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Abstract
Background: High throughput gene expression experiments yield large amounts of data that can
augment our understanding of disease processes, in addition to classifying samples. Here we
present new paradigms of data Separation based on construction of transcriptional regulatory
networks for normal and abnormal cells using sequence predictions, literature based data and gene
expression studies. We analyzed expression datasets from a number of diseased and normal cells,
including different types of acute leukemia, and breast cancer with variable clinical outcome.

Results: We constructed sample-specific regulatory networks to identify links between
transcription factors (TFs) and regulated genes that differentiate between healthy and diseased
states. This approach carries the advantage of identifying key transcription factor-gene pairs with
differential activity between healthy and diseased states rather than merely using gene expression
profiles, thus alluding to processes that may be involved in gene deregulation. We then generalized
this approach by studying simultaneous changes in functionality of multiple regulatory links pointing
to a regulated gene or emanating from one TF (or changes in gene centrality defined by its in-degree
or out-degree measures, respectively). We found that samples can often be separated based on
these measures of gene centrality more robustly than using individual links.

We examined distributions of distances (the number of links needed to traverse the path between
each pair of genes) in the transcriptional networks for gene subsets whose collective expression
profiles could best separate each dataset into predefined groups. We found that genes that
optimally classify samples are concentrated in neighborhoods in the gene regulatory networks. This
suggests that genes that are deregulated in diseased states exhibit a remarkable degree of
connectivity.

Conclusion: Transcription factor-regulated gene links and centrality of genes on transcriptional
networks can be used to differentiate between cell types. Transcriptional network blueprints can
be used as a basis for further research into gene deregulation in diseased states.

Background
The study of mammalian transcription based on high

throughput gene expression data has primarily focused on
the identification of individual differentially expressed
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genes, co-regulated gene sets and genes with inferred func-
tional similarity based on co-expression under various
conditions. Investigators have identified functional mod-
ules from gene expression data using a reverse-engineer-
ing approach to reveal regulatory subunits, based on
probabilistic graphical models [1], singular value decom-
position [2-4] and network component analysis [5], as
well as various other methods. Methodologies for recon-
structing and inferring elements of genetic and metabolic
networks [1,6-11], identifying new gene modules [12-14]
and statistically characterizing topological network fea-
tures are the focus of much research [15-19], especially for
model organisms. Recent advances in network analysis
have focused on topological changes and static and
dynamical network properties in yeast and E coli [20,21].

There has been extensive study of expression patterns of
genes which can discriminate between normal and cancer
specimens, separate different tumor types or predict clini-
cal outcome (for example [22-24]), including in the con-
text of networks [25,26]. The study of transcriptional
networks has been facilitated by the incorporation of both
DNA-protein binding data [27-31] as well as the compu-
tational prediction of binding sites, based primarily on
methods using position weighted matrices (PWM) [32-
34].

In the present work we constructed human transcriptional
regulatory networks of the whole genome by combining
evidence of co-expression in microarray datasets with
transcription factor-gene regulatory relationships based
on sequence predictions and literature based evidence. In
these studies we revealed condition specific (phenotype)
networks in order to discover network features that can
shed light on unique transcriptional processes associated
with a particular phenotype. We studied the extent to
which networks vary between different phenotypes. Spe-
cifically, we explored network features in different cell
types such as normal versus cancer specimens, and in
specimens from patients whose disease recurs versus
those remaining disease free.

Results
Network construction
We constructed regulatory networks by intersecting a con-
nectivity network (representing TF binding to gene pro-
moter regions) with co-expression networks (representing
TF-target gene co-expression). Construction of these net-
works is depicted in Fig. 1. The connectivity network was
derived by a) matching known TF binding sites to the pro-
moter regions of genes (TRANSFAC [34,35]), and b) liter-
ature-based known TF-target gene interactions which are
included in the TRANSFAC database. In addition, we note
that limited ChlP-on-chip data have recently been
included in TRANSFAC. For data derived from each

microarray (for an individual sample or patient), we con-
structed a co-expression network, such that each TF-gene
pair was assigned a co-expression value; -1 if the TF is up-
regulated while the target gene is down-regulated, +1 if
they are both up-regulated and 0 otherwise. Condition
specific (CS) transcriptional regulatory networks are
derived from the intersection between the connectivity
and individual co-expression networks. Details of con-
struction of the networks are described in the methods
section below.

The CS networks we studied were drawn from six gene
expression studies using three types of datasets; data
derived from normal cell lineages [36], tumors versus nor-
mal tissues [37], and disease-specific tumors associated
with variable clinical outcomes [38-41]. The sizes of the
networks were dependent on the number of known genes
in the particular microarray platform, and ranged from
4821 genes and 196 TFs on the earliest Affymetrix array to
13363 genes and 233 TFs on the Affymetrix U133A and B
arrays. Different microarray platforms contain different
sets of genes. To construct each of these CS networks, we
used a subset (or sub-matrix) of the connectivity network
that only contains the genes and TFs that are present in a
particular microarray platform. The total "density" of
these connectivity sub-networks (i.e. the fraction of puta-
tive TF-gene connections out of all possible connections
for a particular sub-network) was very similar for all plat-
forms, ranging between 4.6% and 5.1%. With the expres-
sion thresholds we chose for the CS network construction,
the fraction of connections ranged from 0.3% to 1% in the
CS networks.

We examined the robustness of our general results by
studying a range of values for the parameters used in con-
structing the connectivity networks, including the extent
of upstream promoter region sequences (between 1000
bp and 5000 bp upstream of the transcription start site),
different TF binding profiles (the sets of position-weight
matrices used to predict binding) as well as TRANSFAC
thresholds for determining a protein-DNA binding site
(see details in the Parameter Selection section below). All
results reported here were generated by using sequences
1000 bp upstream of RefSeq identified transcription start
sites and using a standard profile provided by TRANSFAC
intended to minimize false positives.

Classification based on regulatory network features
We hypothesized that each individual sample from a
cohort of heterogeneous cancer patients has a distinct reg-
ulatory network, i.e., a pattern of activated links that gives
rise to its gene expression profile. Based on this hypothe-
sis, we explored how different aspects of network structure
characterize different phenotypes.
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Link-based classification
We introduced a network based classification approach
that examines differences between patient samples by
analyzing the activity status of regulatory links between
genes. We constructed networks unique to individual
patients, e.g. for individual patients with disease recur-
rence and for patients with no recurrence. This enables us
to identify specific parts of the networks, which are differ-
entially regulated between these conditions. The added
value of this network-based classification is our ability to
identify coordinated co-regulation of TF-gene pairs that
are present only in survivors or only in non-survivors.

In the link-based approach, we attempted to discriminate
between samples using differential TF-gene activity
instead of using standard discrimination by gene expres-
sion profiling. A network is comprised of links and nodes.
In our link-based approach, the activities of a network's

links, which represent a TF regulating a gene, are used for
classification, instead of using properties of the individual
nodes.

