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Abstract

Background: FFAR1 receptor is a long chain fatty acid G-protein coupled receptor which is expressed widely, but found in
high density in the pancreas and central nervous system. It has been suggested that FFAR1 may play a role in insulin
sensitivity, lipotoxicity and is associated with type 2 diabetes. Here we investigate the effect of three common SNPs of
FFAR1 (rs2301151; rs16970264; rs1573611) on pancreatic function, BMI, body composition and plasma lipids.

Methodology/Principal Findings: For this enquiry we used the baseline RISCK data, which provides a cohort of overweight
subjects at increased cardiometabolic risk with detailed phenotyping. The key findings were SNPs of the FFAR1 gene region
were associated with differences in body composition and lipids, and the effects of the 3 SNPs combined were cumulative
on BMI, body composition and total cholesterol. The effects on BMI and body fat were predominantly mediated by
rs1573611 (1.06 kg/m2 higher (P = 0.009) BMI and 1.53% higher (P = 0.002) body fat per C allele). Differences in plasma lipids
were also associated with the BMI-increasing allele of rs2301151 including higher total cholesterol (0.2 mmol/L per G allele,
P = 0.01) and with the variant A allele of rs16970264 associated with lower total (0.3 mmol/L, P = 0.02) and LDL (0.2 mmol/L,
P,0.05) cholesterol, but also with lower HDL-cholesterol (0.09 mmol/L, P,0.05) although the difference was not apparent
when controlling for multiple testing. There were no statistically significant effects of the three SNPs on insulin sensitivity or
beta cell function. However accumulated risk allele showed a lower beta cell function on increasing plasma fatty acids with
a carbon chain greater than six.

Conclusions/Significance: Differences in body composition and lipids associated with common SNPs in the FFAR1 gene
were apparently not mediated by changes in insulin sensitivity or beta-cell function.
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Introduction

Body mass index is an established independent risk factor for the

development of type 2 diabetes (T2D). Non-esterified free fatty

acids (NEFA) have been implicated in the development of T2D

through effects on insulin release and the development of the

metabolic syndrome. The free fatty acid receptor FFAR1 (GPR40

– G-protein-coupled receptor 40) was the first gene product

identified to act as an extracellular membrane receptor for FFAs

[1]. It is located in the 19q13.1 chromosomal region, which has

been linked to T2D and T2D-related phenotypes, in several

genome-wide scans [2,3] and is expressed widely in the pancreas,

central nervous system (CNS) and adipocytes, particularly omental

adipocytes [1]. Recent in vitro investigations have shown FFAR1 to

be activated in pancreatic beta cells by medium- to long-chain

FFAs as well as by thiazolidinediones (Rosiglitazone and MCC-

555), causing elevated Ca2+ concentrations and subsequent

promotion of insulin secretion. Furthermore, mice with over-

expression of Ffarr1 show impaired beta cell function and develop

diabetes [4], whereas disruption of the gene reduces FFA-
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stimulated insulin release and, possibly protects from diabetes [5].

Recently two papers have reported that a number of SNPs in the

FFAR1 gene mediate effects on insulin secretion, in particular in

response to FFA [6,7]. The role of FFAR1 in the CNS is not

known, but it is hypothesised that this may be a mechanism by

which FFAs are involved in the hypothalamic regulation of

metabolism and its expression in omental adipocytes implicates it

in the development of the metabolic syndrome [5]. It has been

suggested more recently that FFAR1 plays a role in the taste

perception of fatty acids, but this is controversial and needs

substantiating [8]. Here we report the relationship between three

common FFAR1 SNPs, with BMI, body composition, pancreatic

function, insulin sensitivity and plasma lipids, in a cohort of

overweight subjects identified to be at increased cardiometabolic

risk.

Methods

Cohort
For this enquiry we used the RISCK study cohort. The RISCK

study has been described in detail elsewhere [9]. In brief, the

RISCK study was a randomized, controlled, parallel trial

performed in free-living participants at 5 U.K. centres (University

of Reading, Imperial College London, Kings College London,

University of Surrey, and the Medical Research Council Human

Nutrition Research [MRC-HNR]). A total of 720 participants

were recruited, selected on the basis of their increased risk for the

metabolic syndrome using a study-specific scoring system. All

participants followed a 4-wk run-in period during which they were

prescribed a high-saturated fat/high-glycemic index (HS/HGI)

‘‘reference’’ diet before being randomised to the reference diet or

one of four isoenergetic dietary interventions to lower saturated

fat. The main outcome was a measure of insulin sensitivity with

secondary outcomes, including a range of cardiovascular risk

markers.

