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Abstract: In the present paper, we report an expedient total synthesis of triciribine, a tricyclic
7-deazapurine nucleoside and protein kinase B (AKT ) inhibitor, in 35% overall yield. Our synthesis
route features a highly regioselective substitution of 1-N-Boc-2-methylhydrazine and a trifluoroacetic
acid catalyzed one-pot transformation which combined the deprotection of the tert-butylcarbonyl
(Boc) group and ring closure reaction together to give a tricyclic nucleobase motif.
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1. Introduction

In the past few decades, a large number of novel nucleosides have been successfully developed as
antiviral and antitumor drugs [1,2]. Triciribine (TCN, 1, Figure 1), a unique tricyclic 7-deazapurine
nucleoside, was firstly synthesized by Townsend in 1971 [3]. Initial biological evaluation of TCN
showed excellent activity against murine leukemia cell line L1210 [4]. In order to improve the
bioavailability, TCN-P (triciribine phosphate monohydrate, 2, Figure 1) was further developed to
enhance its solubility in water. In the late 1980s, TCN-P was thoroughly studied as a cytotoxic agent in
a phase I clinical trial for cancer treatment [5,6]. Unfortunately, it was precluded during the phase II
clinical trial in the early 1990s because of its poor toxicity profile and mild efficacy [7,8].
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1. Introduction 

In the past few decades, a large number of novel nucleosides have been successfully developed 
as antiviral and antitumor drugs [1,2]. Triciribine (TCN, 1, Figure 1), a unique tricyclic 7-deazapurine 
nucleoside, was firstly synthesized by Townsend in 1971 [3]. Initial biological evaluation of TCN 
showed excellent activity against murine leukemia cell line L1210 [4]. In order to improve the 
bioavailability, TCN-P (triciribine phosphate monohydrate, 2, Figure 1) was further developed to 
enhance its solubility in water. In the late 1980s, TCN-P was thoroughly studied as a cytotoxic agent 
in a phase I clinical trial for cancer treatment [5,6]. Unfortunately, it was precluded during the phase 
II clinical trial in the early 1990s because of its poor toxicity profile and mild efficacy [7,8]. 
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Figure 1. Structures of triciribine 1 and triciribine monophosphate 2. 

In recent years, TCN-P was reinvestigated as an efficient inhibitor of the protein kinase B (AKT) 
signaling pathway [9]. It was found that AKT would be over activated in a high percentage of 
leukemia tumors and a wide range of other solid tumors, including breast, ovarian and pancreatic 
cancers, etc. [10]. Currently, it is undergoing a phase I/IIa clinical trial for the treatment of breast cancer 
and pancreatic cancer [11]. 

During our development of a new triciribine prodrug for discovering a potential enhanced AKT 
inhibitor, ten grams’ scale of triciribine was necessary as a starting material. Therefore, an expedient 
synthetic procedure was in high demand. However, to the best of our knowledge, there were only 

Figure 1. Structures of triciribine 1 and triciribine monophosphate 2.

In recent years, TCN-P was reinvestigated as an efficient inhibitor of the protein kinase B (AKT)
signaling pathway [9]. It was found that AKT would be over activated in a high percentage of leukemia
tumors and a wide range of other solid tumors, including breast, ovarian and pancreatic cancers,
etc. [10]. Currently, it is undergoing a phase I/IIa clinical trial for the treatment of breast cancer and
pancreatic cancer [11].

