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Background: Hepatocellular carcinoma (HCC) is one of the world’s most prevalent and
lethal cancers. Notably, the microenvironment of tumor starvation is closely related to
cancer malignancy. Our study constructed a signature of starvation-related genes to
predict the prognosis of liver cancer patients.

Methods: The mRNA expression matrix and corresponding clinical information of HCC
patients were obtained from the International Cancer Genome Consortium (ICGC) and
The Cancer Genome Atlas (TCGA). Gene set enrichment analysis (GSEA) was used to
distinguish different genes in the hunger metabolism gene in liver cancer and adjacent
tissues. Gene Set Enrichment Analysis (GSEA) was used to identify biological differences
between high- and low-risk samples. Univariate and multivariate analyses were used to
construct prognostic models for hunger-related genes. Kaplan-Meier (KM) and receiver-
operating characteristic (ROC) were used to assess the model accuracy. The model and
relevant clinical information were used to construct a nomogram, protein expression was
detected by western blot (WB), and transwell assay was used to evaluate the invasive and
metastatic ability of cells.

Results: First, we used univariate analysis to identify 35 prognostic genes, which were
further demonstrated to be associated with starvation metabolism through Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). We then used
multivariate analysis to build a model with nine genes. Finally, we divided the sample into
low- and high-risk groups according to the median of the risk score. KM can be used to
conclude that the prognosis of high- and low-risk samples is significantly different, and the
prognosis of high-risk samples is worse. The prognostic accuracy of the 9-mRNA
signature was also tested in the validation data set. GSEA was used to identify typical
pathways and biological processes related to 9-mRNA, cell cycle, hypoxia, p53 pathway,
and PI3K/AKT/mTOR pathway, as well as biological processes related to the model. As
evidenced by WB, EIF2S1 expression was increased after starvation. Overall, EIF2S1
plays an important role in the invasion and metastasis of liver cancer.
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Conclusions: The 9-mRNA model can serve as an accurate signature to predict the
prognosis of liver cancer patients. However, its mechanism of action warrants
further investigation.
Keywords: starvation, gene set enrichment analysis, hepatocellular carcinoma, mRNA signature, EIF2S1
INTRODUCTION

Liver cancer is a type of cancer with the highest incidence
worldwide, and hepatocellular carcinoma (HCC) accounts for
80% of liver cancer cases (1). Despite advances in treatments
such as surgery, ablation, and liver transplantation (2), liver
cancer remains one of the leading causes of death among all
cancers (3, 4). Furthermore, increases in non-alcoholic fatty liver
disease (NAFLD), metabolic syndrome, and obesity elevated the
risk of liver disease (5).

Therefore, the identification of new biological molecular
predictors to improve the prognosis of HCC is urgent.

The tumor microenvironment is mainly composed of
hematopoietic and mesenchymal cells, as well as non-cellular
components (6). it is closely associated with disease progression,
local resistance, immune escape, and metastasis (7). Malnutrition is
one of the most common conditions in tumor microenvironments
due to increased nutrient depletion in cancer cells and inadequate
vascular supply (8, 9). Starvation is reportedly associated with
epithelial-mesenchymal transition (EMT), angiogenesis, and
autophagy (10–12). For instance, in bladder cancer, starvation
can induce autophagy in cancer cells, thereby enhancing the
EMT of bladder cancer through the TGF pathway (13). Studies
have reported that starvation can induce invasion and metastasis of
HCC cells (14). However, studies on the characteristics of
starvation-related malignancies in HCC survival are still lacking.

In this study, we first established a hunger-related 9-mRNA
independent prognostic model using TCGA and verified the
model accuracy in the ICGC database. In addition, we
constructed a nomogram to assess clinical significance using
risk scores and clinical factors. We then analyzed the typical
pathways and biological processes associated with the 9-mRNA
model through GSEA. Finally, we found that the expression and
phosphorylation of the core model gene EIF2S1 were increased
under starvation induction, which induced autophagy to increase
EMT in HCC.
METHODS

Data Collection
RNA expression data and related clinical information were
obtained from TCGA (https://cancergenome.nih.gov/). A total
of 424 samples in TCGA-LIHC were used in the following study
as a training cohort (Supplementary File 1). In addition, data
from 231 HCC patients from ICGA-LIRI-JP (https://dcc.icgc.
org/) were downloaded as an independent, external validation
cohort (Supplementary File 2). This research strictly follows
TCGA and ICGC access rules and publication guidelines.
2

Detailed information is shown in Table 1. The starvation-
related gene set was obtained from Gene Set Enrichment
Analysis (GSEA) ‘GOBP RESPONSE TO STARVATION ‘ in
The Molecular Signatures Database(https://broadinstitute.org/
gsea/msigdb/). It contained 196 genes responsible for the
changes in the state/activity of a cell/organism as a result of a
starvation stimulus (Supplementary File 3).