At screening a fasting blood sample was taken and used to

measure fasting lipids including total cholesterol; HDL-cholesterol;

triglycerides and non-esterified fatty acids (NEFA). LDL-choles-

terol was derived from the Friedwald equation [9]. Anthropometry

was measured by standard procedures, and body composition by

bioelectrical impedance analysis (BIA) see Jebb et al. for details [9].

Insulin sensitivity and beta-cell function were determined by

intravenous glucose tolerance test (IVGTT). Insulin sensitivity (Si)

and glucose effectiveness (Sg) were estimated using the MINMOD

Millennium programme (Version 6.02). The area under the

plasma insulin curve up to 19 minutes was computed as an

indicator of endogenous insulin secretion (AIRg). The disposition

index (DI), a measure of the ability of the beta-cells to compensate

for insulin resistance, was calculated from AIRg and Si values [10].

For the purpose of this cross-sectional analysis we investigated the

effect of three known common FFAR1 SNPs on BMI, body

composition and fasting lipid measures, at entry into the study,

and on insulin sensitivity and beta-cell function following 4 weeks

of a ‘‘reference’’ high saturated fat, run-in diet.

SNP selection and genotyping
SNPs in the FFAR1 gene region were identified using

SNPSelector set for gene SNPs by gene name (http://snpselector.

duhs.duke.edu/hqsnp36.html) and cross-checked with information

in other databases (Genecards http://www.genecards.org/index.

shtml; Entrez-SNP http://www.ncbi.nlm.nih.gov/snp). Due to the

small population of the study, we concentrated on common allele

variants, and for that reason SNPs with a reported Caucasian minor

allele frequency (MAF) of ,5% were excluded, and only SNPs in

the HapMap were investigated. A resulting 3 SNPs were genotyped

for FFAR1 (rs2301151; rs16970264; rs1573611). A further SNP in

FFAR1 (rs1978013) which was previously associated with beta-cell

function [7] was also genotyped. Selected SNPs were tested for

linkage disequilibrium with Haploview Version 4.2 software

(http://www.broadinstitute.org/haploview/haploview using the

Hapmap download format, version 3, release R2) and using

information from previous studies [7] none of the SNPs were in

significant LD (r2,5% rs2301151 with rs1573611; r2,5%

rs2301151 with rs16970264; r2 1% rs1573611 with rs16970264

see Figure S1).

DNA was available for 530 participants of the RISCK study.

Genotyping was performed by KBioscience using the KASPar

genotyping system (Hoddesden, Herts, UK). All SNPs were

successfully genotyped with a call rate .97%. Results could not

be obtained for 15 participants due to genotyping failure rate in

.1 SNP. Deviations from Hardy-Weinburg equilibrium were

tested and one SNP (rs1978013) deviated significantly (P,0.001)

and was excluded from further analysis. A further three attempts

to redesign primers for genotyping this SNP, residing in a region of

high homology with surrounding regions in this gene cluster, were

unsuccessful.

The RISCK subjects, for which there was DNA available,

consisted of an ethnic mix (81% White; 9% S-SE Asian, 7% Black

African, 3% other). The allele frequency of all SNPs studied varied

significantly by ethnicity, therefore this analysis was restricted to

the Caucasian European subjects only, which represented the

predominant group (n = 405).

Effect of number of FFAR1 risk alleles carried with change
in plasma fatty acid level on metabolic outcome

The RISCK study has been analysed for plasma fatty acid

profiles as an independent assessment of dietary change [1]. The

fatty acids greater than C-6 are agonists for FFAR1 receptor,

recent evidence in-vitro suggest that n-3 fatty acids stimulate the

greatest response activation causing a greatest rise in intracellular

calcium [1]. To examine the impact of change in plasma fatty

acids greater than C-6 and DHA and EPA on metabolic outcome

we analysed those subjects that has a positive change in plasma

levels of the fatty acids between the baseline visit and end visit at

week 24 giving a cohort of 280 of the volunteers.

Statistical analysis
Data were tested for normal distribution and log-transformed

for analysis where appropriate, as indicated in tables. Non-

normally distributed data were presented as the geometric mean 6

95% confidence intervals. The cohort was separated by genotype

and the mean value for each trait presented according to an

additive model for each SNP. Each SNP was scored as 0,1,2

according to the number of BMI-increasing alleles carried for

rs2301151 and rs1573611. The SNP rs16970264 had no

association with BMI and was therefore scored 0,1,2 based on

the number of total cholesterol increasing alleles carried. The

BMI- or total cholesterol- increasing allele is referred to as the

‘‘risk allele’’. The association between FFAR1 SNPs and measures

of body composition, insulin sensitivity and lipids were carried out

using linear regression analysis. Age and gender were included in

all models as covariates. For insulin sensitivity and lipid measures

the associations were further adjusted for BMI. The effect of

genotype on trait was then examined as dominant and recessive

models based on the BMI or total cholesterol-increasing risk

alleles. The mean of each trait divided by genotype is presented as

the recessive and dominant models. The association of risk alleles

according to the dominant and recessive models were also tested

FFAR1 Gene and Body Composition
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by linear regression. For the dominant model, a score of 0 was