During our development of a new triciribine prodrug for discovering a potential enhanced AKT
inhibitor, ten grams’ scale of triciribine was necessary as a starting material. Therefore, an expedient
synthetic procedure was in high demand. However, to the best of our knowledge, there were only
three publications concerning its preparation. In the original paper by Townsend [2], the naturally
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occurring nucleoside toyocamycin was used as starting material, which is extremely expensive.
Thirty years later, they reported an improved synthetic approach in 2004 [12]. 6-Bromo-4-chloro-5-cyano-
pyrrolo[2,3-d]pyrimidine 4 was employed as the nucleoside base to afford nucleoside 5 in high
yield and stereoselectivity under standard Vorbrüggen glycosylation condition. Further reaction with
methylhydrazine gave nucleoside 6 with exclusive regioselectivity (Scheme 1). After debromination
with 10% palladium on charcoal, triciribine was accomplished in moderate yield by refluxing with
sodium methoxide in methanol. Later, TSRL Inc. reported another expedient total synthesis approach
in 2011 [13]. The key step was the selective introduction of cyanation at 7-position of the deazapurine
using tributyltin cyanide and pallidum tetraphenylphosphine. Because nucleobase 4-chloro-5-iodo-7H-
pyrrolo[2,3-d]pyrimidine is commercially available, it could easily scale up triciribine’s preparation.
The drawback is that transition-metal-catalyzed cyanation will cause heavy metal residue, which is
cumbersome to remove completely [14]. In the present paper, a new expedient total synthesis of triciribine
was developed.
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Scheme 1. Synthesis of triciribine intermediate. Reagents and conditions: (a) Method A: N,O-Bis 
(trimethylsilyl)acetamide (BSA), CH3CN, trimethylsilyl trifluoromethanesulfonate( TMSOTf), 80 °C, 
70%; Method B: BSA, CH3CN, TMSOTf, microwave heating, 80 °C, 68%; Method C: BSA, CH3CN, 
nonafluorobutane sulfonic acid potassium, TMSCl, microwave heating, 80 °C, 63%; (b) NH2NHCH3, 
CHCl3, EtOH, r.t., 60% (6), 16% (7). 

2. Results and Discussion 

In our foregoing synthesis of 7-deazpurine nucleoside [15–17], our group gained rich experiences in 
the process of preparing 6-bromo-4-chloro-5-cyano-pyrrolo[2,3-d]pyrimidine 4 in 100 g scale. At the 
beginning, we tried to synthesize triciribine by Townsend’s approach (Scheme 1). Thus, nucleobase 4 
was firstly silylated with N,O-bis(trimethylsilyl) acetamide (BSA) in anhydrous CH3CN. Then 1-O-
acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose 3 was added to the above homogeneous solution, followed by 
the slow addition of trimethylsilyl trifluoromethanesulfonate (TMSOTf). Subsequently, the reaction 
mixture was heated to 80 °C for 10 h, and 7-deazapurine nucleoside 5 was obtained successfully with 
70% yield. During our extensive optimization of glycosylation, it was found that the combination of 
nonafluorobutane sulfonic acid potassium and trimethylsilyl chloride was superior to TMSOTf and 
that microwave heating can speed up the reaction. With sufficient nucleoside 5 in hand, it was then 
reacted with methylhydrazine in ethanol. To our surprise, besides the desired nucleoside 6 with 60% 
yield, another byproduct 7 was also separated in 16% yield. The structure of nucleoside 7 was 
established by high resolution mass spectroscopy (HRMS ) and various NMR spectra. Because of the 
electron withdrawing properties of the cyano group, the neibouring 8-bromo group could be easily 
substituted by the nucleophilic reagent. This phenomenon was also found in other 7-deazapurine 
nucleosides [18–20]. To depress the side reaction, various methylhydrazine from different commercial 

Scheme 1. Synthesis of triciribine intermediate. Reagents and conditions: (a) Method A: N,O-
Bis(trimethylsilyl)acetamide (BSA), CH3CN, trimethylsilyl trifluoromethanesulfonate( TMSOTf), 80 ◦C,
70%; Method B: BSA, CH3CN, TMSOTf, microwave heating, 80 ◦C, 68%; Method C: BSA, CH3CN,
nonafluorobutane sulfonic acid potassium, TMSCl, microwave heating, 80 ◦C, 63%; (b) NH2NHCH3,
CHCl3, EtOH, r.t., 60% (6), 16% (7).

