary for repair and regenera-
tion of specific ECM to guide cell growth, proliferation and
differentiation [108]. Therefore, ECM as a “ready-made” and
immune-compatible biomaterial has attracted more and more
attention in tissue engineering (Table 1).

3.2.1 Foreign body reaction (FBR)
FBR is the physical reaction of biomaterials to foreign bod-
ies after implantation, which is triggered by protein adsorp-
tion and eventually leads to excessive deposition of collagen
around foreign bodies, resulting fibrous [119]. The physical
and chemical properties, size, morphology, chemical prop-
erties and degradation rate of biological materials determine
the final result of FBR [119]. When the scaffold is in contact
with the extracellular matrix (ECM), the FBR process begins,
causing the complement and the inherent coagulation system
to activate and imminently adsorb blood proteins (albumin,
fibronectin, fibrinogen, complement protein, and globulin) to
the graft surface. A matrix is formed around the biomaterial
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T A B L E 1 Summary of materials commonly used in female pelvic floor tissue engineering

Materials Application Advantages
PLA Urogynecological alternative implant in vitro

study [109], ascorbic-acid releasing
biomaterials for pelvic floor repair [110,1112]

Phenotypical morphology and functionality
maintained, increased cell metabolic activity
and proliferation, matrix deposition, and
collagen production [111]

PLGA/PCL Implant for pelvic floor [112] Comparative strength to native tissue, cell
adhesion and growth, migration through the
scaffold [112]

SILK Urethra reconstruction [113],Tissue engineering
mesh for pelvic floor reconstruction in
abdominal wall rat model [114],
biocompatibility, no inflammation, tissue
growth [113], tissue ingrowth, degradation
[114]

Cell migration, adhesion and proliferation [113],
endothelial and smooth muscle cell
attachment, and proliferation [115]

Collagen (type I, II,
and III), cellulose

Tissue engineering scaffold [116,117], urinary
bladder regeneration [118], mesh for pelvic
floor reconstruction in abdominal wall rat
model [114]

Providing microstructure and cell adhesion, cell
attach and proliferation [116,117], cell
penetration through implant, proliferation,
matrix deposition [118]

BM/SM Urinary bladder regeneration [118], mesh for
pelvic floor reconstruction in abdominal wall
rat model [114]

Natural ECM analogues to promote cell-ECM
interaction [105,106].

prior to interaction with host cells [120]. These adsorbed pro-
teins regulate the host cell response and the overall immune
response, leading to the formation of a temporary matrix,
usually a thrombus (blood clot) at the interface between the
material and the host tissue [120]. These proteins, including a
rich and effective mixture of cytokines, chemokines, growth
factors, and cell-secreted components, produce an environ-
ment that attracts inflammatory cells into the implantation
site [121]. They also provide a structural and biochemical
basis for the wound healing process and regulate subsequent
FBR. MSC-based biomaterial implants have been widely used
in areas other than pelvic floor disease and tissue regener-
ation, with similar results including improved angiogenesis,
M2 macrophage response, and reduced fibrosis [122]. The
mechanism of MSC interaction with inflammatory cells has
been investigated in a rat myocardial infarction and reperfu-
sion model using a poly(ethylene)glycol hydrogel to promote
repair [123].

4 BIOACTIVE FACTORS

Seed cells, biological scaffold materials and bioactive factors
are also regarded as major elements of tissue engineering in
modern view. The therapeutic effect of engineering mesh on
pelvic floor dysfunction disease may also benefit from the
addition of bioactive molecules in the scaffold. These bioac-
tive factors may induce differentiation and enhance the regen-
eration process by activating stem cells [124,125]. Pelvic
floor dysfunction related factors include: estrogen, growth
factors, growth factors such as basic fibroblast growth factor

(bFGF), epidermal growth factor (EGF), transformed growth
factor-beta (TGF-𝛽), connective tissue growth factor (CTGF)
and so on. The decellularized matrix mesh retains a variety of
biological factors: bFGF, TGF-𝛽, and some polysaccharide
and other extracellular matrix molecules to enhance the
growth of cells and tissues at the implantation site [126,127].
Studies have shown that estrogen promotes pelvic floor
tissue repair by affecting fibroblast proliferation and collagen
synthesis [128]. However, the therapeutic effect of estrogen
is controversial. Takacs et al [129] showed that estrogen and
selective estrogen receptor regulator levoxifen promoted the
growth of vaginal smooth muscle cells in vitro, but inhibited
the production of elastin. In the rat model, Manodoro et al.
[130] found that estrogen increased the ability of the mesh to
repair, but reduced the tensile strength of the implanted tissue.
Hildebrand et al. [131] demonstrated that bFGF significantly
promoted the differentiation of BMSCs into fibroblasts, and
significantly increased the expression of ligament and tendon-
specific extracellular matrix and cytoskeletal components. Jia
et al. [9] compared the effects of different concentrations of
EGF and FGF on fibroblasts, and found that both growth and
proliferation of cells and collagen expression were increased,
suggesting that repair and regeneration could be promoted
by changing the growth microenvironment of pelvic floor
tissues. TGF-𝛽1 stimulated the secretory formation of the
extracellular matrix and inhibited its degradation, stimulating
the enhancement of mRNA levels of most collagen genes in
cells and extracellular matrix and the increase in protein pro-
duction. Connective tissue growth factor (CTGF), as a down-
stream signal of TGF-𝛽1, is a newly discovered growth factor
that can stimulate the proliferation of fibroblasts and collagen
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deposition, and can promote mitosis, proliferation, chemo-
taxis, migration, and differentiation of fibroblasts [132].

5 CONSTRUCTION

Tissue construction techniques are divided into in vivo con-
struction and in vitro construction. In vitro construction: the
seed cell with biological scaffolds in vitro environment cul-
ture, using the biological characteristics of scaffold and sur-
face active factor, promoting the cell adhesion and secretion
of extracellular matrix, the new extracellular matrix gradually
accumulation complete the tissue repair, this method is easy
to control, but the period is long, cells grow not divide evenly,
poor mechanical strength in the new tissues in vitro, lead to
failure or recurrence. In vivo construction: the cultured seed
cells and scaffolds directly transplant into the body with short
period, controllable scaffold strength, and no special culture
conditions, which is a commonly used construction method,
but the therapeutic effect is affected by the microenvironment
of the implantation site (Figure 1) . The emergence of 3D bio-
logical printing technology to support production and the dis-
tribution of the cells have a very good control effect, is hot
in tissue engineering of the emerging research method, com-
pared with other methods, high precision, good cost-effective,
easy and feasible, and cell distribution good controllabil-
ity [133,134], including extrusion, inkjet, stereo lithographic
method, laser-assisted biological printing method, etc., suc-
cessfully to seed the cells on scaffold.

6 PROSPECT

Mesh implantation is the mainstream surgical method for
pelvic floor reconstruction. In view of the deficiency of

chemical synthetic mesh and biological mesh, the con-
struction of tissue engineering pelvic floor repair scaffold
came into being. The regeneration of pelvic floor tissue was
promoted by seed cells and bioactive factors, and the scaffold
structure had a certain supporting capacity in the process
of tissue repair. A growing body of evidence indicates that
tissue engineering in the field of life science has made great
achievement, along with the advance of synthetic technology
and biological science, from the new cognition of biological
systems and the new structure of human biological material,
chemical, and physical insights into ceaselessly, the future
will have a new, more complex tissue engineering design and
inspiration. The impact of this area will continue to grow
and develop as joint laboratories develop tissue engineering
products that provide simple solutions to complex problems.
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