Construction and Validation of a Signature
In the training set, we first identified 142 differentially expressed
genes associated with starvation metabolism in 374 samples
using R (P < 0.05) (Supplementary File 4). Univariate Cox
regression analysis (P < 0.05) was used to obtain 39 genes
associated with prognosis. Finally, multivariate Cox regression
analysis was used to construct a signature containing nine genes,
detailed in Table 2. The risk score for each patient was calculated
using the following equation: risk score = (b1 × expression of
gene1) + (b2 × expression of gene2) + … + (b9 × expression of
gene9). All patients were divided into high- and low-risk groups
based on the median risk score. Kaplan-Meier survival curve and
two-sided log-rank test were used to compare the overall survival
(OS) of the high- and low-risk group patients. Receiver-
operating characteristic (ROC) curves were applied to assess
the diagnostic efficacy of each clinicopathological characteristic
and the prognostic signature. Stratified survival analysis was
performed to examine the accuracy of the prognostic signature in
TABLE 1 | Summary of baseline clinical pathological parameters of patients with
HCC in the two datasets.

Characteristic train test

Age (years)
≤ 65 227 98
> 65 122 162
Gender
Male 239 192
Female 110 68
Grade
1 45 N/A
2 171 N/A
3 120 N/A
4 13 N/A
Stage
I 173 40
II 85 117
III 86 80
IV 5 23
Survival status
Alive 236 214
Deceased 113 56
Novembe
r 2021 | Volume 11 | Article 716
HCC, hepatocellular carcinoma; N/A, not applicable.
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predicting patient survival outcomes. Furthermore, we
performed univariate and multivariate Cox regression analyses
to evaluate whether the risk score was independent in
determining the prognosis of the HCC patients. The M and N
stages were not analyzed because data were missing for several
patients. P < 0.05 was considered statistically significant.

The mRNA expression profile matrix of 231 HCC patients
from ICGC was used as an external independent validation
cohort to validate the accuracy of the 9 gene signature.

Functional Enrichment Analysis
The biological processes, molecular functions, and cell
component Gene Ontology (GO) of mRNAs associated with
survival were identified using GO enrichment analysis. The main
signaling pathways of mRNA regulation were identified using the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis.

Establishment and Assessment of
the Nomogram
We constructed a nomogram by integrating clinicopathologic
characteristics, such as age, stage, sex, and grade, as well as the
risk score derived from the prognostic signature to analyze the
probable 3-year and 5-year OS of the patients with HCC.
Calibration charts were used to evaluate the performance of
the Nomogram.