assigned for no risk alleles and 1 for presence (heterozygous or

homozygous) of risk alleles, and for the recessive model, a score of

1 was assigned for homozygous for the risk allele and 0 for the

others. We used the sum of risk alleles from the dominant models,

as the numbers of the rare homozygous genotype were too low to

analyse as single genotypes. In the analysis to assess the impact of

dietary change metabolic change we used the change in plasma

fatty acid profiles, an independent assessment of dietary intake.

Uncorrected P-values are presented, however to account for

multiple comparisons, we used the False Discovery Rate

controlling procedure (q* = 0.05) of Benjamini and Hochburg

with BMI, insulin-sensitivity and lipid-related traits treated as

different families of hypotheses [11]. It is indicated where P-values

satisfied the calculated FDR constraints.

Results

Subject characteristics
The allele frequency, gender and age distribution of the subjects

of white ethnic origin included in this study, are shown stratified by

genotype for the three SNPs in Table 1. There were no significant

differences in age or gender distributions between the genotypes of

any of the three FFAR1 SNPs analysed (Table 1). There was no

significant difference in metabolic syndrome or CVD risk,

according to the study-specific scoring system) between the

genotypes of any of the three FFAR1 SNPs.

Effect of FFAR1 polymorphisms on measures of body
mass and composition

Carriage of the G allele of rs2301151 was associated with a higher

body fat (%) of 1.11% per allele (P = 0.03) when assessed as the

additive model (Table 2) and 1.39% higher per risk allele (P = 0.02)

when assessed as the dominant model (Table S1), accounting for

age and gender, although these associations were not statistically

significant when accounting for multiple comparisons by FDR

procedure. Carriage of the C allele of rs1573611 was associated with

a higher BMI, body fat (%) and waist circumference when examined

as the dominant model (Table S1), and with BMI and body fat (%)

as an additive model (Table 2). The associations with BMI and

body fat (%) but not waist circumference were statistically significant

when accounting for multiple comparisons. There was a significant

interaction between rs1573611 and gender for waist circumference

when examined as the additive (P = 0.03) and the recessive (P = 0.05)

models. The effect of SNP on waist circumference was only

significant in females (effect = 3.2761.12 cm higher per C allele,

P = 0.02).

There was no evidence of a SNP-gender interaction for

rs2301151 or rs16970264 for any of the variables.

There was a cumulative effect of the number of SNPs of FFAR1

for which risk alleles were carried, on BMI and body fat (Figure 1);

for an increasing number of SNPs, where at least one risk allele was

carried, there was a higher BMI (effect = 1.0460.41 kg/m2 per

SNP, P = 0.01) and higher body fat-% (effect = 1.7560.6% per

SNP, P = 0.001). These effects were significant when accounting for

multiple comparisons. There was no significant SNP6SNP

interaction effect examined as either a two-way or three-way

interaction using the additive model. There was no evidence of an

effect of plasma fatty acid profile integrating with the cumulative

number of risk alleles carried to have a significant effect on change

in or final BMI, waist measurement and body fat content.

Effect of FFAR1 polymorphisms on measures of insulin
sensitivity

There was a nominally significant (unadjusted) association of the

G allele of rs2301151 with a ,73% higher disposition index (DI)

and a trend (P = 0.06) towards a ,52% higher endogenous (1st

phase/acute) insulin release (AIRg) when assessed as the recessive

model only, accounting for age, gender and BMI (Table S2). There

was a nominally significant (unadjusted) dominant effect of the C

allele of rs1573611 to be associated with lower fasting plasma

glucose (20.31 mmol/L, P = 0.02) (Table S2) There were no other

effects on measures of insulin-sensitivity or beta-cell function, and

none of these nominal associations reached significance when

accounting for multiple comparisons by FDR procedure. There was

no significant effect of rs16970264 on any measures of insulin-

sensitivity or beta-cell function (Table 3). There was no evidence of

gender-SNP interactions for any of the three SNPs on any measures

of insulin-sensitivity or beta-cell function. There was no evidence of

a cumulative effect of carrying risk alleles in multiple SNPs, nor was

there any evidence of a two- or three-way interaction effect of the

SNPs using the additive model (data not shown). There was a

cumulative effect of carrying risk alleles in multiple SNPs with

change in plasma fatty acid with AIRg measurement taken at 24

Table 1. Characteristics of the study cohort by genotype for three SNPs of FFAR1.