2. Results and Discussion

In our foregoing synthesis of 7-deazpurine nucleoside [15–17], our group gained rich experiences
in the process of preparing 6-bromo-4-chloro-5-cyano-pyrrolo[2,3-d]pyrimidine 4 in 100 g scale.
At the beginning, we tried to synthesize triciribine by Townsend’s approach (Scheme 1). Thus,
nucleobase 4 was firstly silylated with N,O-bis(trimethylsilyl) acetamide (BSA) in anhydrous CH3CN.
Then 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose 3 was added to the above homogeneous solution,
followed by the slow addition of trimethylsilyl trifluoromethanesulfonate (TMSOTf). Subsequently,
the reaction mixture was heated to 80 ◦C for 10 h, and 7-deazapurine nucleoside 5 was obtained
successfully with 70% yield. During our extensive optimization of glycosylation, it was found that the
combination of nonafluorobutane sulfonic acid potassium and trimethylsilyl chloride was superior to
TMSOTf and that microwave heating can speed up the reaction. With sufficient nucleoside 5 in hand,
it was then reacted with methylhydrazine in ethanol. To our surprise, besides the desired nucleoside 6
with 60% yield, another byproduct 7 was also separated in 16% yield. The structure of nucleoside 7
was established by high resolution mass spectroscopy (HRMS ) and various NMR spectra. Because of
the electron withdrawing properties of the cyano group, the neibouring 8-bromo group could be easily
substituted by the nucleophilic reagent. This phenomenon was also found in other 7-deazapurine
nucleosides [18–20]. To depress the side reaction, various methylhydrazine from different commercial
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sources and a variety of solvents were investigated. However, the results showed that it seemed
impossible to exclude the side reaction completely.

To improve the total synthetic yield of triciribine, we reasoned that a practicable way could be by
decreasing the nucleophilicity of methylhydrazine to alleviate the side reaction (Scheme 2). Commercially
available 1-N-Boc-2-methylhydrazine has an electron-withdrawing tert-butylcarbonyl (Boc) group at
N-1 position, which could reduce the NH-2 nucleophilicity of methylhydrazine [21–24]. To our delight,
nucleoside 9 could be obtained in 89% after treating nucleoside 5 with 1-Boc-2-methylhydrazine by
using triethylamine as a base in a mixture solvent of anhydrous dichloromethane (DCM) and ethanol.
The 8-bromo substituted side product was not detected. Then, trifluoroacetic acid (TFA) was utilized to
remove the Boc group. It was surprising to find that the tricyclic nucleoside 10 was generated directly by
the TFA promoted ring closure reaction in situ. In the previously reported literature [12,13], the tricyclic
nucleobase motif was achieved by heating nucleoside 6 with sodium methoxide in methanol at reflux
temperature for 18 h. Then, debromination was accomplished with 10% Pd/C in ethanol under refluxing
for 5 h to afford nucleoside 11 with 83% yield. At last, treatment 11 with sodium methoxide in methanol
at room temperature provided triciribine 1 in 92% yield. For the first time, a suitable single crystal of
triciribine 1 was obtained from methanol and H2O (10:1) and its structure is unambiguously confirmed
by X-ray diffraction analysis (Figure 2) [25]. It exhibits a syn glycosylic bond conformation, which is
stabilized by an intramolecular O–H···N hydrogen bond.
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3. Materials and Methods

All the chemicals and compounds were used as received except for special notification. 1H NMR
spectra and 13C NMR spectra were recorded on a Bruker Advanced DPX spectrometer (400 MHz for
1H NMR and 100 MHz for 13C NMR, Bruker Corporation, Billerica, MA, USA). Chemical shifts are
reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. Data are
reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet,
m = multiplet, br = broad), coupling constants (Hz) and integration. 13C NMR spectra were recorded
with complete proton decoupling. HRMS was measured on AB Sciex 4600 mass spectrometer equipped
with an ESI source in the positive-ion mode (Bruker Corporation, Billerica, MA, USA). Melting
points were measured on an X-4 digital melting point apparatus (Beijing Taike Corparation, Beijing,
China). The microwave synthesizer was equipped with Anton Paar autosampler MAS24 Monowave
300 (Anton Paar GmbH, Graz, Austria). X-ray analysis was recorded on Bruker Smart Apex II
(Bruker Corporation, Billerica, MA, USA). Specific rotation was recorded on Rudolph Autopol IV
(Rudolph Research Analytical, Hackettstown, NJ, USA).