GSEA
GSEA software 4.0.1 was used to identify starvation-related gene
sets in 50 HCC tissues and their adjacent tissues. Patients with HCC
were divided into low- and high-risk groups based on the median
risk value. GSEA was used to further analyze gene expression
differences between the high- and the low-risk resistance groups.
The Hallmark gene sets (h.all.v7.4.symbols.gmt), KEGG gene sets
( c2 . cp .kegg . v7 . 4 . s ymbo l s . gmt ) and GO gene s e t s
(c5.go.v7.4.symbols.gmt) were downloaded from the Molecular
Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb/
genesets.jsp). The gene sets were filtered using the maximum and
minimum gene set sizes of 500 and 15 genes, respectively. The
enriched gene sets were obtained based on a P-value < 0.05 and a
false discovery rate (FDR) < 0.25 after performing
1,000 permutations.
Frontiers in Oncology | www.frontiersin.org 3
Cell Culture
Liver cancer cells (Hep-3B and Huh-7) were obtained from the
Institute of Chinese Academy of Sciences. Hep-3B and Huh-7
cell lines were cultured in DMEM (Corning Incorporated,
Corning, NY, USA) supplemented with 10% fetal bovine
serum (FBS, Gibco, Thermo Scientific, Waltham, MA, USA).
All cells were cultured in an incubator with an atmosphere of
95% O2 and 5% CO2 at 37°C.
Western Blot
Total protein was extracted with RIPA lysis buffer (Beyotime
Institute of Biotechnology, Jiangsu, China) containing protease
and phosphatase inhibitors. The protein concentration was
detected using a BCA protein detection kit (Jiangsu Beyotime
Biotechnology Research Institute). Equivalent proteins were
separated on 10% SDS-PAGE gels and then transferred to
polyvinylidene fluoride (PVDF) membranes. After blocking with
skimmed milk (dissolved in TBST) for 2 h, the membranes were
subsequently probed using antibodies against B-actin (Cell
Signaling Technology, USA, 1:10000), EIF2S1 (Cell Signaling
Technology, USA, 1:1000),p-EIF2S1 (Cell Signaling Technology,
USA, 1:1000), Vimentin(Cell Signaling Technology, USA, 1:1000)
and E-cadherin(Cell Signaling Technology, USA, 1:1000)
overnight at 4°C. The membranes were then washed with Tris-
buffered saline containing Tween and incubated with an HRP‐
conjugated anti-rabbit antibody at 37°C for 1 h. Finally, the
protein bands on the membranes were observed with an
Odyssey Scanning System.
Small Interfering RNA Transfection
Small interfering RNA (siRNA) was purchased from
GenePharma Biological Technology (Shanghai, China).
Lipofectamine 2000 was transfected according to the
manufacturer’s protocol. Cells were transfected with EIF2S1
siRNAs (siRNA-1: sense, GCCAUAAUCGUCCUCACCA;
siRNA-2: sense, CCAUAAUCGUCCUCACCAA, siRNA-2:
sense, CCAUAAUCGUCCUCACCAA) at a concentration of
50 nM for 6 h. After 48 h, the treated cells were collected for
subsequent experiments.
Immunofluorescence (IF)
The cells were immobilized with 4% paraformaldehyde, planted
evenly on a slide, infiltrated with TRITON, then sealed with goat
serum. The primary and fluorescent secondary antibodies were
incubated overnight. Finally, nuclei were counterstained
with DAPI.
Transwell Assay
The ability of cells to migrate and invade was analyzed using a
transwell chamber. A total of 8×104 cells were directly and
uniformly distributed in the wells in serum-free medium for
the migration experiment. Similarly, the invasion test was
performed almost identically to the migration test, except that
TABLE 2 | The information of nine mRNAs associated with overall survival in
patients with HCC.

mRNA Coef HR p-value Risk

EHMT2 -0.039384857 0.961380644 P=0.005 Low
HNRNPL -0.054911705 0.946568721 P<0.001 Low
EIF2S1 0.119336909 1.126749466 P<0.001 High
PPARGC1A -0.058903674 0.942797581 P=0.004 Low
RRP8 0.401757994 1.494449623 P<0.001 High
FOXK1 0.270963075 1.311226652 P<0.001 High
CAD 0.160686777 1.174317088 P<0.001 High
FOXK2 0.101894034 1.107266133 P<0.001 High
MYBBP1A -0.089665498 0.914236948 P=0.002 Low
HCC, hepatocellular carcinoma.
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the upper chamber was first coatedwith the matrix according to
the manufacturer’s instructions. For both tests, medium
containing 15% FBS was added to the lower chamber as a
chemical attractant. Cells were incubated in 5% CO2 for 8 h
(migration) or 12 h (invasion). The membrane was wiped with a
cotton swab; cells were removed from the upper surface of the
cavity, fixed with 4% formaldehyde, and stained with 0.5%
crystal violet.
Statistical Analysis
Statistical analyses were conducted using GraphPad Prism 5.0
(San Diego, CA). The data were processed using the PERL
programming language (version 5.30.2, http://www.perl.org).
All statistical analyses were performed using R (version 3.6.2,
https://www.r-project.org/). P < 0.05 was regarded as
statistically significant.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Identification of Starvation-Related Genes
GSEA was used to determine whether there were significant
differences in the starvation-related gene set between HCC
samples and paired adjacent normal samples. The results
suggested that the starvation-related gene set was significantly
enriched in HCC samples (NES = 1.64, nominal P < 0.001, FDR <
0.001) (Figure 1A). A total of 196 starvation-related genes were
used in the following study (Figure 1B).