Degree-based classification
We further classified our samples by using another topo-
logical property of the networks, the "centrality" of indi-
vidual genes in the networks. Several measures of
centrality have been defined [42]; here we report results
using a centrality measure defined by the degree of nodes
in the regulatory networks, the number of TFs activating
or suppressing a particular gene (in degree) or number of
genes regulated by a single TF (out degree). Specifically,
instead of characterizing a sample by a gene expression
profile, we use a sample's genome wide degree profile. We
surmise that identifying the nodes with the largest
changes in gene centrality (rewiring) will assist us in
detecting hotspots associated with deregulation, leading

Matrix representation of the reconstructed regulatory networkFigure 1
Matrix representation of the reconstructed regulatory network. A non-zero value at the intersection between a TF column 
and a gene row in the connectivity matrix represents a literature-mined (stored in TRANSFAC) or putative binding of this TF 
to the 1 kb upstream region of the gene promoter (based on matching the TRANSFAC PWM with this promoter region). A 
value of +1 in the co-expression matrix derived from microarray data was assigned if the TF is up-regulated while the target 
gene is up-regulated, -1 if the TF is up-regulated while the target gene is down-regulated and 0 otherwise. When overlaying the 
connectivity and co-expression matrices (using element by element multiplication of these matrices as denoted by the "AND" 
operation above) we obtain the putative regulatory network represented by the adjacency matrix, whose blue nonzero entries 
represent both binding and co-expression between a TF and a gene, and whose green and black zero entries correspond to 
TFs and genes that are not bound and/or not co-expressed. On the right we show graphical representation of the adjacency 
network. The flow is depicted in the supplementary data [see Additional file 1].
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to understanding disease processes at a transcriptional
level.

Sample classification
For each of the datasets described we created regulatory
networks for every sample and applied a meta-classifier
(see Methods) that in the first step ranks the features
(using an information gain measure) to identify the set of
TF-gene links that collectively separate between classes
(e.g., acute myeloid and acute lymphocytic leukemia pop-
ulations). Our purpose was to find network features that
classify different phenotypes, rather than to derive a clas-
sifier that is superior to commonly used classifiers based
solely on gene profiling. We reasoned that the discrimi-
nating network features would be useful to explore
changes in regulatory mechanisms. Nevertheless, our link-
based classifiers compared favorably with gene profiling
classifiers.

Using the training sets, we performed feature selection to
rank the links, genes and degree of the nodes that undergo
the most substantial change between two phenotypes
such as distinct blood cell types, different categories of
leukemia, normal kidney versus renal carcinoma and
breast cancer patients whose disease recurs versus those
remaining disease free. Specifically, we studied three
groups of datasets. In the first group we studied the fol-
lowing two-class datasets: a) acute lymphoblastic leuke-
mia versus acute myeloid leukemia [23], b) two different
myeloid leukemia types defined by the presence of two
oncogeneic fusion proteins (AML1-ETO, t(8;21) versus
RAR-PML, t(15;17)) [43]. In the second group, we ana-
lyzed several breast cancer datasets involving heterogene-
ous populations of patients with different outcomes
(patients who had disease recurrence versus those that did

not) [38,40,41,44]. The third group includes different
matched cell types (normal kidney versus renal cell carci-
noma each from the same patients [37], and normal
monocytes versus normal polymorphonuclear leukocytes
[36]).

To perform the link-based classification, we then passed
the top links (features that were found to have the highest
rank defined by the highest information gain in explain-
ing the class label of the training set) to train a base classi-
fier (nearest neighbors, decision tree, Naïve Bayes, etc.)
using the training data only. To estimate the cross valida-
tion error rate of the classifier in the reduced feature space,
we performed ten-fold cross validation ten times using ten
different seeds. We note that for error estimation, cross-
validation is performed with features selected from the
training set only at each step in the cross-validation proce-
dure, to avoid an optimistic bias in the accuracy estimates
[45]. To compare the performance of the link-based clas-
sification an expression based analysis for identification
of differentially expressed genes has been implemented
using equivalent feature selection and machine learning
procedures. Similarly, we formed a genome-wide profile
indicating the in-degree (centrality) for all genes or out-
degree for all TFs in each individual network, and
searched for the subset of genes or TFs whose centrality
measure is altered significantly between the two classes.
The results using the same procedures for these three types
of input data (link profiles, gene profiles and gene central-
ity profiles) are presented in Tables 1, 2.

For the leukemia datasets, linked-based sample separa-
tion of different lineages (ALL versus AML), and of two
types of myeloid leukemia, was quite effective, with esti-
mated classification error rates of 9% and 6%, respec-

Table 1: Classification error based on Network Links, Transcription Profile and Degree Error Estimates (ten-fold cross validation ten 
times, using ten different seeds)

Dataset Network Link Gene Expression (In) Degree

Leukemia

ALL/AML[23] 9% 4% 4%
Myeloid Leukemia [43] 6% 0% 0%

Breast Cancer

Duke [38] 23% 17% 25.5%
Dutch [39, 44, 55] 43% 42% 39.8%

Paired Cell Types

Renal Carcinoma vs. Normal Kidney [37] 0% 0% 0%
Monocytes vs. Granulocytes [36] 0% 0% 0%
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tively. Likewise, we were able to partition these data based
on the genome-wide in degree profile of all the nodes in
the regulatory networks with cross validated classification
errors of 4% and 0% respectively, similar to error rate esti-
mates obtained using gene expression levels of individual
genes.

For the breast cancer datasets, the classification perform-
ance based on links, expression profiles or gene centrali-
ties was much weaker with error rates ranging from 17%-
25% in the Duke dataset to 39%-43% in the Dutch data-
set, reflecting the increased tumor heterogeneity in these

populations. Due to the fact that many links in the con-
nectivity network are inferred by using in silico matching
between PWMs and promoter regions and the additional
discretization (cutoff) steps involved in the construction
of the CS regulatory networks, we may add some noise to
the data, and expect some information loss respectively.
Indeed, in some datasets the observed error rates obtained
when using the link-based classifiers are slightly higher
than those obtained by gene profiling, but are still in the
same ballpark. However, when we classified the datasets
using the in-degree profiles (and occasionally the out-
degree profiles) we observed that in some datasets the

Table 2: Examples of top network links or in degree of genes

Dataset Network Links Genes with Differential In Degrees

Leukemia

ALL/AML RUNX1→RAG1 CBFB→RAG1
RARA→ELA2 RARA→SERPING1
RARA→PFC RARA→MSH2 RARA→MPO

MGST1 HOXA9 DF PYGL CD33 CTSC
PFC PTX3 VPREB1 POU2AF1 MLC1SA
RAG1 CSTA LAMP2 MPO BLK ELA2 UPP1 
MAN2B1 CXCL2 ACTA2 ANXA1
CD24 ZYX BAT1 PLEK GATA3

