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Abstract

Genomics and proteomics have become increasingly important in biomedical science in the past decade, as they
provide an opportunity for hypothesis-free experiments that can yield major insights not previously foreseen when
scientific and clinical questions are based only on hypothesis-driven approaches. Use of these tools, therefore,
opens new avenues for uncovering physiological and pathological pathways. Liver fibrosis is a complex disease
provoked by a range of chronic injuries to the liver, among which are viral hepatitis, (non-) alcoholic steatohepatitis
and autoimmune disorders. Some chronic liver patients will never develop fibrosis or cirrhosis, whereas others
rapidly progress towards cirrhosis in a few years. This variety can be caused by disease-related factors (for example,
viral genotype) or host-factors (genetic/epigenetic). It is vital to establish accurate tools to identify those patients at
highest risk for disease severity or progression in order to determine who are in need of immediate therapies.
Moreover, there is an urgent imperative to identify non-invasive markers that can accurately distinguish mild and
intermediate stages of fibrosis. Ideally, biomarkers can be used to predict disease progression and treatment
response, but these studies will take many years due to the requirement for lengthy follow-up periods to assess
outcomes. Current genomic and proteomic research provides many candidate biomarkers, but independent
validation of these biomarkers is lacking, and reproducibility is still a key concern. Thus, great opportunities and
challenges lie ahead in the field of genomics and proteomics, which, if successful, could transform the diagnosis
and treatment of chronic fibrosing liver diseases.
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Introduction
Liver fibrosis results from a wound-healing response to
chronic injury, which leads to excessive matrix, or scar
deposition. This scar tissue can restrict blood flow due
to contraction of the organ, leading to progressive liver
damage and cirrhosis (the end stage of fibrosis), compli-
cated by liver failure, portal hypertension and/or hepato-
cellular carcinoma [1]. Fibrosis is prominent in chronic
liver diseases, including viral hepatitis, alcoholic and
non-alcoholic steatohepatitis, toxic liver injury, auto-
immune diseases and several genetic diseases. There
have been two major priorities for therapy to reduce
fibrosis: 1) to establish treatments for the diseases that
lead to liver fibrosis; and, 2) to identify agents that

directly slow or reverse fibrogenesis independent of the
underlying disease.
A key discovery in understanding fibrosis has been the

role of hepatic stellate cells (HSCs), vitamin A storing
cells in the space of Disse, which, when activated, trans-
form into myofibroblast-like cells, shedding their vita-
min A content, and producing fibrogenic proteins,
including collagens and tissue inhibitor of metalloprotei-
nases-1 (TIMP-1) [2]. This review will focus on the con-
tribution of high-throughput genomic and proteomic
approaches to the study of fibrogenesis and fibrosis pro-
gression, concentrating on the most prevalent human
chronic liver diseases and findings from animal models
in liver tissue, isolated liver cells, cell lines and serum.

The role of genomics and proteomics in degenerative
diseases and liver fibrosis
Genetic diseases can be classified as chromosomal
abnormalities (for example, trisomy 21), Mendelian
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disorders (single gene alterations with typical inheritance
patterns, like autosomal dominant/recessive or X-
linked), and complex diseases that are influenced by
many genetic and environmental components. Degen-
erative diseases like liver fibrosis are complex illnesses
[3]. The genetic contributions to these disorders are not
attributable to a single gene alteration, but rather to a
host of genetic susceptibilities defined by single nucleo-
tide polymorphisms (SNPs) that predispose an individual
to a disease. The susceptibility to an accumulation of
environmental influences is either enhanced or reduced
by genetic factors, thereby defining an individual’s dis-
ease risk. Studies investigating these genetic traits are
complicated, because there are many genes that influ-
ence the risk for complex diseases, yet the impact of
each single genetic variant by itself is small. Therefore,
large numbers of subjects are needed to provide suffi-
cient statistical power to yield robust conclusions. Cur-
rently, there are almost 13 million SNPs catalogued in
the NCBI human SNP database. Approaches to identify
SNPs that are linked with a specific disease range from
efforts to sequence specific disease-causing genes to
genome scans requiring sequencing of large numbers of
known SNPs that may or may not be associated with
the disease.
Genomic and proteomic screening methods are often

used to identify classes of genes that are differentially
expressed in disease. These classes provide the investiga-
tor with potential pathways that could be involved in
the regulation of this disease, thereby narrowing the
focus of subsequent studies to uncover disease mechan-
isms and potential targets for therapy. By not limiting
the study to pathways already associated with a disease,
many new pathways not previously implicated are now
under investigation [4].
This prospect is especially compelling in degenerative

diseases like liver fibrosis, as these conditions often
develop slowly, and therapies may not be necessary for
all subclasses of patients [5]. Regardless of the etiology
of liver fibrosis, some people progress rapidly towards
cirrhosis, whereas others never develop fibrosis in the
first place, or have slow progression of their fibrosis. It
seems very unlikely that this phenomenon can be attrib-
uted solely to environmental influences. Identifying
which patients are unlikely to ever progress to cirrhosis
may prevent overtreatment of many patients.
Another use for these screening methods is to identify

expression profiles, or patterns of expression of many
genes, that in aggregate correspond with disease outcome
or the response to therapy. By analyzing these different
gene/proteome classes, investigators may ultimately pre-
dict an individual patient’s response to therapy more
accurately, or identify those who are at greatest risk of
progression, thereby refining treatment decisions.

The need for non-invasive markers in the assessment of
fibrosis progression
The need to assess hepatic fibrosis progression is becom-
ing more important as the incidence of advanced liver dis-
ease continues to rise, especially due to viral hepatitis and
fatty liver disease. Liver biopsies are currently the ‘gold
standard’ for determining the presence and progression of
liver fibrosis. They are performed percutaneously, via
transjugular access, or during abdominal surgery. Liver
biopsies have a low complication rate; however, significant
hemorrhage may rarely occur, requiring hospitalization in
approximately 2% of the patients; moreover, some patients
have contraindications for liver biopsy [6-8]. Additionally,
analysis of liver biopsy is often undermined by sampling
error and inter-observer variation [ [6,9-15]. Studying
mRNA and protein disease profiles in liver biopsies is
challenging, as tissue sample sizes are small, especially for
protein analysis, and the biopsies contain a mix of many
different cell types, including hepatocytes, hepatic stellate
cells, Kupffer cells, endothelial cells, lymphocytes, red
blood cells and bile duct epithelial cells. To study a single
cell population from tissue sections requires laser-capture
micro-dissection, which yields even less mRNA and pro-
tein than biopsy [15].
Close follow-up of liver disease by serial biopsy is not