Identification of Differential Starvation-
Related Genes Associated With Prognosis
in Patients with HCC
In TCGA database, we first identified differentially expressed
genes related to hunger (P < 0.05). As shown in Figures 2A, B, 32
of the 142 differentially expressed genes were downregulated, and
A

B

FIGURE 1 | GSEA of starvation-related gene sets. (A) Enrichment map of one starvation-related gene set between liver cancer and paired adjacent tissues identified
by GSEA. (B) Heat map of 196 genes in liver cancer and normal tissue response to starvation gene sets.
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110 were upregulated. Then, we identified 39 prognostic
differential genes using the univariate Cox regression analysis,
among which 37 had a positive and 2 had a negative correlation
with risk (Figure 2C). It can be seen from the hunger-related
prognostic gene protein interaction network in Figure 2D that
EIF2S1 is at the core-site. The correlation of hunger-related
prognostic genes is shown in Figure 2E.

KEGG and GO Analysis
GO analysis and KEGG pathway enrichment analysis were used
to verify whether the genes screened were involved in hunger-
related energy metabolism. As shown in Figures 3A, B, the most
notable correlation in GO is related to starvation metabolism.
The same conclusion was obtained by KEGG pathway
Frontiers in Oncology | www.frontiersin.org 5
enrichment analysis (Figures 3C, D). GO analysis and KEGG
enrichment analysis further verified that our candidate genes
were closely related to hunger metabolism.

Construction and Validation of
a Starvation-Related Gene
Prognostic Signature
We carried out amultivariate analysis of the 39 genes obtained above
and obtained 9 genes: EHMT2, HNRNPL, EIF2S1, PPARGC1A,
RRP8, FOXK1, CAD FOXK2, and MYBBP1A. Among these genes
were four protective genes, those with HR < 1, and five potentially
harmful genes, those with HR > 1 (Table 2). We built a signature
based on these nine genes and calculated the risk score for each
patient based on the resultingmodel. Based on themedian risk score,
A B C

D E

FIGURE 2 | Identification of prognostic mRNAs. (A, B) Volcanic and heat maps of starvation-related differential genes in TCGA. P < 0.05. (C) Thirty-nine genes
associated with patient prognosis. (D, E) Interaction between 39 patient prognosis-related genes.
November 2021 | Volume 11 | Article 716757
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we divided the patients into low- and high-risk groups (Figure 4A).
According to the graph, the number of patient deaths increases with
increased risk values in the training and validation sets (Figure 4B).
As can be seen from the training and validation sets, there were
significant differences in OS between the high- and the low-risk
groups (P < 0.001 and P < 0.001, respectively), indicating a higher
mortality rate in the high-risk group (Figure 4C). ROC was used to
validate the model; the AUC values for 5-year survival for the
training and validation cohorts were 0.73 and 0.76, respectively,
demonstrating the high accuracy of this model (Figure 4D).

Starvation-Related mRNA Signature as
an Independent Predictor of Survival
in HCC Patients
Univariate and multivariate analyses were used to determine
whether our hunger-related gene model could be an independent
prognostic factor. In TCGA, risk scores and sex, age, grade, and stage
Frontiers in Oncology | www.frontiersin.org 6
of starvation-related gene-building models were used for univariate
and multivariate analyses. In the univariate analysis, stage (HR =
2.479, 95% CI 1.698–3.619, P < 0.001) and risk score (HR = 1.243,
95% CI 1.182–1.307, P < 0.001) were associated with OS. In the
multivariate analysis, stage (HR = 2.047, 95% CI 1.374–3.049, P <
0.001) and risk score (HR = 1.208, 95% CI 1.146–1.273, P < 0.001)
were associated with OS (Figure 5A). In the ICGC, the risk scores of
the starvation-related gene-building prognostic models and clinical
characteristics such as age, sex, and stage were also analyzed by
univariate and multivariate analyses. The results of the univariate
analysis showed that gender, stage, and risk scores were associated
with OS. The results of the multivariate analysis showed that gender,
stage, and risk scores were also associated with OS (Figure 5B).

In the training and validation cohorts, it is evident that the
starvation-related gene prognostic model we constructed can act as
an independent prognostic factor in patients with liver cancer. areas
under the curve (AUC) values in the training and validation sets
A B

C D

FIGURE 3 | Functional enrichment analyses. (A–D) Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results
showing the functions and enriched signaling pathways associated with the starvation-related mRNAs.
November 2021 | Volume 11 | Article 716757
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were 0.745 and 0.731, respectively, indicating high accuracy of the
risk score as an independent prognostic factor (Figure 5C).