rs2301151 rs1573611 rs16970264

SNP Type/location Non-synonymous Near gene 39 Near gene 59

AA AG GG P CC TC TT P AA GA GG P

n 233 156 16 247 138 20 3 47 350

Genotype frequency 0.58 0.38 0.04 0.61 0.34 0.05 0.01 0.12 0.87

Minor allele F 0.23 0.22 0.07

Age 52.4 (9.6) 54.4
(10.3)

52.4
(11.2)

0.16 53.6 (10.2) 52.6 (9.5) 54.4 (10.4) 0.56 56.7 (5.13) 54.4 (8.9) 53.0
(10.1)

0.56

Gender (M%/F%) 43/57 42/58 19/81 0.16 40/60 44/56 50/50 0.89 67/33 40/60 41/59 0.91

MS score 6 [5,7] 6 [5,8] 6 [5,8] 0.26 6 [5,8] 6 [5,8] 6 [4,6.5] 0.42 7 [6,8] 7 [5,8] 6 [5,7] 0.09

CVD score 2 [1,4] 2 [1,5] 1 [1,3] 0.35 2 [1,5] 2 [1,4] 4 [1,7] 0.43 2 [1,9] 2 [1,5] 2 [1,4] 0.83

The data are presented as mean (SD) for age, proportion (%) for gender and median [IQR] for metabolic syndrome (MS) and cardiovascular disease (CVD) risk score for
each genotype of the three SNPs of FFAR1 which were investigated. Differences (P) in characteristics between genotypes are indicated. The MS and CVD risk score were
study specific see Jebb et al. [9]. SNP location data from the NCBI-SNP database.
doi:10.1371/journal.pone.0019146.t001
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weeks. With the AIRg decreasing with the accumulated risk alleles

(1 risk allele: 705.36135 mL.mU21.min21, 2 risk alleles: 514.26

39 mL.mU21.min21, 3 risk alleles: 456.4637 mL.mU21.min21

p,0.03, uncorrected). There was no other cumulative effect of risk

alleles on insulin sensitivity.

Effect of FFAR1 polymorphisms on plasma lipids
There was a nominally significant association (unadjusted) of

carrying the G allele for rs2301151 with higher total cholesterol

(0.2 mmol/L per G risk allele, Table 4). There was a recessive

effect of the G allele which was associated with lower (,23%,

P = 0.004, unadjusted) plasma non-esterified fatty acids (NEFA)

(Table S3). There was a recessive effect of the common G allele of

rs16970264 on total and LDL cholesterol (Table S3). However,

carriage of the G allele was protective for HDL cholesterol

(0.09 mmol/L higher per G allele (P,0.05, unadjusted)) and there

was no effect on the total:HDL cholesterol (TC:HDL) ratio

(Table 4). None of these associations were statistically significant

when accounting for multiple comparisons by FDR procedure.

There was no effect of rs1573611 on lipid measures.

There was a cumulative effect of the number of SNPs for which

risk alleles were carried, on total plasma cholesterol (Figure 2).

Table 2. BMI, waist circumference and body fat by genotype for three SNPs of FFAR1.

rs2301151 rs1573611 rs16970264

Difference P Difference P Difference P

AA AG GG TT TC CC AA AG GG

BMI (kg/m2)

mean 28.71 29.41 30.01 0.67 0.11 25.61 28.86 29.31 1.06 0.009 28.53 29.53 28.85 0.55 0.41

SE 0.32 0.35 1.67 0.85 0.41 0.31 2.25 0.60 0.26

n 233 156 16 20 138 247 3 47 350

Waist circumference (cm)

mean 98.60 98.57 98.09 0.27 0.79 93.53 98.89 98.53 1.29 0.19 100.23 100.57 97.95 2.09 0.20

SE 0.85 0.95 2.72 3.02 1.09 0.76 4.41 1.68 0.66

n 233 156 16 20 138 247 3 47 350

Body fat (%)

mean 33.19 34.77 37.34 1.11 0.03 28.05 33.30 34.68 1.53 0.002 28.50 35.02 33.88 20.58 0.48

SE 0.56 0.69 1.99 1.52 0.71 0.55 3.70 1.31 0.46

n 228 155 16 20 136 244 3 47 345

Data are presented as mean, SEM, n stratified by genotype for each of the three SNPs. For each genotype the risk allele was defined as the BMI-increasing allele and the
data are presented as the additive model. The differences in trait by genotype were assessed by linear regression analysis coding the number of risk alleles as 0,1,2. The
P-value for the regression is presented and is in bold when reaching significance by the FDR-controlling procedure q* = 0.05. The recessive and dominant models
defined according to the risk allele are shown in Supplementary Table S1.
doi:10.1371/journal.pone.0019146.t002