practical due to its invasive nature, fueling the need to
find alternatives for liver biopsy. A less invasive and
more accurate diagnostic tool would aid in diagnosis of
fibrosis, follow-up of established therapies and evalua-
tion of experimental therapies. Moreover, hepatocellular
carcinoma (HCC) is one of the main complications of
cirrhosis, and early detection markers that distinguish
HCC from cirrhosis could significantly reduce morbidity
and mortality. In the past ten years, genomic, transcrip-
tomic and proteomic studies have provided candidate
biomarkers for fibrosis assessment. Thus, in combina-
tion with standard laboratory serum analysis, these have
led to novel fibrosis assessment tools using indirect and
direct fibrosis markers, like FibroSpect (Prometheus
Laboratories; San Diego, CA, US), FibroTest (BioPredic-
tive;Paris, FR) and Fibroscan (Echosens; Paris, FR),
ActiTest (BioPredictive;Paris, FR) and APRI (public
domain) [16-20]. For a more exhaustive overview of cur-
rently used serum biomarkers, see a recent review by
Smith et al. [21].
These fibrosis assessment tests have shown promising

results, but a number of pitfalls are encountered, includ-
ing limited availability, inter-laboratory variation, cost,
insufficient resolution to differentiate between inter-
mediate stages of fibrosis and false positive results due
to other conditions, such as increased venous pressure
or steatosis [22-29].
Because current methods for non-invasive assessment

of liver fibrosis lack resolution, particularly in the
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intermediate fibrosis stages, more research is being
directed towards genomics and proteomics in the search
of biomarkers that provide a close association with
fibrosis stage [30-35].

Technical aspects of genomics and proteomics in
chronic liver disease
Genomics and transcriptomics
Genomics comprises the study of the genetic informa-
tion (DNA, or RNA in certain viruses) of an organism.
Transcriptomics aims to elucidate the transcripts of the
genome or gene expression levels on the RNA level
under varying conditions as changes in mRNA expres-
sion do not necessarily correspond with changes in pro-
tein expression, since alternative splicing, protein
production, degradation and post-translational modifica-
tions influence protein stability and function [36,37].
The cDNA microarray is the most frequently used

high-throughput screening method for gene expression
profiling. These ‘lab-on-a-chip’ assays contain specified
DNA oligonucleotide probes in spots on a chip that
hybridize with oligonucleotides from tissue or cells pro-
viding a quantitative assessment of the transcribed genes
[42-44]. Thousands of genes can be analyzed simulta-
neously with cDNA microarray and variants on this
technique include specialized arrays that can detect
SNPs and alternative splice variants (exon junction
arrays) [38-41].
Serial analysis of gene expression (SAGE) analyzes the

transcriptome by cloning strings of short cDNA frag-
ments into bacteria, sequencing the cDNA fragments
and then counting the number of cDNA fragments.
This technique can yield information on both gene
expression and alternative splicing and can help identify
previously unknown genes [42,43].
Target genes that are revealed by the genomics/tran-

scriptomics screens are generally validated by reverse
transcription quantitative polymerase chain reaction
(RT-qPCR), which is more quantitative and more repro-
ducible than microarray, requires less mRNA and is
more sensitive for genes that are expressed at low levels.

Proteomics
Proteomics is the study of the proteome in a cell com-
partment, tissue or organism comprising all proteins
that are encoded for in the genome. Mass spectrometry
(MS) is the key technique in proteomics. Many variants
of mass spectrometers are currently in use, but they all
rely on the same concept: to determine the accurate
mass of a protein by measuring the mass-to-charge (m/
z) ratio. In short, mass spectrometers consist of an ion
source, a mass analyzer and a mass detector. After ioni-
zation, proteins and peptides travel through the mass
analyzer, which evaluates their ratio of charge (z) versus

mass (m). The mass detector counts the number of
molecules per charge-to-mass ratio, and can provide the
user with an output as a mass spectrum, with the m/z
ratio on the x-axis and the molecule count per m/z on
the y-axis [44].
MS is preceded by a separation step of proteins, either

through 2D-polyacrylamide gel electrophoresis (2-DE/
2D-PAGE), liquid chromatography (LC) or gel electro-
phoresis (DIGE) [45-47]. Once the protein spots are
excised from the gel and digested, they can be processed
through one mass analyzer (MS) to identify peptide
mass, or two mass analyzers (MS/MS) to determine
amino acid sequence.
MS requires ionization of proteins and peptides and

two soft-ionizing techniques have been developed:
matrix-assisted laser desorption/ionization (MALDI) and
Electrospray ionization (ESI). Both techniques charge
molecules that are subsequently analyzed by one or two
mass analyzers (MS or versus tandem MS/MS). Time-
of-flight (TOF) mass analyzers deduct peptide mass by
measuring the time it takes for a charged peptide to tra-
vel through a vacuum tube in an electric field and can
also be combined with one (Q-TOF) or two quadrupoles
(Q-Q-TOF), which uses an oscillating electric field to
selectively allow for molecules with a specific range of
m/z ratios to proceed without collision [48].
When extremely high resolution is required, Fourier

transform-ion cyclotron resonance (FT-ICR) MS or
orbitrap can be used. The charged molecules are
injected into a Penning ion trap where detectors mea-
sure the signal of molecules that pass. The m/z ratio
determines the frequency with which the ion passes
over the detector [49-51].
Surface-enhanced laser desorption/ionization (SELDI)

analyzes protein mixtures that selectively bind to a bio-
chip with the characteristics of choice. It needs only a
small amount of crude sample (for example, serum or
small liver biopsies), and is suitable for profiling multi-
ple low-molecular-weight proteins. SELDI does not pro-
vide direct identification of the proteins. However, the
peak profiles generated by SELDI can be useful by
themselves in diagnostics, or in predicting prognosis
and/or treatment response. Since manual labor is mini-
mal, SELDI is by itself a suitable technique for high-
throughput screening, especially for serum biomarkers;
however, the cost is still too high for application on a
large clinical scale [52-54]. For an excellent overview of
the different types of mass spectrometers and their indi-
vidual strengths and weaknesses, see a review by
Domon and Aebersold [55].
A different type of high-throughput screening of pro-

teins is the protein microarray. It functions much like a
cDNA microarray, but probes are constructed out of
proteins, antibodies or DNA constructs containing
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protein binding sequences that can capture proteins on
a chip [56].