3.1. Synthesis of 6-Bromo-4-chloro-5-cyano-7-[2,3,5-tri-O-benzoyl-β-D-ribofuranosyl]pyrrolo[2,3-d]
pyrimidine (5)

Method A: 6-Bromo-4-chloro-5-cyanopyrrolo[2,3-d]pyrimidine 4 (257 mg, 1 mmol) was suspended
in freshly distilled dry acetonitrile (15 mL) and then N,O-bis(trimethylsilyl)acetamide (BSA, 2.44 g,
12 mmol) was added to the reaction under an argon atmosphere. The reaction mixture was stirred
at room temperature for 10 min. Then 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose 3 (770 mg,
1.5 mmol) was added along with trimethylsilyl trifluoromethanesulfonate (TMSOTf, 890 mg, 4 mmol).
After stirring for 15 min, the mixture was heated at 80 ◦C for 4 h until Thin layer chromatography
(TLC) analysis showed that the starting material was consumed completely. Then it was cooled to
room temperature, quenched with iced water (20 mL) and extracted with ethyl acetate (20 mL × 3).
The combined organic layer was washed with saturated sodium bicarbonate aqueous solution (30 mL)
and brine (30 mL), respectively, and dried over magnesium sulfate. After filtration, the solvent was
removed under vacuum. The crude product was dissolved in chloroform and purified by silica gel
column chromatography to provide the product 5 as a white solid 490 mg, 70% yield.

Method B: 6-Bromo-4-chloro-5-cyanopyrrolo[2,3-d]pyrimidine 4 (257 mg, 1 mmol) was suspended
in freshly distilled dry acetonitrile (15 mL) and then N,O-bis(trimethylsilyl)acetamide (2.44 g, 12 mmol)
was added to the reaction under an argon atmosphere. The reaction mixture was stirred at room
temperature for 10 min. Then 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose 3 (770 mg, 1.5 mmol)
was added along with trimethylsilyl trifluoromethanesulfonate (TMSOTf, 890 mg, 4 mmol). Then the
reaction mixture was transferred to a microwave synthesizer, and heated at 80 ◦C for 50 min until
TLC analysis showed that the starting material was consumed completely. Then it was cooled to
room temperature, quenched with ice water (20 mL) and extracted with ethyl acetate (15 mL × 3).
The combined organic layer was washed with saturated sodium bicarbonate aqueous solution (30 mL)
and brine (30 mL), respectively, and dried over magnesium sulfate. After filtration, the solvent was
removed under vacuum. The crude product was dissolved in chloroform and purified by silica gel
column chromatography to provide the product 5 as a white solid 477 mg, 68% yield.

Method C: N,O-Bis(trimethylsilyl)acetamide (1.38 g, 6.8 mmol), 6-bromo-4-chloro-5-cyanopyrrolo
pyrimidine 4 (460 mg, 1.95 mmol), 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose 3 (1.55 g, 3.1 mmol),
nonafluorobutane sulfonic acid potassium (3.2 g, 9.4 mmol) and trimethylsilyl chloride (TMSCl, 1.02 g,
9.4 mmol) were added in freshly distilled dry acetonitrile (15 mL). Then the reaction mixture was
transferred to a microwave synthesizer, and heated at 80 ◦C for 50 min until TLC analysis showed that
the starting material was consumed completely. Then it was cooled to room temperature, quenched
with ice water (20 mL) and extracted with ethyl acetate (20 mL × 3). The combined organic layer was
washed with saturated sodium bicarbonate aqueous solution (30 mL) and brine (30 mL), respectively,
and dried over magnesium sulfate. After filtration, the solvent was removed under vacuum. The crude
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product was dissolved in chloroform and purified by silica gel column chromatography to provide the
product 5 as a white solid 800 mg, 63% yield.