Figure 1. The cumulative effect of carrying risk alleles in three SNPs of FFAR1 on BMI and body fat. Data presented are mean 6 SEM of
BMI (Panel a) and body fat (Panel b) for individuals according to the number of SNPs for which risk alleles were present. Each SNP (rs2301151;
rs1573611; rs16970264) was scored 0 or 1 based on the presence of risk alleles (dominant model). The presence of risk alleles for each SNP was
summed. All individuals had at least 1 SNP with risk alleles present. There was a cumulative effect on BMI of 1.0460.41 kg/m2 per SNP, P = 0.01 and of
body fat (%) of 1.7560.6% per SNP, P = 0.001 assessed by linear regression analysis with age and gender as covariates. The effects were statistically
significant when accounting for multiple comparisons by the Benjamini and Hochberg False Discovery Rate procedure with q* = 0.05.
doi:10.1371/journal.pone.0019146.g001
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For an increasing number of SNPs where at least one risk allele was

carried, the total cholesterol was higher (effect = 0.1860.08 mmol/

L per SNP, P = 0.03), however this was not statistically significant

when accounting for multiple comparisons. There was no

significant SNP6SNP interaction effect examined as either a two-

way or three-way interaction using the additive model. There was

no evidence of an effect of change in plasma fatty acid profile

integrating with the cumulative number of SNPs for which at least 1

risk allele was carried, to have a significant effect on change in or

final level of any lipid parameters.

Discussion

The key findings of the present study were that SNPs of the

FFAR1 gene region were associated with cumulative differences in

BMI, body composition and total cholesterol in the three SNPs

studied, although the effects on total cholesterol were not

significant after accounting for multiple comparisons.

The predominant adverse effects on BMI and body fat were

mediated by carrying the G allele of rs2301151 and the C allele of

rs1573611, with SNP rs1573611 also showing gender specific

effects of carrying the C-allele, with an increased waist

circumference in females only. The predominant adverse effects

on plasma lipids were mediated by the G allele of rs2301151 and

the G allele (which was the common allele) of rs16970264.

However, the associations with lipids did not remain significant

when accounting for multiple comparisons.

SNP rs2301151 is in the coding region of the FFAR1 gene and

results in a non-synonymous substitution (Arg211His) located in

the intracellular region between transmembrane 5 domain and

Table 3. Measures of insulin sensitivity and beta-cell function by genotype for three SNPs of FFAR1.

rs2301151 rs1573611 rs16970264

Difference P Difference P Difference P

AA AG GG TT TC CC AA AG GG

Fasting glucose (mmol/L)

mean 5.46 5.47 5.58 0.01 0.91 5.78 5.45 5.47 20.07 0.18 3.57 5.52 5.47 20.02 0.78

SE 0.04 0.05 0.52 0.13 0.06 0.04 0.20 0.08 0.03

n 233 155 16 20 137 247 3 47 349

Fasting insulin (pmol/L)

Geometric
mean

56.8 60.1 60.5 1.03 0.44 55.6 56.6 59.3 1.00 0.91 53.0 59.9 57.4 0.90 0.11

95% CI [53.3, 64.4] [56.1,
64.4]

[48.6,
75.4]

[46.9, 65.9] [52.2,
61.4]

[55.9,
62.9]

[3.22, 873] [57.8,
74.1]

[54.7,
60.2]

n 227 153 13 20 135 238 3 45 340

Si (61024 mL.mU21.min21)

Geometric
mean

2.81 2.69 3.20 1.03 0.49 3.02 2.74 2.80 1.04 0.36 1.68 2.53 2.84 1.15 0.09

95% CI [2.60, 3.05] [2.43,
2.97]

[2.74,
3.74]

[2.29, 3.98] [2.44,
3.07]

[2.61,
3.00]

[0.00, 904] [2.11,
3.03]

[2.66,
3.02]

n 211 146 14 17 125 230 2 43 322

AIRg (mL.mU21.min21)

Geometric
mean

443 319 521 1.01 0.73 255 354 335 1.01 0.83 997 320 337 0.96 0.42

95% CI [403, 483] [277,
368]

[398,
681]

[155, 418] [311,
403]

[299,
374]

[0.51, 9185] [241,
424]

[309,
369]

n 211 146 14 17 125 230 2 43 322

Disposition Index (Arbitrary Units)

Geometric
mean

972 864 1667 1.06 0.27 768 984 933 1.04 0.7 1673 808 960 1.08 0.51

95% CI [864, 1093] [737,
1012]

[1236,
2249]

[440, 1342] [843,
1149]

[829,
1050]

[462, 6057] [598,
1092]