Technical pitfalls
Technical variations are largely responsible for the low
reproducibility between studies by different research
groups. Differences in patient characteristics can signifi-
cantly alter genomic and proteomic profiles. Proteome
studies are especially difficult because proteins cannot
be amplified, unlike DNA and mRNA. Therefore, scien-
tists have to rely on fractionation, enrichment/depletion
and solubilization protocols prior to MS to prevent
overload with the most abundant proteins present in the
serum urine

Overview of genomics and proteomics in chronic
liver disease
Most chronic liver diseases lead to fibrosis and cirrhosis
in a significant subset of patients. While many common
pathways drive fibrogenesis in all these diseases, there
are also disease-specific pathways that contribute to
fibrosis. An increasing number of studies are comparing
the transcriptome and proteome of patients with differ-
ent types of chronic liver injury to unearth disease-spe-
cific abnormalities in gene or protein expression.
In the following section we focus on disease-specific

genomic and proteomic studies in both animal models
and human diseases.

In vivo and in vitro animal models of fibrosis
Not all human liver diseases can be reproduced accu-
rately in animal models, and thus surrogate models are
being developed to study mechanisms of chronic liver
injury and fibrosis.
Rodent studies reviewed below have analyzed a variety

of fibrosis progression and resolution models, and have
evaluated liver tissue, cell isolates, serum and urine pro-
teomes. Considerable additional effort will be required
to systematically compare proteomes between different
disease models, and to accomplish the translational step
of comparing these proteomic changes to human liver
diseases.
Liver tissue proteome analysis
A number of liver tissue proteome analyses have been
reported in rodent models. Low et al. characterized the
proteome of rat livers treated with thioacetamide
(TAA). Using several time points, they proposed that
TAA causes chronic liver injury leading to liver fibrosis
through down-regulation of enzymes related to fatty
acid b-oxidation, branched chain amino acids and
methionine breakdown through depletion of succinyl-
CoA and subsequent alterations in heme and iron meta-
bolism [57]. Using carbon tetrachloride (CCl4) as a
model for toxic liver injury in mice, and Abcb4-

knockout mice as a model for sclerosing cholangitis to
study differentially expressed proteins in liver tissue,
Henkel et al. combined DIGE with MALDI-TOF MS
and peptide mass fingerprint database search. They
identified 20 differentially expressed genes in the CCl4
model and 8 genes in the Abcb4-knockout model com-
pared to control mice [58]. A number of studies have
characterized proteome changes after ethanol feeding in
rats. Shepard et al. observed that many mitochondrial
proteins are acetylated in livers of rats that are chroni-
cally ethanol-fed [59]. A study in ethanol-fed rats treated
with S-adenosylmethionine (SAM) demonstrated that
the proteins affected by ethanol and SAM treatments
were chaperones, beta oxidation proteins, sulfur metabo-
lism proteins and dehydrogenase enzymes involved in
methionine, glycine and choline metabolism [60]. Khar-
banda et al. treated ethanol-fed rats with betaine, which
restores the metabolic ratio of liver S-adenosylmethio-
nine to S-adenosylhomocysteine. Ethanol significantly
reduced carbonic anhydrase-III protein levels, which can
lead to decreased resistance against oxidative stress [61].
Rodent studies are also being used as models for

fibrosis resolution after the chronic injury is removed.
Liu et al. characterized liver tissue proteome changes
during spontaneous recovery after TAA-induced micro-
nodular cirrhosis in rats. Using 2-DE and MALDI-TOF,
they identified the up-regulation of GST-P2 that peaked
after two weeks of recovery [62].
Employing a cDNA microarray gene chip and 2D-

DIGE with MALDI-TOF/MS-MS, Kirpich et al. found
that glutathione S-transferases mu-1, pi-1 and selenium-
binding protein 2 are decreased at both gene and pro-
tein levels in a mouse model of NAFLD [63].
Enoyl-coenzyme A hidratase, an enzyme that catalyzes

the second step of mitochondrial fatty acid beta-oxida-
tion, has been described by Zhang et al. to be down-
regulated in rats with HFD-induced hepatic steatosis
[64].
Hepatic stellate cell proteome analysis
Activation of HSCs is a key event in fibrogenesis and
can be reproduced in vitro by prolonged culture on
plastic or collagen. The changes in protein expression
during activation can provide novel targets for antifi-
brotic therapy. However, differences between in vitro
and in vivo HSC activation need to be taken into
account. Kristensen et al. isolated hepatic stellate cells
from rats and compared the proteome of quiescent
cells with that of either culture-activated cells or in
vivo activated cells from rats treated with CCl4 for
eight weeks. Following 2-DE, proteins were digested by
trypsin, and ESI-MS/MS was used to sequence the
proteins that were differentially expressed. They
detected 16 proteins showing differences based on the
model of activation [65].
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A study by Kawada et al. explored the proteome of in
vivo (thioacetamide) and in vitro activated rat HSCs,
describing a protein that was induced with HSC activa-
tion: stellate-cell activation-associated protein (STAP),
which may act as an anti-fibrotic scavenger of peroxides
during liver injury [66].
Deng et al. employed human hepatic stellate cells

(LX2) treated and untreated with taurine and performed
a combination of two-dimensional gel electrophoresis
and ultra-performance liquid chromatography-electro-
spray ionization-tandem mass spectrometry (UPLC-ESI-
MS/MS). They postulate a beneficial role of taurine in
hepatic fibrosis, as they were able to detect an increased
rate of stellate cell apoptosis after treatment [67].
Serum and urinary proteome analysis
Animal models could provide general serum markers
that correlate with fibrosis stage and have the advantage
of easier access to liver tissue at set time points for his-
tological comparison. In thioacetamide (TAA) and bile-
duct ligation treated rats, Xu et al. indentified and
sequenced a 3.5 kDa histidine-rich glycoprotein, which
had > 92% specificity and > 97% sensitivity for identify-
ing liver cirrhosis. Previous studies have shown a benefi-
cial effect of bone marrow cell (BMC) transplantation in
CCl4-induced cirrhosis in mice, improving liver regen-
eration, function and fibrosis. Yokoyama et al. found six
differentially expressed proteins in the serum by 2-DE,
48 hours after BMC transplantation, compared to non-
transplanted mice. They suggested ApoA1 protein levels
as a proteomic analysis of serum marker proteins in
recipient mice with liver cirrhosis after bone marrow
cell transplantation. marker for liver regeneration after
BMC transplantation [68]. Serum taurocholic acid has
also been recently proposed as a marker of early hepatic
damage based on the Shimada et al. study. The identi-
fied elevated serum taurocholic acid concentration by
SPE-MALDI-TOF MS in mice CCl4 induced liver injury
[69].
A recent publication looked at urinary samples to find

biomarkers for CCl4-induced liver fibrosis providing a
potential alternative to serum samples for non-invasive
diagnostics and follow-up in liver fibrosis (70).