Retention factor (Rf) = 0.4 (CH2Cl2/EtOAc, 40:1); m.p. 88–91 ◦C (Lit.9 100 ◦C); [α]25
D −32.184

(c = 0.087 g/100 mL, EtOAc); 1H NMR (400 MHz, DMSO-d6) δ: 8.70 (s, 1H, H-2), 7.95–7.83 (m, 6H),
7.67–7.64 (m, 3H), 7.50–7.40 (m, 6H), 6.59 (d, J = 3.2 Hz, 1H, H-1′), 6.55 (dd, J = 6.0, 3.2 Hz, 1H, H-2′),
6.41 (t, J = 6.8 Hz, 1H, H-3′), 4.93 (dt, J = 7.2, 3.6 Hz, 1H, H-4′), 4.84 (dd, J = 12.4, 2.8 Hz, 1H, H-5′),
4.60 (dd, J = 12.4, 4.2 Hz, 1H, H-5′). 13C NMR (100 MHz, DMSO-d6) δ: 165.7, 165.1, 152.9 (C-6), 150.8
(C-2), 150.7 (C-4), 134.5, 134.4, 133.9, 129.9, 129.8, 129.5, 129.3, 129.2, 129.1, 128.9, 128.8, 116.9 (C-8),
113.2 (CN), 101.8 (C-5), 89.8 (C-1′), 89.5 (C-7), 79.6 (C-4′), 73.6 (C-2′), 70.3 (C-3′), 62.8 (C-5′); MS (ESI)
m/z: 702.9 [M + H]+. HR-MS: calcd. for C33H22BrClN4O7 [M + Na]+ 725.0235; found: 725.0239.

3.2. Synthesis of 6-Bromo-5-cyano-4-(1-methylhydrazino)-7-[2,3,5-tri-O-benzoyl-β-D-ribofuranosyl]pyrrolo
[2,3-d]pyrimidine (6)

6-Bromo-4-chloro-5-cyano-7-[(2,3,5-O-tribenzoyl-yl)-β-D-ribofuranosyl]pyrrolo[2,3-d]pyrimidine
5 (0.47 g, 0.67 mmol) was dissolved in a mixture of chloroform (7.5 mL) and ethanol (7.5 mL),
then the reaction mixture was treated with the solution of methyl hydrazine (40%, 0.24 g, 2.08 mmol).
The reaction was stirred at room temperature for 3 h while a white precipitate was formed.
TLC analysis showed that the starting material was consumed completely. The solvent was removed
under vacuum and the crude product was purified by silica gel column chromatography to provide
the product 5 as a white solid. 286 mg, 60% yield; Rf = 0.5 (CH2Cl2/EtOAc, 30:1); m.p. 192–195 ◦C;
[α]25

D −45.763 (c = 0.118 g/100 mL, CH2Cl2); 1H NMR (400 MHz, DMSO-d6) δ: 8.13 (s, 1H, H-2),
7.91 (t, J = 6.4 Hz, 6H), 7.65 (t, J = 7.2 Hz, 3H), 7.54–7.37 (m, 6H), 6.58 (d, J = 4.0 Hz, 1H, H-1′),
6.43 (d, J = 8.0 Hz, 1H, H-2′), 6.39 (d, J = 8.0 Hz, 1H, H-3′), 5.25 (s, 2H, NH2), 4.91-4.83 (m, 1H, H-4′),
4.78 (d, J = 12.2, 1H, H-5′), 4.60 (dd, J = 12.0, 4.0 Hz, 1H, H-5′), 3.35 (s, 3H, CH3). 13C NMR (100 MHz,
DMSO-d6) δ: 165.8, 165.2, 157.2 (C-6), 152.8 (C-2), 151.4 (C-4), 134.5, 134.3, 134.0, 129.9, 129.8, 129.7,
129.3, 129.2, 129.1, 129.0, 128.9, 121.9, 116.6 (CN), 101.5 (C-5), 94.2 (C-1′), 89.7, 79.1 (C-4′), 73.5 (C-2′),
70.5 (C-3′), 63.0 (C-5′), 40.6 (CH3). MS (ESI) m/z: 711.1 [M + H]+. HR-MS: calcd. for C34H27BrN6O7

[M + Na]+ 733.1017; found: 733.1028.
Besides the desired product 6, a small amount of by-product 7 was isolated. 22 mg 16% yield.