Myeloid Leukemia NFKB1→F3 EGR1→F3 CEBPA→PPARG 
FOXO3A→RUNX1T1
MYC→LTC4S MAX→LTC4S
MYC→HLA-DM

CDH7 NFKB1 ZNF516 BNIP2
STAT3 PLEKHM1 CPS1 CDC2 CD2 MT1DP 
HNF4A
BLOC1S1
CRISP2 ARR3 EZH1 IGHGP EZH2

Breast Cancer

Duke NFKB1→BTRC FOXO3A→PLS1
BHLHB2→HGFBP6 POU2F1→TRAF3IP1
FOXJ2→MEP1A MEF2D→MEP1A

DRD2 RPA3 NDUFA6
NRF1 HBB CLCNKB PDE3A FKBP4
MFAP1 SURF1 PIM1 SLIT1 TAF1
DUSP4 CRYBB2 TNP2 MAPK7
LTBP1 TCEB2 SOX15 HIP2

Dutch PAX8→FEN1 PAX8→E2F1
TCF2→KLHL5 FOXM1→TAD3
TCF2→ZBTB4 ELK1→UBE2C
TCF2→UBE2C E2F1→CELSR2 PAX8→TK1
FOXM1→DPF2 FOXM1→CD160 FOXM1→CCL3
E2F1→UBE2Q USF1→MYBL2 FOXM1→ABCB1
E2F1→TK2 PBX1→TROAP

PSMB10 TCP10 BAK1
DPP6 PDGFRL
ADCY7 SEC13L1
ALDH3A2 RAB5A
HDAC3 PCTK1
PGC IFNA7 IHH
ABCD3 PFKFB3

Paired Cell Types

Renal Carcinoma vs. Normal Kidney BHLHB3→IL15RA FOXO3A→PLK2
BHLHB3→HLX1 NR1H3→CDCA7L
PAX2→KCNK10

ABCA4 AP2A2 ALDH3B2
AGXT AGRP ADCY2
ACOX1 ACP2 ABCA1
ABAT NAT1 ADCY8
AHSG ADCY3 PARP4
ACVR2 ADRA2A
ACY1 AIM1

Monocytes vs. Granulocytes PAX8→MARCO NR1H2→MARCO
PAX8→MARCO CEBPA→MARCO 
CEBPG→MARCO RXRB→MARCO
RARA→MARCO HIF1A→PRSS15
EGR2→RIS1 RARA→SLC30A6

MRPS16 CYP4F12
ARL4A GSS TPST1 PMPCA CTAGE5 HEY1
KIF20A PKN2 SLC30A6
DNAJD1 PRSS15 HBEGF
MARCO NDUFA7
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error rates are slightly lower than those obtained by gene
profiling. The degree of a gene is defined by the number
of links associated with it, and therefore the collective
information about the condition specific activity of mul-
tiple links associated with a gene may compensate the
potential sources of noise and loss of information men-
tioned above.

For the datasets composed of distinctly different cell types,
the network-wide status of link activities enabled us to
cleanly discriminate between these cells with 0% cross
validation error rates. Equivalent error rates with ten fold

cross-validation were also obtained using the CS gene
degree profiles or gene expression profiles.

We display the differences between the regulatory net-
work structures by drawing a graph which includes the top
differentially activated links that discriminated between
the two classes, e.g. the AML and ALL. We note that the
network structures in each of these states contain many
more regulatory links (many of them are common to both
states), which makes them inscrutable upon visual dis-
play, whereas a graph as the one shown in Fig. 2 highlights

A combined set of links with the highest change in functional activity between patients with AML versus patients with ALLFigure 2
A combined set of links with the highest change in functional activity between patients with AML versus patients with ALL. To 
identify differential transcriptional activities between networks obtained from two sample populations, we analyzed the data 
matrix whose columns represent the individual adjacency networks and whose rows represent TF-gene link activities across 
the samples. Entries of this matrix can take one of three values; activation (1), inhibition (-1), no effect or undetermined rela-
tionship (0). The graph shown summarizes the output from a feature selection procedure (see methods section) for identifying 
the TF-gene regulatory links that have the most prominent differential transcriptional activities between AML and ALL patients. 
Target genes are denoted by yellow circles and TFs by red squares. Stimulatory and inhibitory regulatory links, are indicated by 
red and blue arrows respectively.
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the links that undergo changes between the networks that
correspond to the two phenotypes.

For example, this graph suggests that the regulation of
RAG1 (recombination activating gene 1) by RUNX1/
CBFB (which comprises the subunits of the heterodimeric
transcription factor, core binding factor) is a crucial link
differentiating AML and ALL. RAG1 is known to be
expressed in a stage-specific manner in various types of
ALL (both T and pre-B) [46]. Yannoutsos et al recently
demonstrated that an intergenic silencer which suppresses
expression of RAG1 in developing lymphocytes is depend-
ent on occupation of the RUNX binding sites [47]. The
regulation by RARA (a member of the retinoic acid recep-

tor family of transcription factors) of a set of genes
involved in myeloid maturation is also identified (Fig. 2).
RARA is known to be up-regulated in some types of AML
[48].

Using a separate leukemia dataset we examined the differ-
ences in regulatory network structures which best discrim-
inated a set of leukemia samples identified by
translocations involving the AML1-ETO fusion gene ver-
sus those with translocations involving the PML-RAR
fusion gene. Key links, which differentiated these two
types of leukemia, included the regulation of the fusion
protein RUNX1T1. We note that our algorithm would not
be able to distinguish whether abnormal regulation of a

Classification utilizing differences in condition-specific network topologies (links)Figure 3
Classification utilizing differences in condition-specific network topologies (links). The links presented on the y-axis were 
extracted using a supervised learning scheme that identifies the TF-gene links that undergo the most substantial regulatory 
alterations between two classes of AML patients; those with a translocation resulting in the AML/ETO fusion protein versus 
those with the RAR/PML fusion protein. The red, black and green represent a stimulatory relationship, no relationship or inhib-
itory relationship of the TF-gene links, respectively.
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gene in one class was due to mutations or epigenetic mod-
ifications of the target gene, as opposed to a change in cis-
regulatory transcriptional control.

In analogy to standard microarray analyses in which the
genes that separate two populations are presented in heat-
maps, we identify and display TF-gene pairs that are pre-
dominantly linked in networks associated with one of the

classes, but not in the networks of the other class. Table 2
shows examples of these differentially active links. Fig. 3
shows the separation of AML samples using the combined
TF-gene pair activities. For example the regulatory TF-gene
pair Myc→HLA-DMA is more active in AML involving the
fusion protein AML/ETO than in AML involving the
fusion protein RAR/PML. The binding of Myc to HLA-
DMA has been demonstrated in a study of the regulatory

Classification utilizing differences in condition-specific network topologies (in-degree)Figure 4
Classification utilizing differences in condition-specific network topologies (in-degree). The genes presented on the y-axis were 
extracted as in Fig. 4 using a similar machine learning procedure that identifies genes whose in-degree (the number of regula-
tors that control these genes) undergoes the largest change or rewiring.
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role for c-Myc in Burkitt's lymphoma cells [29]. Fig. 4
shows the separation of the same AML populations using
a classification scheme based on the changes (rewiring) of
the in-degree of all genes. We note that the in/out degree
measure of a given node is obtained by summing the rel-
evant row/column of the regulatory network, and there-
fore it can be positive or negative. This is determined by
whether the regulators that control the target gene (node)
are mostly stimulatory or inhibitory.