Chronic hepatitis C viral infection (HCV)
In patients with HCV, early knowledge of which patients
have rapidly progressing fibrosis could be very beneficial
in the decision-making process of whether to treat
patients aggressively with antiviral therapy. A recent
review by Walters and Katze explored the relationship
among the gene expression profile of HCV patients,
viral clearance and treatment response, shedding light
on potential virus-host interactions, which may emerge
as future therapeutic targets [71].

Staging of fibrosis
The liver proteome of HCV-patients can provide HCV-
specific and general fibrotic pathways that could lead to
novel therapeutic targets, or predict the natural disease
progression or therapeutic response in the individual
patient. Recent findings point towards alterations in
fatty acid oxidation, oxidative phosphorylation and
structural proteins in advanced fibrosis. An overview of
high-throughput studies analyzing pathways and pro-
teins involved in fibrosis due to HCV is represented in
Table 1.
Diamond et al. have described a pattern of 210 pro-

teins that correlate with fibrosis stage in 1,641 HCV-
infected patients. They were able to cluster the patients
in fibrosis stages 3 to 4 versus stages 1 to 2 using these
protein expression profiles. Functional analysis indicated
reduced expression of genes involved in fatty acid oxida-
tion and oxidative phosphorylation in advanced fibrosis
[72]. Several cell structure-associated proteins were
uncovered in the cirrhotic septa of seven HCV patients
(METAVIR stage F4) when Mölleken et al. compared
the proteomic profiles of microdissected cirrhotic septa
versus parenchymal liver cells using 2-DE and LC with
ESI-MS/MS, in the search for new serum biomarkers
for fibrosis. MFAP-4 could predict the presence of fibro-
sis with high accuracy in both HCV- and alcohol-
induced fibrosis, but diagnostic accuracy decreased sig-
nificantly for the discrimination between fibrosis stages
2 to 4 [73].
Regarding serum markers, none of these serum mar-

kers can adequately distinguish intermediate fibrosis
stages, even though the progression from mild to inter-
mediate fibrosis is an important predictor of further
fibrosis progression. White et al. reported three up-
regulated proteins (a2-macroglobulin, haptoglobin, albu-
min) and four down-regulated proteins (complement C-
4, serum retinol binding protein, apolipoprotein A1, and
two isoforms of apolipoprotein A4) in the serum of
HCV patients with advanced fibrosis (METAVIR stage
F3/4, n = 23) versus no or mild fibrosis (METAVIR
stage F0/1, n = 21) [74]. Three of these proteins are
already being used in the FibroTest [75]. This study was
limited by a small sample size, and the four new poten-
tial biomarkers could not be validated in a larger patient
group. Gangadharan et al. found a decrease in several
proteins, including apolipoprotein L1, prealbumin, albu-
min, haptoglobin and complement components, whereas
other proteins, such as CD5 antigen-like (CD5L), 2-
macroglobulin and immunoglobulin components, were
induced in fibrosis when they studied the serum pro-
teome of HCV patients with varying levels of fibrosis
and healthy controls, using 2-DE and LC with Q-TOF
MS/MS [76].
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Table 1 High-throughput studies in HCV patients analyzing differential gene expression based on fibrosis stage

1st author Year #
Patients

#
Controls

Specimen Methods #
Differentially
expressed
genes

Main pathways
involved

Most
differentially

regulated genes

⇑/⇓ Reference

Huang 2006 121 312 Blood SNP
microarray

1,609 N/A DEAD-box
popypeptide 5
(DDX5) SNP
Carnitine
palitoyltransferase
1A (CPT1A) SNP

⇑
⇑

81

Diamond 2007 22 4 Liver tissue LC-ESI-
FTICR MS/
MS

210 Amino acid,
carbohydrate and
lipid metabolism
Oxidative
phosphorylation
Oxidative stress

N/A N/A
N/A
N/A

72

White 2007 23 21 Serum 2-DE/LC-
Q-TOF
MS/MS

7 N/A Alpha-2-
macroblobulin
Haptoglobin
Fragment of
albumin
Serum retinol
binding protein
(SRBP)
Complement 4
Apolipoprotein A-I
(Apo A1)
Apolipoprotein A-
IV (Apo A4)

⇑
⇑
⇑
⇓
⇓
⇓
⇓

74

Gangadharan 2007 11 4 Serum 2-DE-Q-
TOF/
CapLC
MS/MS

83 Plasmin-associated
Hepatic synthetic
function HGF-
releated Lipid
metabolism Immune
system related

Alpha-2-
macroblobulin
Inter-alpha-trypsin
inhibitor heavy
chain 4
Albumin
Transthyretin
Complement C3
and C4
Factor H-related
protein 1
Alpha-1
antichymotrypsin
Haptoglobin
Apolipoprotein L-I
Beta 2
glycoprotein
CD5 antigen like
IgA1+IgG2 heavy
chain and Ig light
chain regions

⇑
⇓
⇓
⇓
⇓
⇓
⇓
⇓
⇓
⇓
⇑
⇓
⇓
⇑
⇑

76

Mölleken 2009 7 7 microdissections 2-DE/LC-
ESI-Ion
trap MS/
MS

35 Cell structure Tropomyosin
alpha
Tropomyosin beta
Microfibtil-
associated
glycoprotein 4
Calpoin 1
Transgelin
Tropomyosin
alpha 4
Actin alpha 1
Vimentin

⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑

73
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A novel set of four cDNA peripheral blood mononuc-
lear cell markers (a2-macroglobulin, haptoglobin, mito-
gen-activated protein kinase kinase 3, and alanine
aminopeptidase N) accurately predicted the stage of
liver fibrosis in HIV/HCV co-infected patients with an
area under the receiver operating curve (AUC ROC) of
0.852 [77].
L Yang et al. recently analyzed 24 liver samples from

patients with chronic HCV by DIGE and Isobaric tags
for relative and absolute quantitation (iTRAQ) and iden-
tified 2 proteins as biomarker candidates for predicting
hepatic fibrosis: complement C4-A and inter-alpha-tryp-
sin inhibitor heavy chain H4 [78,79].