Identification of Differential Starvation-
Related Genes Associated With Prognosis
in Patients With HCC
We further analyzed the relationship between the model of genes
related to starvation and clinical characteristics. It is evident that the
model is not related to age and gender (Figures 6A, B) but is closely
Frontiers in Oncology | www.frontiersin.org 7
related to the liver cancer grade and liver cancer stage (Figures 6C, D).
The higher the stage and grade of the patients with increased risk
value, the higher the model of hunger-related gene construction and
HCC progression were closely related.

Stratified Analysis
We conducted a stratified analysis of age, sex, staging, and
grading to verify the accuracy of our model. We divided the
patients into low- and high-risk groups based on the median risk
A

B

C

D

FIGURE 4 | In the training and validation cohorts, the risk score based on the 9-mRNA signature predicted the OS of patients with liver cancer. (A, B) Risk distribution
and survival status of each patient according to the 9-mRNA signature. (C) In the training and validation cohort, Kaplan-Meier curves showed survival outcomes for the
high- and low-risk groups. (D) Time-dependent ROC curve of the 5 years OS was predicted with the 9-mRNA signature in the training and validation sets.
November 2021 | Volume 11 | Article 716757
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score. The results showed that our model had excellent predictive
significance at ages > 65 years and < 65 years for both males and
females, grade 1–2 and grade 3–4, stage 1–2 and levels 3-4
(Figures 7A–D).
Establishment of a Nomogram Based on
Starvation-Related Genes
To provide clinicians with a practical clinical tool for predicting
3-year and 5-year OS incidence in liver cancer patients, we
constructed a nomogram based on clinicopathological
characteristics (age, sex, grade, stage) and risk score based on
the 9-mRNA signature (Figure 8A). The 3-year and 5-year
Frontiers in Oncology | www.frontiersin.org 8
overall survival (OS) calibration curve is a better predictor
than the ideal model (Figures 8B, C).

Analysis of Biological Processes
Associated With Starvation-Related Genes
The expression level of EHMT2, HNRNPL, EIF2S1, RRP8,
FOXK1, CAD FOXK2, and MYBBP1A increased with an
increase in the risk coefficient of the patient, while the
expression level of PPARGC1A decreases with an increase in
the risk coefficient (Figure 9A). The expression level of EHMT2,
HNRNPL, EIF2S1, RRP8, FOXK1, CAD FOXK2, and MYBBP1A
was significantly higher in cancer, while the expression of
PPARGC1A was lower in liver cancer (Figure 9B). Figure 9C
A

B

C

FIGURE 5 | Estimated prognostic accuracy of the starvation-related mRNAs prognostic signature and other clinicopathological variables in HCC patients in the training
and validation cohorts. (A, B) In the training and validation cohorts, univariate and multivariate analyses were performed for risk scores and each clinical feature. (C) Time-
dependent ROC curve of risk scores and clinical features were predicted in the training and validation sets at 5 years.
November 2021 | Volume 11 | Article 716757
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shows the correlation of genes in the nine models. CAD and
HNRNPL had the strongest positive correlation, while
PPARGC1A and EHMT2 had the strongest negative
correlation. GSEA was conducted to identify starvation-related
biological processes and carcinogenic signaling pathways. The
results revealed that “Hallmark analysis” gene sets involving cell
cycle signals, PI3K/AKT/mTOR pathway, glycolysis, and p53
pathways related to cancer biological processes were enriched in
the high-risk group. In addition, several typical pathways from
the GO and KEGG genomes, including cell cycle pathways,
mTOR signaling pathways, and apoptotic responses, were
highly enriched in high-risk phenotypes (Figures 9D–F).