Our analysis suggests that a direct link from NFKB1 to F3
(coagulation factor III/Tissue factor) is among the top
links that discriminate between the two types of myeloid
leukemia. Constitutive expression of F3 by acute promye-
locytic leukemia (APL) cells is thought to contribute to the
common coagulation complications of this disorder. The
expression of the APL specific PML/RARalpha fusion
oncoprotein results in induction of F3 mRNA and pro-
moter activity. Djordjevic et al [49] have recently drawn
attention to the role of NFKB binding sites in the pro-

moter region of F3, using human smooth muscle cells.
They demonstrated that F3 mRNA and protein expression
and surface procoagulant activity were increased in
response to thrombin, primarily involving a sequence
between -636 and -111 bp containing a distal, nuclear fac-
tor-kappaB (NFkappaB)-dependent element. These find-
ings raise the possibility that this direct link of NFKB→F3
could also be highly relevant to the F3 mRNA and protein
expression and procoagulant activity involved in the clin-
ically important coagulopathy in APL. The link between
EGR1→F3 also was noted to be important in our analysis.
The regulation of TG by EGR-1 has been well documented
[50], although its relevance in leukemia has yet to be
determined.

In Fig. 3 we show only links with an information gain
score > 0.5. Another regulatory link identified as an
important discriminator between the two types of leuke-
mia, with a score just below this cutoff, involves the C/
EBP alpha (CCAAT/enhancer binding protein, CEBPA)

Table 3: Accuracy estimates (100% – error rate) using different base classifiers and feature selection techniques, based on twenty 
repetitions, each utilizing ten-fold cross validation for a total of 200 runs

Base Classifler IB1 NaiveBayes KStar J48 IBk

Expression Lower Upper Accuracy SD Accuracy SD Accuracy SD Accuracy SD Accuracy SD

Threshold 0.1 0.9 79.58% 4.79% 79.38% 3.86% 84.17% 2.72% 85.69% 1.63% 84.09% 2.64%
Threshold 0.2 0.8 91.56% 2.35% 90.47% 2.85% 91.67% 2.53% 88.50% 2.70% 93.75% 1.46%
Threshold 0.33 0.66 91.89% 2.95% 91.17% 2.39% 90.44% 2.90% 89.10% 2.88% 92.81% 1.91%
Absolute 50 200 90.28% 1.84% 90.74% 1.55% 90.46% 1.92% 88.54% 2.20% 90.62% 1.92%
Tanh 0.25 0.75 92.71% 2.43% 93.45% 1.92% 91.67% 2.13% 89.93% 3.46% 91.56% 1.19%

Feature Selection InformationGain ChiSquared GainRatio Wrapper Subset

Expression Lower Upper Accuracy SD Accuracy SD Accuracy SD Accuracy SD

Threshold 0.2 0.8 91.56% 2.35% 89.96% 2.74% 92.41% 1.72% 87.30% 3.36%
Tanh 0.25 0.75 92.71% 2.43% 92.55% 2.72% 92.56% 2.34%

Table 3 demonstrates explorations of the effects of varying the parameters involved in classification based on network features. Each pair of cells 
provides the overall accuracy and standard deviation (SD) for a parameter set based on twenty repetitions, each utilizing ten fold cross-validation, 
for a total of 200 runs. Table 3 displays the effects of variation of the base classifier combined with variations in the thresholds used to determine 
the condition specific expression state of genes. All classification was done using the WEKA package. Complete documentation of each method is 
available at the WEKA website [63]. Briefly, IB1 and IBk are nearest neighbor classifiers using 1 and k neighbors, respectively. Results here are 
reported for IBk with k = 3. J48 is a standard C4.5 decision tree algorithm implementation, and KStar is an instance-based classifier that differs from 
the nearest neighbor learners through its use of an entropy-based distance function. Parameters used to determine up- or down-regulation in the 
co-expression networks were at the 80th and 20th percentile of expression levels respectively or at absolute expression intensities of 200 and 50 
(for Affymetrix Arrays only). Continuous co-expression matrix (labeled as Tanh in the table) was constructed by preprocessing the gene expression 
data g by the hyperbolic tangent transformation: G = tanh[(g-µ)/δ], where (µ and δ are the average and inter-quartile range of the expression level 
of all genes across all experiments respectively. The lower block in Table 3 shows the effects of different feature selection methods. The first three 
methods evaluate and rank the attributes. Results using information gain are reported in the main results of the text, and this method is described 
in the methods section. The chi-squared method calculated a chi-squared statistic with respect to the class; the gain ratio method evaluates 
attributes by calculating the ratio of the entropy of the class minus the entropy of the class conditional on the attribute to the entropy of the 
attribute. Additionally, a wrapper method was assessed in which feature subsets were explored utilizing a greedy forward hill-climbing method to 
search through the space of attribute subsets. In testing various methods of feature selection for the ALL vs. AML dataset, we find that the top ten 
links were identical for all methods tested, and over 90% of the top 25 links were selected by all methods tested.
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regulating PPAR-gamma (PPARG). CEBPA is a transcrip-
tion factor known to be involved in regulating granulo-
cytic differentiation and proliferation of myeloid
progenitors (reviewed in [51]). It is downregulated by the
AML1-ETO fusion transcript in t(8,21) leukemia. Further-
more, its role in regulating PPARG (peroxisome prolifera-
tive activated receptor, gamma) is well documented in
adipocyte development and bone marrow stromal cells.
Although the relationship is highly complex and involves
other C/EBP factors, there is strong evidence of direct reg-
ulation of PPARG [52]. Our findings suggest that the role
of this direct link may deserve further evaluation in leuke-
mia.

Parameter selection
We examined the robustness of our results by studying a
range of values for the parameters used in constructing the
connectivity networks and performing classification
based on network features.

The parameters we used to determine up- or down-regula-
tion in the co-expression networks in this work were at the
80th and 20th percentile of expression levels respectively
or, for Affymetrix data, at absolute expression intensities
of 200 and 50. To demonstrate the effect of these cutoffs
on the classification performance we studied the leukemia
dataset. Table 3 shows how the classification error rates
depend on these parameters. In cases in which we use a
ranking procedure to select the most discriminative fea-
tures (link, centralities), we show that networks generated
using more extreme cutoffs (e.g. 90th and 10th percentile)
are associated with larger error rates. Networks generated
using less extreme values than the 80th and 20th percentile

(e.g. 66th and 33rd percentile) have similar error rates. We
opted to use the 80th and 20th percentile cutoffs, as the fre-
quency of false positive links in these less dense networks
is lower. For the purposes of classification and localiza-
tion analyses described below, we also studied CS net-
works using continuous co-expression and binding data.
Nominal and continuous variables yielded similar results,
as shown in Table 3. Our continuous co-expression matrix
was constructed by preprocessing the gene expression data
g by the following transformation: G = tanh[(g-µ)/δ],
where µ is the average of the expression level of all genes
across all experiments and δ is the corresponding inter-
quartile range.

In Table 4 we show how variations in the parameters for
connectivity network construction affect classification
performance. The genomic region searched for TF binding
sites was either 1000 bp or 5000 bp upstream of known
genes. Two different collections of PWMs were used: 1) all
the matrices provided by TRANSFAC relevant to mamma-
lian genes, or 2) the selection of PWMs identified by
TRANSFAC as 'high quality'.