Novel biomarker candidates to predict hepatic fibrosis in
hepatitis c identified by serum proteomics
Fibrosis progression has also been related to galectin-3-
binding protein (G3BP). Cheung et al. found increased
levels in patients with hepatitis C-related cirrhosis when
compared with mild and moderate fibrosis in 76 serum
and 20 tissue human samples [80].
Prediction of fibrosis progression
Prediction of fibrosis progression is crucial for adequate
patient selection in clinical trials, and, thus, Huang et al.
studied the genome of 1,468 patients with chronic hepa-
titis C infection and known fibrosis stage. They devel-
oped a Cirrhosis Risk Score (CRS) consisting of SNPs in
seven genes, which could predict fibrosis progression
significantly better than clinical parameters. Four SNPs
were in known genes: antizyme-inhibitor-1, toll-like
receptor 4, transient receptor potential cation channel,
subfamily M, member 5 and aquaporin 2 [81]. This
initial study was independently validated two additional
studies [82,83], and is especially exciting, as it is the first
evidence that host genetics significantly influence fibro-
sis progression and, thereby, provides a means for
selecting patients that will benefit most from aggressive
antiviral or antifibrotic treatment.
At the proteomic level, when plasma from cirrhotic

HCV patients is analyzed by SDS-PAGE and MS, both
chains of the complement C3 and C4 show a significant
decrease in comparison with samples from healthy
patients [84,85].
Prediction of treatment response
Transcriptomic and proteomic studies point to a crucial
role of interferon signaling pathways in the prediction of
treatment response, where high pre-treatment interferon
signaling is associated with poor virological response.
Recent genomic studies have identified SNPs in several
interferon-related genes, especially interleukin 28b, that
are powerful predictors of virologic response indicating
that genomics can be a powerful tool in the prediction
of treatment response.

A recent publication by Asselah et al. demonstrated
that liver gene expression can predict outcome of
patients with chronic hepatitis C infection after treat-
ment with pegylated interferon and ribavirin. They stu-
died cDNA of non-responders (NR), and SVR using RT-
PCR for 59 genes. Three genes were significantly
induced in NRs versus SVRs: interferon alpha-inducible
protein 3, interferon alpha-inducible protein 27 and
interferon alpha-inducible protein 2. Supervised class
prediction analysis identified a two-gene (interferon-
alpha-inducible protein 27 and CXC chemokine ligand
9) signature, with a predictive accuracy of 100% in NRs
and of 70% in SVRs. Although no high-throughput ana-
lysis was performed, this paper provides a basis for
further exploring the use of genomic and proteomic
information to predict individual treatment response,
and may be useful for selecting those patients who will
benefit from treatment [86].
Chen et al. analyzed liver tissue using cDNA microar-

ray to identify a gene signature that can predict treat-
ment outcome. A key finding was that interferon
stimulated gene 15 (ISG15) protein induction was more
pronounced in hepatocytes in non-responders, but in
Kupffer cells in responders [75]. In a liver tissue micro-
array study by Hayashida et al., a different set of genes
was found to predict treatment response in patients
treated with interferon alone, or interferon/ribavirin co-
treatment. In the interferon monotherapy patients, main
predictors were genes involved in the interferon signal-
ing pathway, lipid metabolism, complement and oxida-
tion/reduction. In the combined treatment group, genes,
including cylophylin A, and multidrug resistance pro-
tein-hepatic gene expression during treatment with
peginterferon and ribavirin emerged, identifying molecu-
lar pathways for treatment response. 1 (P-gp) [87]. Feld
et al. discovered that low baseline liver tissue cDNA
levels of interferon-stimulated genes (ISGs) predict rapid
treatment response with quick induction of ISG levels,
whereas high baseline ISG levels do not increase much
further and predict slow treatment response, together
with up-regulation of interferon inhibitory pathways
[88].
As described above, recent genome-wide association

studies (GWAS) have identified SNPs in the interleukin
28b (IL28B, coding for interferon-g-3) genomic region
that are associated with viral response to the current
treatment of HCV, pegylated-interferon-alpha (PEG-
IFNa) and ribavirin. GWAS by Suppiah et al. led to the
discovery of a SNP near interleukin 28b (IL28B) that is
associated with sustained viral response (SVR) in geno-
type 1 HCV patients treated with PEG-IFNa and riba-
virin, with an odds ratio (OR) for the G-allele of
rs8099817 of 1.64 for heterozygous carriers and 2.39 for
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homozygous carriers compared to non-carriers [89].
Other SNPs that were associated with SVR included
Caspase 1, a known activator of interleukin 1, and inter-
leukin 21 receptor. A simultaneous report was published
by Tanaka et al., identifying SNPs in IL28B in a Japa-
nese genotype 1 HCV-patient cohort as a predictor of
virologic response to PEG-IFNa and ribavirin. Initial
GWAS identified rs2980275 and rs8099917 SNPs as
predictors of non-response and SVR. They continued to
seek SNPs in the IL28A/B region and uncovered
rs8105790, rs11881222, rs8103142, rs28416813,
rs4803219, rs8099917 and rs7248668 as associated with
virologic response [90]. Identification of those HCV-
patients who are likely to respond to therapy could lead
to a shortened duration of therapy in patients with a
favorable SNP genotype. Although these studies did not
examine fibrogenic end-points, they are a major break-
through in HCV treatment response research, and are
excellent examples of how GWAS can identify genes
and SNPs that are related to therapeutic responses.
Non-responders generally have high expression of

interferon-stimulated genes (ISGs) pre-treatment that
cannot be further induced by PEG-IFNa, whereas RVR
patients have strong induction of ISGs on treatment.
Refractory high endogenous interferon signaling in non-
responders may interfere with PEG-IFNa treatment,
especially in genotype 1 and 4 patients. Whether inhibi-
tion of endogenous interferon signaling could improve
therapeutic response is subject to further study [91,92].
Although further validation is needed, Devitt E et al.

using SELDI-TOF MS analyzed serum from 25 HCV
infected patients during the initial 24 h of treatment
with pegylated interferon a-2b and ribavirin and identi-
fied 16 differential peaks able to distinguish responders
from nonresponders [93].