Rf = 0.53 (CH2Cl2/ EtOAc, 30:1); m.p. 189–192 ◦C; [α]25
D −57.843 (c = 0.102 g/100 mL, CH2Cl2); 1H NMR

(400 MHz, DMSO-d6) δ: 8.41 (s, 1H, H-2), 7.90 (dd, J = 14.8, 7.4 Hz, 6H), 7.68–7.62 (m, 3H), 7.51–7.40
(m, 6H), 6.99 (d, J = 3.4 Hz, 1H, H-1′), 6.56-6.54 (m, 1H, H-2′), 6.35-6.32 (m, 1H, H-3′), 5.37 (s, 2H,
NH2), 4.84–4.76 (m, 1H, H-4′), 4.74 (dd, J = 6.8, 4.0 Hz, 1H, H-5′), 4.61 (dd, J = 12.0, 4.4 Hz, 1H, H-5′),
3.42 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ: 165.8, 165.1, 165.0, 157.3, 150.7 (C-2), 150.5, 147.2,
134.33, 134.29, 134.0, 129.84, 129.77, 129.71, 129.67, 129.21, 129.18, 129.15, 129.1, 129.0, 117.2, 115.5
(CN), 88.4 (C-1′), 78.8, 73.2 (C-4′), 70.5 (C-2′), 66.5 (C-3′), 63.2 (C-5′), 45.5 (CH3). HR-MS: calcd. for
C34H27ClN6O7 [M + Na]+ 689.1522; found: 689.1532.

3.3. Synthesis of 6-Bromo-5-cyano-4-(2-(tert-butoxycarbonyl)-1-methylhydrazinyl)-7-[2,3,5-tri-O-benzoyl-β-D-
ribofuranosyl]pyrrolo[2,3-d]pyrimidine (9)

6-Bromo-4-chloro-5-cyano-7-[2,3,5-tri-O-benzoyl-β-D-ribofuranosyl]pyrrolo[2,3-d]pyrimidine 5
(1.75 g, 2.5 mmol), 1-Boc-2-methylhydrazine (0.44 g, 3 mmol) and triethylamine (TEA, 0.3 g, 3 mmol)
were added in the mixture of CH2Cl2 (25 mL) and anhydrous C2H5OH (25 mL). The reaction mixture
was refluxed under an argon atmosphere for 72 h. TLC analysis showed that the starting material
was consumed and a new spot appeared. The mixture was poured over saturated sodium bicarbonate
solution (40 mL× 2) and extracted with dichloromethane (50 mL× 3), the organic layer was then washed
with brine (30 mL × 2) and dried over magnesium sulfate. After filtration, the solvent was removed
under vacuum. The crude product was dissolved in dichloromethane and purified by silica gel column
chromatography to provide the product 9 as a white solid. 1.82 g, 89% yield; Rf = 0.4 (CH2Cl2/EtOAc,
80:1); m.p. 120–123 ◦C; [α]25

D −41.379 (c = 0.087 g/100 mL, CH3OH); 1H NMR (400 MHz, DMSO-d6) δ:
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9.68 (s, 1H, NH), 8.29 (s, 1H, H-2), 7.91 (d, J = 6.0 Hz, 6H), 7.67–7.63 (m, 3H), 7.49–7.43 (m, 6H), 6.55 (s, 1H,
H-2′), 6.48 (s, 1H, H-1′), 6.42 (s, 1H, H-3′), 4.89–4.87 (m, 1H, H-4′), 4.78 (d, J = 12.2 Hz, 1H, H-5′),
4.61 (d, J = 8.8 Hz, 1H, H-5′), 3.29 (s, 3H, 6-N-CH3), 1.44 (s, 9H, Boc). 13C NMR (100 MHz, DMSO-d6) δ:
165.5, 164.9, 164.8, 156.9, 155.2, 152.4, 151.2 (C-2), 134.1, 134.0, 133.6, 129.52, 129.48, 129.3, 128.91, 128.86,
128.81, 128.7, 128.6, 124.0, 114.9 (CN), 101.1, 90.9, 89.6 (C-1′), 81.0 (Boc), 78.9 (C-4′), 73.2 (C-2′), 70.1 (C-3′),
62.7 (C-5′), 37.9 (CH3), 28.0 (Boc). MS (ESI) m/z: 811.0 [M + H]+. HR-MS: calcd. for C39H35BrN6O9

[M + Na]+ 833.1541; found: 833.1552.