Cross-platform analysis
We examined whether the differentiating features found
in networks constructed using one microarray study also
differentiate between the networks constructed using
another independent microarray study performed on
another microarray platform [53]. We studied two acute
myeloid leukemia datasets [43,54]. Although one of the
datasets was small (9 cases), they both contained samples
from untreated patients at initial diagnosis with well-
defined subtypes based on the presence of well-docu-

Table 4: Accuracy estimates (100% – error rate) using different parameters for TFBS Identification, based on twenty repetitions, each 
utilizing ten-fold cross validation for a total of 200 runs

Promoter Range 1 kb upstream 1 kb upstream 5 kb upstream 5 kb upstream

PWM All Proflies Limited Profiles All Proflies Limited Profiles

Classifier Expression Lower Upper Feature 
Selection

Accuracy SD Accuracy SD Accuracy SD Accuracy SD

IB1 Threshold 0.2 0.8 InfoGain 91.56% 235% 81.65% 4.22% 93.06% 1.80% 93.27% 2.35%
IB1 Threshold 0.33 0.66 InfoGain 91.89% 2.95% 90.72% 2.90% 95.57% 2.04% 93.62% 1.78%
IB1 Threshold 0.2 0.8 ChiSquared 89.96% 2.74% 81.00% 4.04% 93.92% 1.75% 92.63% 2.22%
IB1 Threshold 0.33 0.66 ChiSquared 91.10% 2.90% 90.67% 2.79% 94.07% 2.43% 93.43% 2.31%
IB1 Tanh 0.25 0.75 InfoGain 92.71% 2.43% 92.74% 2.30% 92.13% 2.47% 92.00% 3.01%
Naive 
Bayes

Threshold 0.2 0.8 InfoGain 90.47% 2.85% 8235% 3.78% 96.04% 1.34% 94.98% 1.41%

Naive 
Bayes

Threshold 0.2 0.8 InfoGain 91.67% 2.53% 83.18% 3.11% 94.39% 1.73% 93.78% 2.00%

Table 4 shows the effects of variations in the parameters for connectivity network construction. The genomic region searched for transcription 
factor binding sites was either 1000 bp or 5000 bp upstream of known genes. Two different collections of Position weighted matrices (PWM) were 
also applied: 1) all the matrices provided by TRANSFAC relevant to mammalian genes (All Profiles), or 2) the selection of PWMs identified by 
TRANSFAC as 'high quality' (Limited Profiles).
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mented fusion genes. In addition they used closely related
platforms (Affymetrix U95 and U133A), for which most
of the genes represented in the probe-sets for the older
generation array are also represented in the newer U133A
chip that was used in the larger dataset. We trained a clas-
sifier on the larger dataset by constructing networks using
the subset of genes that was present on both the U95 and
U133A platforms and used the top separating features to
test its performance on the smaller leukemia dataset using
U95 microarray gene profiles. We found that the cross-
platform error rate was 11%, which is only 2% more than
within platform cross validation. We note that many
probesets, which allowed perfect separation of subtypes
on the larger dataset, are missing on the older array, and
therefore the performance of the classifier based on the
subset of U95 genes is a bit inferior to the classifier that
utilizes all the genes on the U133 chip. Interestingly, the
network features actually performed somewhat better
than gene expression profiles alone in the cross-platform
evaluation. Although the sample size is small and we do
not claim that network features are superior to gene
expression levels, this adds additional support for the con-
clusion that there is useful information in the network
features.

Network proximity of gene sets
We subsequently explored whether differentially
expressed genes are close neighbors in these transcrip-
tional regulatory networks. We studied the dispersion or

localization of differentially expressed gene sets in the net-
work, as illustrated in the schema of Fig. 5. Our rationale
was that concentration of these genes in focal regions,
rather than delocalization over the entire network, might
suggest strategies for interventions or further experimenta-
tion, not apparent from a perspective outside of the net-
work context. Although prior functional relationships
among genes may not be annotated in existing databases,
they may share common regulators that affect them
directly or indirectly via short regulatory paths within the
condition specific (CS) network. We note that for the CS
networks we used a binary version of the adjacency matri-
ces, which only takes into account the presence or absence
of a regulatory relationship between a TF and its target
gene. To measure distances we did not differentiate
between stimulatory and inhibitory relationships.

We first constructed a "class collective" CS network for
each phenotype by aggregating individual networks
derived from samples of the same type and retaining links
that appear to be active in at least 25% of the samples. For
instance, for the dataset of ALL and AML patients we
derived two class collective CS networks, one representing
the ALL patients and the other the AML patients. Subse-
quently, we extracted a subset of genes whose collective
expression patterns differentiate between the classes (e.g.,
normal versus malignant renal cell, AML versus ALL, or
poor outcome versus good outcome in breast cancer) for
each microarray dataset. We then computed the geodesic
distances between each pair of genes in the subset of dif-
ferentially expressed genes (the minimal number of links
needed to traverse the path between each pair of genes via
a common set of regulators) in the class collective CS net-
works, e.g., in the ALL CS network and in the AML CS net-
work. To examine whether the subset of differentially
expressed genes share common regulators in one or both
of the class collective CS networks we compared their dis-
tance distribution to the distance distributions of many
random, same-size subsets of genes in these networks.
Interestingly, the subset of differentially expressed genes
tended to localize closely on the AML network (p < 0.01),
when compared to the gene-gene distances of random sets
of genes on the same class specific network. When con-
structing class collective networks for more heterogeneous
datasets such as breast cancer patients with or without dis-
ease recurrence using the Duke dataset, we also found that
the many of the differentially expressed genes were con-
centrated in neighborhoods on the network (p < 0.01)
(Fig. 6).

Similar results were obtained for the 295 breast cancer
samples from the Dutch dataset [40,44,55] and for 286
breast cancer samples analyzed recently [41], where genes
are more tightly localized in the CS network constructed
from patients with recurrence (data not shown). In a

A scheme of two potential scenarios of regulatory networksFigure 5
A scheme of two potential scenarios of regulatory networks. 
Genes that separate two classes of patients are denoted by 
red circles and TFs by yellow circles. A) The four separating 
genes are localized in the network such that the (link) dis-
tance between each pair is at most three. These four genes 
share two regulators denoted by black bold circumferences. 
These two regulators are likely to be relevant for sample dis-
crimination because they regulate the four most discrimina-
tory genes. B) The four separating genes have remote or no 
regulatory linkage and therefore their regulating TFs are less 
likely to be helpful in sample separation.