Chronic hepatitis B viral infection (HBV)
Approximately 400 million patients worldwide are
chronically infected with hepatitis B virus (CHB). Hepa-
titis B virus infection causes chronic hepatitis in about
10% of infected patients, and increases the risk of devel-
oping HCC about 100-fold versus in the uninfected
population. An excellent review on the role of genomics,
transcriptomics and proteomics in chronic HBV-asso-
ciated liver disease, recently published by Sun et al.,
described determinants of susceptibility to persistent
HBV infection, disease progression and HCC develop-
ment; their review also describes the use of these tech-
nologies to understand the pathogenic mechanism of
HBV and to identify biomarkers that could aid in early
detection of HCC [94].
Recent high-throughput proteomic studies have identi-

fied protein patterns that correlate with fibrosis stage in
HBV patients. Zhang et al. described a novel approach

to evaluate the protein expression profile of plasma
membrane and analyzed human liver samples from
HBV patients in different fibrosis stages. Using 2-DE,
IPGphor isoelectronic focusing system and Bio-Rad Pro-
tein II electrophoresis to the investigators identified
positive correlation between fibrosis grade and annexin
A2 levels [95]. Lu et al. analyzed plasma of 7 healthy
controls and 27 HBV patients with different stages of
fibrosis by 2-DIGE and identified the up-regulation of
peroxiredoxin 2 as a potential biomarker of HBV related
liver fibrosis [96]. Although not liver-specific, plasma
gelsolin protein has been pointed out as a potential pre-
dictor of HBV progression. C Marrocco et al. found by
2-DE a repressed expression of the protein in plasma of
eight cirrhotic HBV patients, compared to eight chronic
HBV infected patients [97]. Mohamadkhani et al. per-
formed a 2DE and mass spectrometry analysis in
patients with either chronic hepatitis B or HBV-related
cirrhosis and healthy controls. Their data suggest that
progression of HBV-related liver injury is associated
with a down-regulation of apolipoprotein A1 and an
increase in myeloperoxidase levels [98]. However, these
results still need to be validated, and their ability to dis-
tinguish intermediate fibrosis stages is not clear.
Poon et al. using SELDI ProteinChip arrays and the

Significance Analysis of Microarray (SAM) algorithm
generated a model able to predict fibrosis (Ishak score ≥
3) and cirrhosis (Ishak score ≥ 5) with an accuracy of >
90% [99]. Liver histology (METAVIR score) of HBV-
patients was compared with three sets of serum markers
by Myers et al.: aminotransferases (ALT, AST), Fibrotest
(a2-macroglobulin, apolipoprotein A1, haptoglobin,
gamma-glutamyl-transpeptidase (GGT) and total biliru-
bin) and Actitest (ALT). Aminotransferases and Actitest
were good predictors of activity (stage A2-F3) and
Fibrotest accurately predicted stage F2-F4 fibrosis, espe-
cially in the ranges of ≤ 0.20 or > 0.80. Limiting liver
biopsy to patients with intermediate Fibrotest scores
could prevent biopsies in about half of the patients,
without affecting accuracy [100].
Wang et al. performed an in vitro study to investigate

proteome differences between stably HBV transfected
HepG2.2.15 versus wild type HepG2 cells by 2-DE fol-
lowed by LC-ESI-MS/MS. Furthermore; they compared
HepG2.2.15 cells with and without interferon-alpha
(IFN-a) treatment. Proteins that were differentially
expressed in HepG2.2.15 versus HepG2 cells could be
classified as being involved in, for example, cytoskeletal
matrix, heat shock stress, signal transduction and pro-
tease/proteasome components. IFN-a treatment induced
expression of interferon-stimulated gene 15 (ISG15) and
prohibitin, among others, providing potential pathways
that could lead to tumor suppression and defense
against viral infection. Although these results have not
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been validated in vivo, they nevertheless establish that
proteomics and cell culture can be a powerful combina-
tion to uncover differences in the proteome, and can be
useful for evaluating potential treatments [101].

Alcoholic liver disease (ALD)
Several genomic and proteomic studies have been pub-
lished on patients with alcoholic liver disease. However,
the majority of studies focus on either diagnostics or
genes/proteins that differentiate alcoholic hepatitis from
alcoholic steatosis, not in predicting progression towards
fibrosis and cirrhosis. Nevertheless, alcoholic steatohepa-
titis is clearly a precursor for developing fibrosis. For
example, 586 genes were differentially expressed
between alcoholic hepatitis and alcoholic steatosis, and
211 genes were differentially expressed between alco-
holic hepatitis and non-disease controls when Seth et al.
compared liver tissue RNA from eight patients with
alcoholic hepatitis, nine with alcoholic steatosis, and
seven non-disease controls using microarray analysis.
Induced genes included pathways controlling cell adhe-
sion, immune response, oncogenesis, signal transduction
and embryogenesis. The 111 down-regulated genes
included pathways for protein synthesis, cell growth and
maintenance, transcription, signal transduction and
transport [102].

Non-alcoholic fatty liver disease (NAFLD) and non-
alcoholic steatohepatitis (NASH)
The prevalence of NAFLD and NASH is on the rise,
which makes these increasingly important causes of liver
fibrosis, especially in countries with a Western diet con-
taining a high fat and/or carbohydrate content. For
NAFLD and NASH there is also a lack of genomic/pro-
teomic studies specifically examining fibrogenesis and
fibrosis progression, much like in alcoholic liver disease.
Most genomic/proteomic studies focus on distinguishing
NASH from NAFLD, and not on progression to liver
fibrosis and cirrhosis. The ability to distinguish NASH
from NAFLD is very relevant, however, as NASH clearly
predisposes to fibrosis. Therefore, we reviewed recent
publications on this topic. However, studies directed at
identifying proteins related to the speed of fibrosis pro-
gression in NASH could further select patients who
could benefit from treatment, improve understanding of
fibrosis pathogenesis in fatty liver, and identify targets
for treatment of NASH-related fibrosis.
Staging of steatosis
NASH is distinguished from NAFLD by an inflamma-
tory component. Therefore, not surprisingly, genes that
are up-regulated in NASH versus NAFLD have strong
relationships with inflammatory and immune pathways.
Complementary DNA microarray analysis on nine liver
tissue samples from steatotic livers and nine normal