[598,
1093]

n 211 146 14 17 125 230 2 43 322

Sg (61023/min)

mean 17.21 17.94 20.67 1.23 0.18 20.32 18.04 17.06 21.17 0.20 9.75 17.84 17.60 0.37 0.81

SE 0.42 1.15 1.76 2.56 1.24 0.45 3.96 1.63 0.55

n 211 146 14 17 125 230 2 43 322

Data are presented as mean, SEM, n (glucose, Sg) or geometric mean, 95% confidence intervals, n (insulin, Si, AIRg, DI) stratified by genotype for each of the three SNPs.
For each genotype the risk allele was defined as the BMI-increasing allele and the data are presented as the additive model. The differences in trait by genotype were
assessed by linear regression analysis coding the number of risk alleles as 0,1,2. Data for insulin, Si, AIRg and disposition index were logged for regression analysis. The
beta-coefficient from the regression was exponentiated which approximates to the percentage difference. The P-value for the regression is presented and no
associations reached statistical significance. The recessive and dominant models, defined according to the risk allele, are presented in Supplementary Table S2.
doi:10.1371/journal.pone.0019146.t003
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transmembrane 6 domain of the 7 transmembrane domain

protein, [12]. The other SNPs (rs1573611 and rs16970264) are

in the non-coding region of gene FFAR1, in this regard we are

assuming that these SNPs affect FFAR1 as the closest gene, but

cannot exclude the possibility that the observed effects were

mediated by another locus in LD with one or other of these SNPs

(see Figure S1).

There is no defined metabolic pathway that links FFAR1 with

body weight. However, FFAR1 receptor is found throughout the

CNS [1], and therefore it may play a role in appetite regulation.

Others have hypothesised that FFAR1 may be the receptor that

coordinates the appetite suppression in response to FFA

[6,13,14,15], and that FFAR1 has a role in the taste perception

of fat [8]. If variation in this gene is associated with changes in the

latter, it is possible this could exert subtle changes in energy

homeostasis. Since FFAR1 has been linked to beta-cell function

and type 2 diabetes [2,3,7], it is possible that changes in insulin

metabolism could impact on energy homeostasis and consequently

BMI and body composition. A rare variant, the Gly180Ser

mutation, was previously shown to increase in frequency with

increasing BMI, providing further support for linkage between

variants of the FFAR1 gene and BMI reported in the present study.

Vettor et al. [6] suggested FFAR1 may provide a hypothalamic link

between the sensing of adequate circulating fatty acid levels and

subsequent regulation of energy intake.

The BMI-increasing G allele of rs2301151 was also associated

with higher total cholesterol, which was maintained when

accounting for the FFAR1-associated changes in BMI. SNP

rs16970264 also appeared to modulate blood lipids with the most

common GG genotype being associated with higher total and

LDL cholesterol, but also being associated with higher, protective

levels of HDL cholesterol. However these exploratory findings did

not reach significance when accounting for multiple comparisons

and would require further investigation in an independent cohort.

Table 4. Fasting plasma lipids by genotype for three SNPs of FFAR1.

rs2301151 rs1573611 rs16970264

Difference P Difference P Difference P

AA GA GG TT TC CC AA GA GG

Total Cholesterol (mmol/L)

mean 5.57 5.77 6.14 0.2 0.01 5.62 5.59 5.71 0.08 0.33 5.67 5.39 5.72 0.3 0.02

SE 0.06 0.07 0.25 0.20 0.01 0.06 0.68 0.14 0.05

n 233 155 16 20 137 247 3 47 349

LDL Cholesterol (mmol/L)

mean 3.51 3.62 3.9 0.13 0.09 3.59 3.5 3.6 0.05 0.50 4.02 3.31 3.61 0.23 0.05

SE 0.06 0.07 0.22 0.19 0.08 0.05 0.63 0.13 0.05

n 233 155 16 20 138 247 3 47 350

HDL Cholesterol (mmol/L)

mean 1.41 1.44 1.60 0.04 0.16 1.40 1.40 1.45 0.04 0.17 1.15 1.36 1.44 0.09 0.05

SE 0.02 0.03 0.08 0.08 0.03 0.02 0.10 0.05 0.02

n 233 155 16 20 137 247 3 47 349

Triglycerides (mmol/L)

Geometric
mean

1.27 1.35 1.34 1.04 0.35 1.23 1.32 1.30 0.99 0.75 1.10 1.42 1.29 0.95 0.49

95% CI [1.20, 1.36] [1.25,
1.46]

[1.13,
1.59]

[0.98, 1.55] [1.23,
1.43]

[1.22,
1.39

[0.71, 1.69] [1.21,
1.67]

[1.22,
1.35]

n 233 154 16 20 137 246 3 46 349

Non-esterified fatty acids (mmol/L)