A B
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Distance map between the differentially expressed genes in a condition specific (CS) regulatory networkFigure 6
Distance map between the differentially expressed genes in a condition specific (CS) regulatory network. In this map we display 
the gene-gene distances between the pairs of genes that belong to the subset of differentially expressed genes. To determine 
the distance between gene a and gene b, we count the number of directed links leading from each TF to genes a and b, and cal-
culate the sum of links of the two paths for each TF. The distance between genes is defined by the minimum of these sums 
(This also defines the common closest TF ancestor of this pair of genes). We show the distances between the pairs of genes 
that belong to the subset of differentially expressed genes separating between disease free, node-positive breast cancer 
patients and patients with recurrence [38]. This map resembles maps used in atlases to represent distances between different 
cities. The order of the genes on the x and y-axes is the same. The distances between them are color coded in the horizontal 
bar below the map (distances of 1 or 2 are indicated in blue, distance of 3 in cyan, distance of 4 in yellow and distances greater 
than 4 in Red. Distances > 4 typically represent disconnection, and in rare cases, long geodesic distances. In this example we 
identified 66 differentially expressed genes (see list on the y-axis) and found that a large subset of these genes are close to each 
other on the class collective CS network derived from the patients that have recurrence. This proximity is significant when 
compared to the proximity obtained by choosing a hundred same size random sets of genes (p < 0.01). This suggests a regula-
tory association between the differentially expressed genes. To demonstrate the tendency of these genes to be localized on 
the class collective CS network, we show three examples of distance maps of randomly selected, same size, sets of genes 
(lower three maps in the right column). The top map on the right of this figure is a scaled down map of the classifying genes, 
and is identical to the larger map on the left. This phenomenon of localization is not observed in the corresponding disease free 
collective CS network.
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recent study employing RT-PCR technology, a set of 16
genes was found to be valuable in predicting recurrence in
node-negative, estrogen receptor positive, Tamoxifen-
treated breast cancer patients [56]. Since the samples in
the Dutch study also consisted of node-negative patients
with breast cancer, it is reasonable to examine the regula-
tory distance distribution of this independent set of genes
in the class collective network constructed from the Dutch
dataset for patients with recurrence, as well as the network
constructed from patients that were disease free. We
found that genes from this set, including Bcl-2, ERBB2,
GRB-7, Ki-67 and SCUBE-2, tend to localize on the Dutch
class collective recurrence network (Fig. 7 (p < 0.01), but
not on the disease free network. The close proximity of
these genes in the recurrence network reveals "hot spots"

of deregulation in cancer, not found in the non-recurrence
network, and may suggest sub-networks which could be
suitable targets for intervention or for further focused
study.

One of the limitations in our definition of connectivity is
that putative links between TFs and regulated genes are
determined primarily by curated literature references or
sequence similarity searches for potential DNA binding
sites. The binding connectivity network does not include,
for instance, high throughput binding data, which to date
remain relatively limited for human cells. We explored the
extent to which experimental validation of binding sites
might alter our results by replacing connectivity data for
the breast cancer subsets with ChlP-on-chip data for three
TFs (Myc and E2F1), for which ChlP-on-chip data were
available [29]. Although these studies were not performed
using breast cancer samples, several predicted links
between genes and regulators were substantiated by these
experimental data (Fig. 7, solid arrows stemming from
Myc and E2F1). The few predicted links that were not
matched by these non-breast cancer experimental data are
shown with dotted arrows in Fig. 7. Use of Chip-on-chip
data from Burkitt's lymphoma experiments leads to a
noticeable rewiring of the network, although the list of
TFs that link between this set of 16 genes did not change
when including the experimental ChlP-on-chip data. This
rewiring could result from a) false positive predictions
obtained by the MATCH program, b) the promoter
regions printed on the chip do not completely overlap
with the RefSeqs representing the gene, and therefore
binding was not observed experimentally in the ChlP-on-
chip studies, c) the binding targets of the factors investi-
gated in the Burkitt's lymphoma cells might be somewhat
different from the targets of these factors in the breast can-
cer samples.

Discussion
There is an extensive body of literature proposing meth-
ods for classification of phenotypes based on genome-
wide gene expression datasets, and many of these have
potential for addressing clinical or biological questions in
cancer research. In the present study we explored a novel
alternative classification paradigm, using regulatory net-
works. The intersection of gene profiling analysis with an
experimentally and computationally derived connectivity
network of binding between TFs and their gene targets
offers a pragmatic approach that enables us to get beyond
identification of differentially expressed genes and deci-
pher the alterations in transcriptional control associated
with these genes.

Distinct cell types are typically separated by the collective
expression profiles of genes identified using supervised
learning. To gain new biological insights in microarray

Breast cancer condition specific (CS) regulatory sub-networkFigure 7
Breast cancer condition specific (CS) regulatory sub-net-
work. We studied the Dutch datasets [39, 44, 55] to identify 
regulatory connections between sixteen genes that were 
recently implicated in recurrence in node-negative breast 
cancer [56]. To visualize regulatory distances between these 
genes and to identify the regulators involved in their co-alter-
ation in the CS recurrence regulatory network, we extracted 
from this CS network a sub-network involving these genes 
and all the TFs that regulate them directly or indirectly. Four-
teen of these genes are included in the Dutch datasets (red 
and green ovals). Six of the genes (red) form a highly con-
nected and localized CS sub-network. TFs linked to any of 
these genes directly or indirectly are denoted by yellow 
boxes. Solid arrows stemming from Myc and E2F1 represent 
links supported by ChlP-on-chip experiments [29], whereas 
predicted links that were not matched by these non-breast 
cancer experimental data are shown with dotted arrows.
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analysis several groups have proposed algorithms for inte-
gration of pathway databases with gene expression pro-
files [36,57-59]. In our earlier work [36] we concluded
that differences between the distinct cell types are so per-
vasive that it is hard to implicate a small number of char-
acteristic biological processes. In fact we attempted to
classify the samples by using the gene expression profiles
of one pathway at a time (i.e. by taking into account only
the expression of genes that belong to this pathway) and
observed that numerous pathways have differential
expression behavior between the cell types. However,
cohorts of heterogeneous cancer patients are much more
difficult to separate than distinct cell types, even if one
uses a subset of genes selected using supervised learning in
a manner that attempts to minimize the classification
error. In cohorts of cancer patients with different clinical
outcome, pathway based classification leads to poorer
performance (data not shown) than using standard super-
vised learning based on gene expression, and does not
provide clear insights into disease dysregulation. Instead
of combining pathway data with gene expression profiles,
here we have attempted to integrate DNA binding data-
bases, with a similar goal of gaining biological insight by
inferring the specific conditions of activity of regulatory
links and rewiring of transcriptional control of each node
in the regulatory network.

In the current study, we hypothesized that each individual
sample from a cohort of cancer patients has a distinct reg-
ulatory network, i.e., set of activated links, and that this
regulatory network structure can be used for separating
conditions. It is expected that network structures of
patients from different phenotypes will differ more sub-
stantially than network structure within the same pheno-
type. The differences between these networks are reflected
in their topological properties, e.g., the centrality of each
gene in the network, the activity status of each link in the
network, the Hamming distance between networks, to
name just a few.

Other papers have demonstrated that network properties
can vary between cancer and normal cells [25,26]. These
networks were based on protein-protein interactions [26]
or gene expression only [25], whereas in the current study
we construct directed regulatory transcriptional networks
with information on suppression versus stimulation. Here
we constructed condition-specific networks for each indi-
vidual patient, which we use for classification of patients
within a disease population.