livers unearthed 110 differentially expressed genes, many
related to mitochondrial respiratory and mitochondrial
metabolic pathways. Genes belonging to the interleukin-
1 receptor family and transforming growth factor-beta
were induced in steatotic livers, pointing to a deranged
inflammatory pathway, even in early development of
steatosis. Thirty-four genes with significant differential
expression were identified in patients with NASH, when
compared with non-obese controls in a study by You-
nossi et al., using cDNA microarray analysis on liver
biopsies taken during bariatric surgery to find differen-
tial expression patterns between NASH (n = 29),
NAFLD (n = 12), obese non-steatotic (n = 7), and non-
obese controls (n = 6) [103]. Nineteen of these genes
showed no significant expression differences in obese
versus non-obese controls, suggesting a stronger associa-
tion of these genes to NASH. These genes were related
to lipid metabolism, extracellular matrix remodeling,
liver regeneration, apoptosis and detoxification. In
another study, this group used parallel liver tissue gene
expression and serum proteome analysis in a group of
98 morbidly obese patients. Twenty-seven patients had
developed NASH, 52 patients had steatosis with nonspe-
cific inflammation, 12 patients had steatosis alone and 7
patients had normal histology on biopsy. Using SELDI-
TOF analysis on serum samples, this group found sev-
eral protein peaks associated with different stages of
NAFLD/NASH. However, except for fibrinogen g, the
corresponding proteins were not identified. On the
mRNA level, insulin-like growth factor binding protein
1 (IGFBP1) and fatty acid CoA ligase 4 (FACL4) were
differentially expressed between NASH and steatotic
patients.
A recent study of the serum proteome by Bell et al.

led to the discovery of 55 proteins that changed signifi-
cantly between simple steatosis and NASH with stage
F3/F4 fibrosis (advanced bridging fibrosis/cirrhosis), and
15 proteins that changed between early NASH and
NASH with stage F3/F4 fibrosis. Most of these proteins
are involved in the immune response, coagulation, cellu-
lar and extracellular matrix and blood carrier proteins
[104]. These proteins shed light on the pathogenesis of
NAFLD/NASH and could be explored as candidates for
biomarkers of advancing disease. Ulukaya et al. were
able to use serum MALDI-TOF MS peaks to accurately
predict NAFLD versus controls, but could not distin-
guish between simple steatosis and NASH. They
included 80 patients with NAFLD, and 19 controls
[105]. Histologic classification of the NAFLD patients
showed definite NASH in 48 patients, borderline NASH
in 22 patients and 10 patients with simple steatosis.
Using reverse phase protein microarray technology, Cal-
vert et al. revealed deranged insulin signaling in NAFLD
patients when they investigated omental adipose tissue

Hannivoort et al. Fibrogenesis & Tissue Repair 2012, 5:1
http://www.fibrogenesis.com/content/5/1/1

Page 9 of 14



from 99 obese patients. Liver biopsies were classified as
follows: (1) no fatty liver disease present, (2) simple stea-
tosis, (3) steatosis with nonspecific inflammation, or (4)
NASH. Categories 2 to 4 were clustered as NAFLD.
Protein kinase A (PKA) and AKT/mTOR deregulation
and caspase 9 activation were good predictors of NASH
on liver histology compared to non-progressive forms of
NAFLD [106]. For more information on genomic and
proteomic analysis of NAFLD and NASH, see a recent
review by Wilfred de Alwis and Day [107].
Fibrosis progression in steatotic patients
Very few publications report changes in gene expression
that correlate with fibrosis stage in NAFLD/NASH
patients. So far, only apolipoproteins, CD5 antigen-like
(CD5L) and lumican have been identified. Gray et al.
applied 2-DE and MALDI-TOF to analyze differences in
serum proteome profile between patients with pre-cir-
rhotic NAFLD (n = 5), cirrhotic NAFLD (n = 5) and cir-
rhotic NAFLD with HCC (n = 5). Four out of five spots
that identified at least one of the three groups were
identified as apolipoprotein isoforms. The fifth spot,
identified as CD5L, was induced in cirrhotic patients
and even more in patients with HCC. ELISA analysis of
CD5L in a larger patient group showed a poor AUROC
score for distinguishing patients with HCC from those
without HCC. However, as a cirrhosis biomarker, ROC
analysis showed an accuracy of 72%. CD5L could poten-
tially be used in combination with other biomarkers for
cirrhosis [108]. Charlton et al. identified lumican, a 40
kDa keratin sulfate proteoglycan, as significantly
increased in liver tissue from patients with mild NASH
(NASH with F0/F1 fibrosis) versus simple steatosis, and
in patients with progressive NASH (NASH with F2-F4
fibrosis) versus mild NASH in obese patients, when ana-
lyzed with LC-Q-TOF MS/MS. FABP-1 was increased in
simple steatosis patients compared to non-steatotic
patients, but was paradoxically decreased in NASH
patients, which suggests an impaired detergent effect
against free fatty acids in progressive NAFLD patients
[109].

Autoimmune liver diseases
Primary biliary cirrhosis (PBC), as well as related auto-
immune disorders, is more prevalent in certain families
and thus seems to have a complex genetic component,
with many factors probably adding to the risk of devel-
oping PBC. Some of these genes associated with PBC
are major histocompatibility complex genes and com-
mon autoimmune genes [110]. Shackel et al. discovered
that PBC liver tissue had increased expression of Th1
and Th2 type proteins as well as connective tissue
growth factor and TGF-b3 when they analyzed their
cDNA microarray from liver tissue from patients with
PBC (n = 4), PSC (n = 4) and non-disease controls (n =