3.4. Synthesis of 6-Amino-7-bromo-4-methyl-8-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)pyrrolo[4,3,2-de]
pyrimido [4,5-c]pyridazine (10)

Nucleside 9 (1.73 g, 2.1 mmol) was added in the mixture of trifluoroacetic acid (TFA, 20 mL) and
dichloromethane (20 mL). The reaction mixture was stirred at room temperature for 2 h. TLC showed
that the starting material was consumed and a new spot appeared. The mixture was poured over
water (100 mL) and extracted with dichloromethane (50 mL × 2). The organic layer was neutralized
with triethylamine and dried over magnesium sulfate. After filtration, the solvent was removed under
vacuum. The crude product was dissolved in dichloromethane and purified by silica gel column
chromatography to provide the product 10 as a white solid. 1.3 g, 74% yield; Rf = 0.4 (CH2Cl2/EtOAc,
40:1); m.p. 102–105 ◦C; [α]25

D −34.426 (c = 0.122 g/100 mL, CH3OH); 1H NMR (400 MHz, DMSO-d6) δ:
8.03 (s, 1H, H-7), 7.94–7.88 (m, 6H), 7.67–7.63 (m, 3H), 7.48–7.41 (m, 6H), 6.79 (t, J = 3.6 Hz, 1H, H-1′),
6.39 (t, J = 6.2 Hz, 1H, H-2′), 6.33 (d, J = 3.4 Hz, 1H, H-3′), 5.87 (s, 2H, NH2), 4.85 (d, J = 2.8 Hz, 1H,
H-4′), 4.77 (d, J = 12.0 Hz, 1H, H-5′), 4.56 (dd, J = 12.2, 3.4 Hz, 1H, H-5′), 3.38 (s, 3H, CH3). 13C NMR
(100 MHz, DMSO-d6) δ: 165.8, 165.1, 165.0, 157.0, 150.7, 147.4, 144.6 (C-3), 134.4, 134.3, 133.8, 129.83,
129.76, 129.6, 129.2, 129.1, 129.0, 128.8, 109.3, 105.1, 93.2 (C-2), 88.1 (C-1′), 79.3 (C-4′), 72.9 (C-2)′,
70.6 (C-3′), 62.9 (C-5′), 35.8 (CH3). MS (ESI) m/z: 711.0 [M + H]+. HR-MS: calcd. for C34H27BrN6O7

[M + Na]+ 733.1017; found: 733.1014.

3.5. Synthesis of 6-Amino-4-methyl-8-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)pyrrolo[4,3,2-de]pyrimido[4,5-c]
pyridazine (11)

Nucleoside 10 (1.2 g, 1.45 mmol), triethylamine (0.734 g, 7.3 mmol), and 10% palladium on
activated charcoal (180 mg) were added in a mixture of tetrahydrofuran (THF) (20 mL) and methanol
(10 mL). The reaction mixture was stirred at room temperature under H2 atmosphere (1 atm) for 3 h.
TLC analysis showed that the starting material was consumed completely. The reaction mixture was
filtered through Celite and washed with hot ethanol (50 mL). The solvent was removed under vacuum
and the crude product was purified by silica gel column chromatography to provide the product 11
as a white solid. 0.9 g, 83% yield; Rf = 0.2 (CH2Cl2/ EtOAc, 1:1); m.p. 104–107 ◦C; [α]25