Geometric
mean

651 650 522 0.94 0.04 630 648 646 0.99 0.63 603 635 650 1.04 0.5

95% CI [622, 681] [610,
693]

[397,
689]

[528, 752] [611,
687]

[614,
679]

[151, 2403] [563,
716]

[624,
676]

n 226 149 16 20 132 240 3 46 337

Total: HDL cholesterol ratio

mean 4.14 4.25 3.98 0.05 0.60 4.22 4.24 4.15 20.08 0.36 4.94 4.14 4.17 20.02 0.91

SE 0.07 0.09 0.23 0.23 0.10 0.07 0.41 0.16 0.06

n 233 155 16 20 137 247 3 47 349

Data are presented as mean, SEM, n (Total, LDL, HDL and total: HDL cholesterol) or geometric mean, 95% confidence intervals, n (triglycerides, non-esterified fatty acids)
stratified by genotype for each of the three SNPs. For each genotype the risk allele was defined as the BMI-increasing allele except for rs16970264 where the risk allele
was defined according to the total-cholesterol increasing effect and the data are presented as the additive model. The differences in trait by genotype were assessed by
linear regression analysis coding the number of risk alleles as 0,1,2. Data for plasma NEFA and triglycerides were logged for regression analysis. The beta-coefficient from
the regression was exponentiated which approximates to the percentage difference. The P-value for the regression is presented. No associations reached statistical
significance by the FDR-controlling procedure q* = 0.05. The recessive and dominant models, defined according to the risk allele are presented in Supplementary
Table S3.
doi:10.1371/journal.pone.0019146.t004
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Interestingly, FFAR12/2 animals are somewhat protected against

the effects of a high fat diet (HFD), with reduced hyperinsulin-

aemia, glucose-intolerance or insulin-resistance compared to WT

mice [5], and without the increases in hepatic steatosis, plasma

triacylglycerol or hepatic glucose output seen in the WT mice [5].

Therefore in rodents, FFAR1 mediates metabolic responses to

dietary fats. An oral lipid tolerance test was previously found to be

associated with suppressed insulin and increased glucose responses

in carriers of the rare Gly180Ser mutation, also implicating FFAR1

in lipid handling in humans [6]. Changes in the handling of

triacylglycerol can have effects on lipoprotein metabolism. An

interesting finding was fasting plasma NEFA levels were also lower

(,77% of AA/AG genotypes, P = 0.004) in subjects who were

homozygous for the G allele of rs2301151 (Supplementary
Table S3). It is possible that there is an effect on lipid handling at

the adipocyte with variation in the FFAR1 gene. Although at a lower

level, FFAR1 is expressed in the adipocyte. A recent report suggests

that the receptor is present in omental adipose tissue, a key regulator

of insulin sensitivity. Genes closely related to FFAR1 are FFAR2 and

FFAR3 which both suppress FFA output from the adipocyte when

stimulated. Recent reports suggest that there is CNS regulation of

adipose tissue metabolism. It could be that the FFAR1 SNPs may

change the central signalling to adipocyte reducing FFA output and

enhancing beta cell function further. None of the SNPs are in high

LD (r2.0.8, supplementary Figure S1) with SNPs of nearby FFAR

genes, however SNP rs1573611 is in moderate LD (r2.0.66) with a

SNP from the FFAR3 gene. Given this, and the proximity of the

genes in this cluster, it is possible these SNPs affect the function of

neighbouring FFAR genes.

Since FFAR1 is predominantly expressed in the pancreas, and to

a lesser extent in the brain, it is reasonable to expect

polymorphisms in this receptor to exert greater effects on beta-

cell function. The GG allele of rs2301151 was associated with a

nominally higher disposition index (DI) with a trend (P = 0.06)

towards a higher first phase/acute insulin response (AIRg,

Supplementary Table S2). It is of interest that there appears

to be an interaction between an increase in the number of risk

alleles carried, and the change in the receptor agonists (plasma

fatty acid greater than C-6) on acute insulin response (AIRg)DI,

suggesting a gene-diet interaction, although we did not have

sufficient power in this study to formally assess a gene-diet

interaction. As there was no difference in insulin sensitivity (Si) or

fasting glucose, it appears that this genotype may be associated

with a higher insulin secretion for an equivalent degree of insulin

sensitivity, ultimately stressing the pancreas. However, these effects

were only seen when assessed as a recessive model with a small

number of subjects (n = 14) with the GG genotype, so these results

should be viewed with caution. SNP rs2301151 investigated in the

current study corresponds with the Arg211His polymorphism,

which had been found previously to have no effect on glucose or

insulin responses to an oral glucose challenge [6]. However, in the

study of Vettor et al. [6] there was also no difference in BMI or

lipids by genotype, this may have been due to a much higher

average BMI, and subsequent differences in metabolic profile in

that cohort compared to our cohort (mean BMI ,37 kg/m2 cf

,28 in our cohort). Although we were unable to successfully

genotype the SNP rs1978013, which had been found previously to

be associated with beta-cell function [7], there was moderate

linkage disequilibrium with the more common rs1573611

(r2 = 0.31), which was successfully genotyped in the current study.