Classification based on topological changes in the net-
works allows us to implicate links that seem to be more
active in one population than in the other populations.
These putative links allow us to infer causal relationships
between the TFs and their potential target genes, and

therefore can provide us with hypotheses that are not
apparent in straightforward or pathway assisted analysis
of microarray experiments. Furthermore, by comparing
the centrality of each gene across the regulatory networks
of all patients pooled from two sub-populations (e.g.
recurrence vs. disease free breast cancer patients), we can
focus our attention on genes whose regulatory control (or
their rewiring in the network) is changing in the most sub-
stantial way between the sub-populations analyzed. We
note that in the datasets we studied, the genes that
undergo the largest rewiring are not the central genes
(genes with the highest degree of connectivity in the regu-
latory network). Central genes were studied in yeast and
E. coli regulatory networks and, as expected, many of
them were found to be essential, as shown in a number of
knockout experiments [60]. However, we found that the
combined expression profile of the top central genes of
either of the sub-population networks is not a good proxy
for the transcriptome-wide gene profile. Specifically, we
compared the performance of a classifier based on the
expression data of the ten top central genes with a classi-
fier derived by utilizing the genome-wide expression pro-
files (data not shown). In most datasets, the classification
error obtained using the classifier based on the top central
genes is substantially higher. This might be attributed to
the fact that samples of very similar cells from the sub-
populations have similar regulatory networks. This
implies that their central genes do not change their expres-
sion levels noticeably.

Our results suggest that genes whose collective expression
profiles best differentiate between relevant disease condi-
tions in cancer tend to localize on the transcriptional reg-
ulatory network. In other words, many of these
differentially expressed genes have short gene-gene dis-
tances that can be depicted by relationships such as a "sib-
ling relationship" (genes directly regulated by a common
TF), a "cousin relationship" (genes regulated by different
TFs that are regulated by a common TF), or genes that are
closely localized in an "uncle-nephew relationship". Iden-
tification of these types of "families" or sub-networks
gives us insight into the regulatory control that differenti-
ates between normal and cancer cells or between good
and poor prognosis patients. For instance, Figure 8 sug-
gests an "uncle-nephew relationship" between Erbb2 and
Bcl-2 via Myc or E2F1 through CUTL1. In addition, we can
identify key regulators that impact the expression of large
sets of genes implicated in cancer. For instance the CS net-
works for ALL patients reveal the close regulatory relation-
ship of retinoic acid receptor with at least 7 of the genes
that collectively separate ALL from AML (Figure 3).

The classification schemes introduced here utilize the top-
ological properties of the network and facilitate the iden-
tification of key transcription factors that may be involved
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in gene dysregulation. Typically, these TFs do not appear
in the short list of differentially expressed genes obtained
in standard microarray analyses, but they are still linked to
many of the genes in the short list. Therefore, these TFs
may be good candidates for future proteomic biomarker
screening tests, because a relatively small number of these
TF markers (that have transcriptional linkage with the dif-
ferentially expressed genes) may be effective for differenti-
ating the samples due to differences in their protein
expression levels, localization or phosphorylation status.

Although specific predictions about transcription factor-
gene links can only be fully confirmed by further experi-
mental studies, the success of using the networks to clas-
sify phenotypes using a wide range of cutoff parameters
for binding and co-expression suggests that substantial
parts of the putative networks we derived contain biolog-
ically relevant information. As a next step we plan to
derive a more accurate TF-target gene binding connectivity
network by integration of future ChlP-chip data and com-
plex protein-DNA prediction algorithms (e.g. schemes
that find motifs enriched in many promoters of genes that
share common expression profiles across multiple experi-
mental conditions, and take into account the conserva-
tion of these motifs in closely related organisms).

Conclusion
In this work we introduced a novel approach of separating
cell types by analyzing changes in the functionality of TF-
target gene pairs (regulatory links) rather than changes in
expression levels of individual genes (nodes). Moreover,
we showed that other topological characteristics of the CS
regulatory networks allow us to effectively classify cell
types and patient samples. This approach enables us to
identify key transcriptional circuitry alterations by finding
pairs of regulating-regulated genes, whose coordinated
expression activities undergo the most substantial modifi-
cation from one class of patients to another. Inspection of
the regulatory networks we constructed for cancer cells
shows that genes that differentiate between states tend to
localize on these networks. Despite the limitations of the
currently available data from human DNA localization
studies compared to that for model organisms, the net-
work drafts we derived by intersecting expression data
with a mix of predicted and experimental binding input
already enable us to find key regulators and foci of dereg-
ulation within the cancer regulatory network.

Methods
Microarray datasets
1) Distinct normal cell types: Affymetrix U133 chip
mRNA expression data of 10 resting neutrophil and 19
resting monocyte samples obtained from normal individ-
uals [36].

2) Hematologic Malignancies: Affymetrix data comparing
47 samples obtained from acute lymphoblastic leukemia
(ALL) patients to 25 samples from acute myeloid leuke-
mia (AML) [23]. Affymetrix U133A chip mRNA expres-
sion data from 22 patients with myeloid leukemia
involving a t(8;21) translocation with the AML/ETO
fusion protein and 19 patients with myeloid leukemia
involving a t(15;17) translocation with the RAR/PML
fusion protein [43].

3) Diseased versus normal tissues: Affymetrix U133A and
U133B chips of 9 renal cell carcinoma samples and
matched normal samples [37].

4) Breast Cancer: Hu25K oligonucleotide arrays from 295
breast cancer patients (175 disease free and 120 with dis-
ease recurrence) [40,44,55], U95Av2 expression data from
22 breast cancer survivors and from 29 patients with
recurrence [38], and U133A Affymetrix datasets from 183
patients who were disease free at 5 years versus 93 patients
with recurrent disease [41].

Simultaneous array and gene normalization
We applied a bi-normalization procedure to the expres-
sion data for gene profiling analysis, as described in previ-
ous work [36,61].

Connectivity networks
The human and mouse connectivity networks were
derived from a combination of high quality literature ref-
erences (documented in the professional version of the
Transcription Factors Database, TRANSFAC) and predic-
tions based on matching known and putative transcrip-
tion factors consensus binding sites sequences with the 1
kb (or 5 kb) upstream promoter regions of all human and
mouse genes stored in the Goldenpath Database at UCSC
[62]. We used the default parameters of the MATCH algo-
rithm (provided by TRANSFAC) and a minimal score of
0.85 as a threshold for defining direct regulation connec-
tivity between a transcription factor (TF) and a gene. The
information is stored in a rectangular adjacency matrix, in
which regulating TFs are represented by column indices
and regulated genes by row indices. The elements of the
matrix Cij are assigned a value of one if transcription factor
j directly regulates gene i. If not, the elements are assigned
a value of zero. We arranged the rows of this matrix such
that the regulated genes in the first rows are TF genes. Fur-
thermore, the order of the TFs across these rows is equiva-
lent to their order across the columns. Thus, the upper
square block of the matrix C consists of the TF regulatory
network, and its non-zero diagonal terms Cii correspond
to self-regulation. The lower rectangular block of this
matrix represents the regulatory relationships between TFs
and non-regulating genes.
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Integration of the connectivity network with co-expression 
networks
Essentially, to obtain condition specific networks we
intersect two types of information: a) TF-target gene bind-
ing b) TF-target gene co-expression. A nonzero entry in the
binding matrix represents predicted or known regulation
of a gene by a given TF based on either: i) the degree of
matching between the TF PWM with the promoter region
of a potential target gene is greater than a predetermined
threshold (predictive), ii) prior experimental knowledge
of the regulation of the target gene by the TF as docu-
mented in TRANSFAC (please note that in the current ver-
sion of TRANSFAC some of this knowledge includes
several ChlP-on-chip experiments), or iii) ChlP-on-chip
experimental data that are still not incorporated in
TRANSFAC (as we implemented in the analysis shown in
Fig. 7)