D −48.598
(c = 0.107 g/100 mL, CH3OH); 1H NMR (400 MHz, DMSO-d6) δ 8.02 (s, 1H, H-7), 8.01–7.86 (m, 6H),
7.70–7.59 (m, 3H), 7.46–7.44 (m, 6H), 7.16 (s, 1H, H-2), 6.55 (d, J = 4.2 Hz, 1H, H-1′), 6.48 (t, J = 5.2 Hz,
1H, H-2′), 6.30 (s, 2H, NH2), 6.21 (t, J = 5.8 Hz, 1H, H-3′), 4.90–4.80 (m, 1H, H-4′), 4.76 (dd, J = 12.2,
2.8 Hz, 1H, H-5′), 4.64 (dd, J = 12.2, 4.2 Hz, 1H, H-5′), 3.40 (s, 3H, CH3). 13C NMR (100 MHz, DMSO-d6)
δ 165.7, 164.9, 164.8, 156.5, 151.2, 146.6, 145.8, 134.2, 134.1, 133.7, 129.61, 129.58, 129.53, 129.45, 129.0,
128.96, 128.9, 128.8, 128.6, 111.0, 109.2, 104.3, 88.2 (C-1′), 79.2 (C-4′), 73.4 (C-2′), 70.9 (C-3′), 63.5 (C-5′),
35.5 (CH3). MS (ESI) m/z: 633.2 [M + H]+. HR-MS: calcd. for C34H28N6O7 [M + Na]+ 655.1912;
found: 655.1924.

3.6. Synthesis of 6-Amino-4-methyl-8-(β-D-ribofuranosyl)pyrrolo[4,3,2-de]pyrimido[4,5-c]pyridazine
(Triciribine, TCN, 1)

Nucleoside 11 (1.5 g, 2.0 mmol) and sodium methoxide (0.65 g, 12 mmol) were added in a mixture of
CH2Cl2 (5 mL) and CH3OH (20 mL). The reaction mixture was stirred at room temperature for 2 h until
TLC analysis showed that the starting material was consumed completely. The solvent was removed
under vacuum and the yellow residue was suspended in ethyl acetate (10 mL), and neutralized with
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glacial acetic acid. The residue was filtered and washed with deionized water (10 mL × 3), and dried
under vacuum at 80 ◦C to provide the target product TCN, 1 as a white solid. 0.60 g, 92% yield;
Rf = 0.3 (CH2Cl2/CH3OH, 10:1); m.p. 149–150 ◦C; [α]25

D −70.248 (c = 0.121 g/100 mL, CH3OH);
1H NMR (400 MHz, DMSO-d6) δ: 8.03 (s, 1H, H-7), 7.07 (s, 1H, H-2), 6.28 (s, 2H, NH2), 5.81 (d, J = 8.0 Hz,
1H, H-1′), 5.63 (q, J = 4.0 Hz, 1H, H-2′), 5.41 (d, J = 4.0 Hz, 1H, H-3′), 5.22 (d, J = 4.0 Hz, 1H, H-4′),
4.51~4.47 (dd, J = 12.0, 8.0 Hz, 1H, H-5′), 4.10 (q, J = 4.0 Hz, 1H, H-5′), 3.98~3.96 (m, 1H, OH), 3.67–3.62
(m, 1H, OH), 3.59~3.52 (m, 1H, OH), 3.39 (s, 3H, CH3). 13C NMR (100 MHz, DMSO-d6) δ: 156.3, 151.6,
146.4, 146.3, 110.8, 109.6, 103.8, 90.0 (C-1′), 86.5 (C-4′), 74.4 (C-2′), 71.5 (C-3′), 62.5 (C-5′), 35.7 (CH3).
HR-MS: calcd. for C13H16N6O4 [M + H]+ 321.1306; found: 321.1306.

4. Conclusions

In summary, an expedient total synthesis of triciribine was accomplished with 35% total yield.
Its merits include: (1) 1-N-Boc-2-methylhydrazine could selectively substitute 6-chloro group of
nucleoside 5 in high yield without any detectable side product; (2) deprotection of the Boc group with
TFA could facilitate the ring closure reaction in a one-pot operation to give the tricyclic nucleobase motif;
(3) the current newly developed approach has high overall yield and producibility. Developing novel
prodrugs of triciribine to discover a potential enhanced AKT inhibitor is undergoing in our group.
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