There was no association of this SNP with measures of insulin

sensitivity or beta cell function, except for fasting glucose which

was lower (20.31 mmol/L, P = 0.02) in the TT genotype, and was

also associated with increased BMI, waist circumference and body

fat percent. The protective effects on fasting glucose appear

contradictory to the effects on BMI, however the number of

subjects with this genotype was 20 (out of a total 404) so these

results may be difficult to interpret due to low subject numbers.

There have been very few human studies on the effects of

variation in the FFAR1 gene region on metabolic phenotypes. The

differences in BMI, body composition and lipids shown in our study

of overweight subjects identified to be at increased cardiometabolic

risk, were not accompanied by convincing changes in insulin

sensitivity or beta cell function. Therefore it appeared that the

differences in body composition and lipids were mediated by

mechanisms independent of differences in beta-cell function. It is

possible that our methods used for measuring insulin sensitivity and

beta-cell function were not sensitive enough to detect differences by

genotype, however this method was found to be sensitive for

detecting changes in insulin sensitivity associated with a small

change in weight in these subjects [9]. SNPs in the FFAR1 region

have not previously been identified in lipid or BMI associated GWA

studies. In a recent meta-analysis of lipid-associated SNPs there

were no regions of high association near the FFAR1 gene [16]. This

is not unexpected, as previously identified candidate genes have

often failed to be identified in GWA studies. In this study we

concentrated on variants with a minor allele frequency .0.5 with

the intention of studying common variants of this gene. Even with

this intention the number of subjects homozygous for the SNPs

studied was still small which meant the results were interpreted with

some caution. Although not significant, there was a predominant

percentage of females, compared to males, who were homozygous

for the risk (G) allele of rs2301151. Although gender was included as

a covariate for all analyses, it is possible that this gender bias could

influence the associations.

Figure 2. The cumulative effect of carrying risk alleles in three
SNPs of FFAR1 on total cholesterol. Data presented are mean 6

SEM of total cholesterol for individuals according to the number of SNPs
for which risk alleles were present. Each SNP in the FFAR1 region which
was examined (rs2301151; rs1573611; rs16970264) was scored 0 or 1
based on the presence of risk alleles (dominant model). The number of
SNPs with risk alleles was summed. All individuals had at least 1 SNP
with risk alleles present. There was a cumulative effect on total
cholesterol of 0.1860.08 mmol/L per SNP, P = 0.03 assessed by linear
regression analysis with age, gender and BMI. This was not statistically
significant when accounting for multiple comparisons by the Benjamini
and Hochberg False Discovery Rate procedure with q* = 0.05.
doi:10.1371/journal.pone.0019146.g002
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The effect of change in dietary fatty acids was assessed by using

the data on plasma fatty acids profile which is reflective of dietary

intake and reflects the receptor environment. The major agonists

of the FFAR1 receptor are fatty acids with a chain length greater

than 6. Recent in vitro data suggests the n-3 fatty acids show a

greater affinity for the receptor. We were unable to show any

relationship between increase in plasma fatty acids and any

outcome other than acute insulin response (AIRg) at 24 weeks

discussed above.

In summary, we demonstrated that three common SNPs of the

FFAR1 gene were associated with body composition and lipid

traits. Furthermore, the effects of the 3 SNPs were cumulative on

BMI, body fat and total cholesterol. Despite the strong expression

of FFAR1 in the pancreas, these differences appeared to be

independent of changes in insulin and beta cell function.

Supporting Information

Figure S1 Linkage disequilibrium (LD) plot for the FFAR gene

cluster. This region includes FFAR1, FFAR3 and the pseudogene

GPR42, with the gene FFAR2 located 78.5 KB downstream of

GPR42. LD is expressed as r2 values. This plot was generated in

Haploview 4.2. From Hapmap download version 3, release R2.

(TIF)

Table S1 BMI, waist circumference and body fat by genotype

for recessive and dominant models of three SNPs of FFAR1.

(DOC)

Table S2 Measures of insulin sensitivity and beta-cell function

by genotype for recessive and dominant models for three SNPs of

FFAR1.

(DOC)

Table S3 Fasting plasma lipids by genotype for recessive and

dominant models for three SNPs of FFAR1.

(DOC)
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