Knockdown of EIF2S1 Inhibits Cell
Invasion and Migration in HCC
As shown in Figures 10A, B, EIF2S1 expression level in liver
cancer is increased and is closely related to the degree of
Frontiers in Oncology | www.frontiersin.org 9
malignancy and prognosis of the disease. Thehigher the
expression level of EIF2S1, the worse the prognosis of patients.
It can be seen from Figures 10C, D that EIF2S1 expression levels
were higher in HCC patients with high stage or grade HCC.
EIF2S1 expression and phosphorylation levels were higher when
HCC cells 3B and Huh-7 were in the starvation state
(Figures 10E, F). Figure 10G further demonstrated that
starvation could increase EIF2S1 expression in HCC cells Huh-
7. Hunger and false hunger can induce cancer metastasis (10).
We knocked down the expression levels of EIF2S1 in HCC cells
3B and Huh-7 (Figure 10H). EIF2S1 knockdown can reduce the
invasive and metastatic ability of HCC cells 3B and Huh-7, both
under starvation and normal conditions (Figure 10I). In
addition, upon EIF2S1 knockdown in Huh-7 cells, the protein
expression of E-cadherin increased while that of Vimentin
decreased, suggesting that EIF2S1 may affect the invasion and
metastasis ability of HCC cells through EMT (Figure 10J).
A B

C D

FIGURE 6 | The correlation of our signature with the clinicopathological characters of HCC. (A) Age (≥ 65 vs. < 6 5 years; P = 0,5865), (B) gender (male vs. female;
P = 0.3106), (C) tumor grade (grade 1-2 vs. 3-4; P = 0.0442) (D) tumor stage (stage 3-4 vs. 1-2; P < 0.001).
November 2021 | Volume 11 | Article 716757
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A

B

C

D

FIGURE 7 | The survival rates of high- and low-risk HCC patients stratified by different clinicopathological characteristics. Kaplan-Meier survival curve analysis shows
overall survival (OS) rates of high- and low-risk HCC patients from the TCGA database stratified by age (≤ 65 vs. > 65) (A), gender (male vs. female) (B), tumor
grades (high grade vs. low grade) (C), stages (stages I and II vs. stages III and IV) (D).
Frontiers in Oncology | www.frontiersin.org November 2021 | Volume 11 | Article 71675710
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DISCUSSION

An increasing amount of evidence indicates that the interaction
between the tumor microenvironment and tumor cells is closely
related to the occurrence and development of tumors (15). Wang
et al. reported that stromal components of liver cancer contribute
to the malignant progression of cancer by stimulating proliferation,
migration, and invasion of cancer cells and activating angiogenesis
Frontiers in Oncology | www.frontiersin.org 11
(16). Due to dysregulation of cancer growth metabolism and
inadequate nutrient supply, especially glucose deficiency,
nutritional deprivation in cancer is a common condition in the
tumor microenvironment (17). In bladder cancer, hunger leads to
autophagy, increasing cancer cell invasive and metastatic potentials
(13). In oral squamous cell carcinoma (OSCC), the expression of
the glycolytic enzyme phosphofructokinase-platelets (PFKP) is
significantly elevated under starvation conditions, and PFKP
A

B C

FIGURE 8 | An established nomogram for predicting OS. (A) Construction and validation of the prognostic nomogram with starvation-related mRNA prognostic
signature risk score as one of the parameters in TCGA. Calibration curve of the nomogram for the prediction of 3- (B) and 5-year OS (C).
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knockdown inhibits starvation-mediated glycolysis, autophagy,
and EMT in OSCC cells, thus promoting the malignant
progression of OSCC (18). Glucose starvation can promote
apoptosis of the TNBC cell line MDA-MB-231 and reduce its
migration potential, therefore, suggesting a role for nutritional
restriction in carcinogenesis (19). Starvation induces autophagy to
capture and degrade intracellular proteins and organelles in
lysosomes, recycling intracellular components to fuel metabolism
and survival (20). Autophagy is closely related to drug resistance,
stem cell resistance, and EMT in cancer (21–23). Increasing
Frontiers in Oncology | www.frontiersin.org 12
evidence shows that hunger is closely related to the occurrence
and development of cancer.

With the limitation of a single gene as a prognostic factor, an
increasing number of studies have shown that mRNA-constructed
models can be a good independent prognostic factor for cancer. In
pancreatic ductal adenocarcinoma, the model constructed using 6-
mRNAs can be an independent prognostic factor and is closely
related to the grade of pancreatic ductal adenocarcinoma (24). In
HCC, Xie et al. described a new model comprising seven gene
compositions closely related to patient prognosis (25). Another
A B

F

C D

E

FIGURE 9 | Identification of the 9 starvation-related genes. (A) Risk factor score, clinical features, and expression of 9 mRNAs in each patient. (B) Expression of 9
mRNAs in hepatocellular carcinoma and its adjacent tissues. ***P < 0.001 vs adjacent tissues. (C) Correlation between 9 mRNAs. (D) Hallmark, (E) GO, and (F)
KEGG associated with signature-based risk score were performed by GSEA with nominal P-value < 0.05.
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four-gene model is a good predictor of survival in patients with
lung adenocarcinoma with lymph node metastasis (26). Xie et al.
identifiedfour models of metastasis-related gene composition as
good prognostic factors for breast cancer patients (27). Wu et al.
constructed a model of nine genes in renal cell carcinoma that
could predict the prognosis of stage III clear cell renal cell
carcinoma (28).