Classification with feature selection
We perform feature selection to rank the links, genes and
degree of the nodes that undergo the most substantial
change between two classes (two cell types, normal versus
cancer, survival versus recurrence). To rank the differential
activity of the links we first concatenated the adjacency
matrix representing the network of each sample to a one-
dimensional vector, whose entries are assigned a value of
1,0, or -1. These values correspond to a stimulatory rela-
tionship, no relationship or inhibitory relationship of the
TF-gene links, respectively. We then formed a matrix con-
sisting of all of these vectors such that each column of this
matrix represents the sample link vector. The number of
rows (features) in this matrix is equal to the number of
genes times the number of TFs involved in the corre-
sponding two class microarray study. We then subjected
this matrix to a meta-classifier that in the first step ranks
the features according the information gain of using this
feature to explain the class data in the training set. The fea-
tures with the highest rank are then passed to train the
base classifier (decision tree, Naïve Bayes, nearest neigh-
bors etc.) using the training data only. To estimate the
cross validation error rate of the classifier in the reduced
feature space, we performed ten-fold cross validation ten
times, using ten different seeds. We note that the feature
selection is done on the training data only and not using
the whole data, since the latter can lead to an optimistic
bias in the accuracy estimates. To perform expression
based classification and identify differentially expressed
genes, we used an equivalent procedure to classify the
samples by first reducing the dimensionality of the data
using feature selection followed by classifier training and
cross validation. Similarly, we formed a genome-wide
profile indicating the in-degree (centrality) for all genes
(or out degree of all TFs) in each individual network and
searched for the subset of genes or TFs whose centrality
measure is altered significantly between the two classes.

We implemented the same procedure for these three types
of input data (link profiles, gene profiles and gene central-
ity profiles) employing the WEKA package [63] via Mat-
lab™ and using the following learning configuration: a)
Information Gain for an attribute evaluator method, b)
Ranker for a search method of attribute selection and c)
nearest neighbor learner for a classifier. We classified
these three types of data using many other combinations
of feature selection and classifiers implemented in WEKA.
The cross-validated classification error rates obtained by
using the specific combination of feature selection and
learning method reported in the results section were typi-
cally close to the performance obtained by the top classi-
fiers tested for each of these datasets. Our goal here was to
identify the prominent features that separate the data in
an efficient manner. The rationale for the choosing Infor-
mation Gain and Ranker was the large number of varia-
bles (two orders of magnitudes larger than the number of
genes in the genome). This allows us fast computation of
the merit of each feature. The following example shows
how to evaluate the information gain of a feature that has
three discrete states (+1,0,-1):

a) calculate the information measure for all the samples N
= Na + Nb of class a and class b

info({Na, Nb}) = -Pa log2(Pa) - Pb log2(Pb) where Pa = Na/
N and Pb = Nb/N

b) calculate the information measures in each of the dis-
crete states (+1, 0, -1)

info({N+1
a, N+1

b}), info({N0 
a, N0

b}), info({N-1
a, N-1

b})
where Na = N+1

a + N0
a + N-1

a and Nb = N+1
b + N0

b + N-1
b

c) calculate the weighted average information value of
these discrete states

infow = (N+1/N) info({N+1
a, N+1

b}) + (N0/N) info({N0
a,

N0
b}) + (N-1/N) info({N-1

a, N-1
b]}, 

where N+1 = N+1
a + N+1

b, N0 = N0
a + N0

b and N-1 = N-1
a + N-

1
b

d) the difference {info({Na, Nb}) - infow} is the informa-
tion gain of this feature.

The Ranker method ranks the attributes by their individ-
ual evaluations.

We calculate the information gain for each feature, and
rank them according to this measure, which indicates the
gain of information we obtain by classifying the data
using this feature. Features above the 95th percentile rank
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are kept unless their information gain is negligible with
respect to the feature with the highest rank.

Centrality
To examine the possibility of classifying the samples by
network characteristics we used a feature space consisting
of the degree of connectivity profile of all the nodes in the
networks. Moreover, we questioned whether the collective
expression of the central genes (hubs) in the regulatory
networks is a good proxy for phenotype characterization.
We tested four types of centrality measures: a) In-degree
defined by the number of TFs that regulate a gene, b) Out-
degree defined by the number of genes regulated by a TF
c) In-PageRank (a measure invented by the Google Inc.
founders) defined by the entries of the left eigenvector
(with the largest eigenvalue) of the adjacency matrix rep-
resenting the CS regulatory network. This measure of cen-
trality factors in the extent that the regulated gene is
connected to TFs that are centrally regulated as well, d) As
in c but for regulating TFs using the right eigenvector of
the adjacency matrix. We presented results using the In-
degree centrality. Out-degree centrality produces some-
what higher error rates (data not shown). The PageRank
measures resulted in very similar error rates (data not
shown).

Geodesic and gene-gene distances
The proximity of groups of genes is determined by the par-
ticular distance measures we used. The most straightfor-
ward distance measure we used on the directed graph
representing the regulatory network is the geodesic dis-
tance. The geodesic distance between a gene-TF pair
(genei-TFj) is 1 if the corresponding entry in the adjacency
matrix is one (Aij = 1). A pair of genei-TFj whose Aij = 0
could be indirectly connected in the regulatory network
via other transcription factors regulated by TFj. To find
these indirect connections we reorganized the matrix Aij
such that its upper square block, defined by Tij, consists of
transcription factor pairs (TFi-TFj) only. If an entry of the
adjacency matrix Aij is zero but the same entry of (AT)ij is
nonzero, the geodesic distance between genei and TFj is 2.
Similarly, if the entries of (ATm)ij for all m = 0,..,n-1 is zero
and the corresponding entry (ATn)ij is nonzero the genei-
TFj geodesic distance is n + 1. Thus, the geodesic distance
between a TF and a gene is the shortest directed path
between them, i.e., the smallest number of links connect-
ing them. A pair of non-regulating genes has an infinite
geodesic distance, because there is no directed path in the
regulating network, which connects these genes. To define
a distance between any pair of genes, whether any of these
genes is a TF or not, we identify an "ancestor" transcrip-
tion factor in the regulatory network, whose sum of geo-
desic distances to both genes is minimal. If one or two of
the genes of a given pair is a TF, the gene-gene distance of
this pair is defined by the either the shortest directed path

between them or the gene-gene definition above, which-
ever is smaller.
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