8). Moreover, Wnt and Notch signaling pathways were
induced. PSC patient samples had increased expression
of apoptosis associated molecules [111]. Serum samples
from 44 PBC patients and 75 controls, analyzed using
WCX magnetic beads and MALDI-TOF-MS, provided
69 potential protein biomarkers. Li et al. used these to
construct a diagnostic model for PBC using the m/z
peaks of protein biomarkers 3445, 4260, 8133, and
16290, which showed a sensitivity of 92.9% and a speci-
ficity of 82.4% [112].
Tahiri et al. noticed an induction of six known poten-

tial plasma membrane expressions: liver arginase, cyto-
keratins 8/18, heatshock proteins (HSP) 60/70/90, and
valocin-containing protein (VCP) in autoimmune hepati-
tis when they investigated serum samples from 65 auto-
immune hepatitis type 1 patients and 90 controls
consisting of healthy blood donors (n = 40) and patients
with systemic diseases (n = 20) or other liver diseases (n
= 30). They proposed that these proteins could be tar-
gets for auto-antibodies in autoimmune hepatitis [113].
Using protein microarray, Song et al. analyzed serum
samples from patients with autoimmune hepatitis (n =
44), PBC (n = 50), HCV (n = 41), HBV (n = 43), sys-
temic lupus erythematosus (SLE) (n = 11), primary Sjög-
ren syndrome (n = 11), rheumatoid arthritis (n = 2) and
50 healthy controls. Initially they found 11 differentially
expressed genes between autoimmune hepatitis and
other samples. They then produced an autoimmune
hepatitis-specific protein chip, and found three new
antigens, ribosomal protein S20 (RPS20), Alba-like, and
dUTPase, that could be used as highly specific biomar-
kers for autoimmune hepatitis, and validated this with
ELISA [114]. Bowlus et al. have recently analyzed by in
situ MALDIMS (matrix-assisted laser desorption/ioniza-
tion mass spectrometry) in PBC (n = 29), PSC (n = 11),
AIH (n = 7) and healthy controls (n = 10) and found a
promising pattern of protein expression in bile ducts,
inflammatory infiltrates and hepatocytes that may repre-
sent a feasible way to identify novel targets in these dis-
eases [115]. Song et al. created a protein microarray
containing 5,011 recombinant human liver proteins and
were able to identify three new antigens, RPS20, Alba-
like and dUTPase, as highly autoimmune hepatitis-speci-
fic biomarkers [114].
Although these results are promising, the number of

high-throughput genomic and proteomic studies in
autoimmune liver diseases is still very limited.

Hepatocellular carcinoma
While beyond the scope of this review, there have been
significant advances in early diagnosis, treatment and
pathway analysis of HCC and hepatocarcinogenesis
through genome, transcriptome and proteome high-
throughput analysis, especially in the setting of liver
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cirrhosis. For more information on this topic we refer to
recent reviews [116-118].

General conclusions and future directions
In the last decade, genomic and proteomic hypothesis-
free studies have become increasingly common. Since
liver fibrosis often takes many years to develop, and not
every patient will become symptomatic, a method to
select patients who will benefit from aggressive treat-
ment in an early phase would be very beneficial. There-
fore, there is a demand for biomarkers that can provide
a prognostic indication for fibrosis, either in the natural
course of chronic liver disease, or as a predictor of treat-
ment response. Liver biopsy is currently the gold stan-
dard for follow-up in chronic liver disease, but it can
have serious complications and suffers from sampling
error and inter-observer variation. This drives the search
for non-invasive direct or indirect biomarkers that cor-
relate accurately with fibrosis stage.
Prospective predictive proteomic and genomic studies

are difficult in liver disease, as follow-up is long, and
biological samples can degrade over time. Thus far,
many tests based on serum biomarkers correlate fairly
well with the fibrosis stage when advanced fibrosis
(METAVIR F3-4) is compared to mild or no fibrosis (F0
to 2), but lack resolution in the intermediate stages.
Especially, these intermediate stages (F1 to 2) could be
helpful in the early detection of progressive fibrosis and
guide the hepatologist in treatment decisions. So far,
genomic and proteomic studies for fibrosis staging have
been mostly limited to viral hepatitis, with other diseases
like alcoholic liver disease and NASH yet to be explored.
Studying the fibrotic genome/proteome in these diseases
will shed light on common and distinct pathological
pathways leading to liver fibrosis.
Genomic and proteomic studies that have identified

genes and proteins that correlate with fibrosis levels
have yielded heterogeneous findings, most likely due to
variations in sample preparations and patient popula-
tions/characteristics. The lack of standardized sample
preparation protocols hinders reproducibility of protein
spectra. A few gene and protein groups seem to corre-
late with fibrosis more consistently, mostly belonging to
glutathione, oxidative stress, inflammatory and immune
response pathways. For most of the identified proteins,
adequate follow-up has been lacking so far, leaving
scientists with lots of potential biomarker candidates
still in need of validation.
Future high-throughput research will continue unco-

vering genes and proteins that can elucidate common
and specific-disease pathways that lead to liver fibrosis.
Standardization of sample preparation protocols should
increase reproducibility of these studies, and will make
it easier to select candidate genes and proteins that are

suitable for validation as biomarkers for either fibrosis
staging, or as predictive biomarkers for disease outcome
and/or treatment response.

Abbrevations
2-DE/2D-PAGE: 2D-polyacrylamide gel electrophoresis; AIH: autoimmune
hepatitis; ALD: alcoholic liver disease; BMC: bone marrow cell; CCl4: carbon
tetrachloride; CRS: Cirrhosis Risk Score; DIGE: gel electrophoresis; ESI:
electrospray ionization; FACL4: fatty acid CoA ligase 4; FT-ICR: Fourier transform-
ion cyclotron resonance; GWAS: genome-wide association studies; HCC:
hepatocellular carcinoma; HCV: chronic hepatitis c viral infection; HSCs: hepatic
stellate cells; IGFBP1: insulin-like growth factor binding protein 1; IMAC:
immobilized metal affinity capture; ISGs: interferon-stimulated genes; iTRAQ:
isobaric tags for relative and absolute quantitation; LC: liquid chromatography;
MALDI: matrix-assisted laser desorption/ionization; MALDIMS: matrix-assisted
laser desorption/ionization mass spectrometry; MS: mass spectrometry; m/z:
mass-to-charge; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic
steatohepatitis; OR: odds ratio; PBC: primary billiary cirrhosis; PCR: polymerase
chain reaction; PKA: protein kinase A; Q-Q-TOF: second quadruple time-of-flight;
Q-TOF: quadruple time-of-flight; RT-qPCR: reverse transcription quantitative PCR;
SAGE: serial analysis of gene expression; SAM: significance analysis of
microarray; SAX: strong anion exchange; SELDI: surface-enhanced laser
desorption/ionization; SNPs: single nucleotide polymorphisms; STAP: stellate-cell
activation-associated protein; SVR: sustained viral response; TAA: thioacetamide;
TIMP-1: tissue inhibitor of metalloproteinases-1; TOF: time-of-flight; UPLC-ESI:
ultra-performance liquid chromatography-electrospray ionization-tandem; WCX:
weak cation exchange
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