Furthermore, cancer cells reprogram their metabolism to
sustain their rapid growth; Zhang et al. analyzed the
mechanisms underlying dysregulated glucose metabolite-related
pathways in HCC to identify diagnostic, prognostic, or therapeutic
targets for HCC (29). Therefore, a starvation-related mRNA
signature may be a new marker for liver cancer malignancy and
a potential indicator of prognosis in liver cancer patients.

Here, we first constructed a model with nine hunger-related
genes and verified the model accuracy through an external
cohort. Our study shows that our model is associated with the
malignant progression of HCC and can act as an independent
prognostic factor. We constructed a nomogram composed of
Frontiers in Oncology | www.frontiersin.org 13
models and clinical features to predict the prognosis of patients
and verified the accuracy of the nomogram prediction. We
further analyzed the core gene EIF2S2 for protein interaction
in the nine modeled genes. In vitro experiments showed that the
expression and phosphorylation of EIF2S1 were significantly
increased following starvation induction. After EIF2S1
expression was inhibited, the invasion, and metastatic ability of
HCC cells were lower under starvation.

We divided patients into high- and low-risk groups according
to the median risk value. Through GSEA, we found that the
MTORC1 and cell cycle-related pathways were significantly
enriched in high-risk patients. The MORTC1 signal pathway is
closely related to cell metabolism, growth, and autophagy (30).
MTORC1 can promote the transport, processing, and synthesis
of SREBPs (a family of important transcription factors for lipid
synthesis), thus playing an important role in promoting fat
formation (31). Rapamycin complex 1 (mTORC1) maintains
cell homeostasis by linking environmental cues, including the use
of nutrients in glioblastoma; hunger induces autophagy that
A B

F
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E

FIGURE 10 | Effect of EIF2S1 on cell migration and invasion in HCC cells. (A) Kaplan-Meier curves show survival outcomes in patients with high and low EIF2S1
expression. (B) EIF2S1 expression in hepatocellular carcinoma and its adjacent tissues. (C, D) EIF2S1 expression in early and advanced HCC. (E, F) EIF2S1 expression
in 3B and Huh-7 cells was induced by starvation. (G) Western blotting was used to detect the expression of EIF2S1 in siRNA-transfected huh-7 and 3B cells. (H, I)
Transwell assay was used to assess the starvation-induced migration and invasion of hepatocellular carcinoma cells after EIF2S1 transfection (100× magnification). *P <
0.05, **P < 0.01 and ***P < 0.001 vs NC (Huh-7) or NC (Hep-3B). (J) Western blots showing the levels of the EIF2S1, E-cadherin, and vimentin proteins.
November 2021 | Volume 11 | Article 716757

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lei et al. Prognosis in Patients With HCC
forces tumor cells in the G1 phase, leaving them in a resting state.
These factors enhance glioblastoma cell survival and chemical
resistance (32). We speculate that a similar mechanism might be
at play in HCC; however, this must be verified experimentally.

Growth factors and metabolic process-related stress might
further amplify the perceived fluctuations in extracellular and
intracellular nutrients, thereby regulating cell growth,
metabolism, and survival (33). Of note, EIF2S1 plays an
important role in protein translation initiation (10), and its
expression is significantly increased after chemotherapy in
breast cancer patients. It can promote the survival of breast
cancer cells during chemotherapy (34). EIF2S1 interacts with
TOR signaling modulator-like (TIPRL) proteins to induce
autophagy and enhance lung cancer malignancy (35). In our
study, we found that starvation induction can promote the
expression of EIF2S1 and P-EIF2s1 in HCC. EIF2S1 can affect
the invasion and metastasis ability of liver cancer.

In conclusion, a nine starvation-related mRNA signature
correlated with HCC progression and prognosis and could be
used as independent prognostic molecular biomarkers for
predicting HCC survival.
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