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1 | INTRODUCTION
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Abstract

Host-symbiont relationships in hydrothermal vent ecosystems, supported by chemo-
autotrophic bacteria as primary producers, have been extensively studied. However,
the process by which densely populated co-occurring invertebrate hosts form sym-
biotic relationships with bacterial symbionts remains unclear. Here, we analyzed
gill-associated symbiotic bacteria (gill symbionts) of five co-occurring hosts, three
mollusks (“Bathymodiolus” manusensis, B. brevior, and Alviniconcha strummeri) and two
crustaceans (Rimicaris variabilis and Austinograea alayseae), collected together at a sin-
gle vent site in the Tonga Arc. We observed both different compositions of gill sym-
bionts and the presence of unshared operational taxonomic units (OTUs). In addition,
the total number of OTUs was greater for crustacean hosts than for mollusks. The
phylogenetic relationship trees of gill symbionts suggest that y-proteobacterial gill
symbionts have coevolved with their hosts toward reinforcement of host specificity,
while campylobacterial Sulfurovum species found across various hosts and habitats
are opportunistic associates. Our results confirm that gill symbiont communities dif-
fer among co-occurring vent invertebrates and indicate that hosts are closely related
with their gill symbiont communities. Considering the given resources available at a
single site, differentiation of gill symbionts seems to be a useful strategy for obtaining

nutrition and energy while avoiding competition among both hosts and gill symbionts.
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such as food supply and protection from predators (Beinart, 2019;
Goffredi, 2010). Notably, deep-sea hydrothermal vent ecosystems,

Symbioses are ubiquitous across diverse ecosystems worldwide,
with representative examples including plants with root nodule
bacteria, mammals with intestinal bacteria, and aquatic animals with
epibionts (Fred et al., 2002; Hooper et al., 2002; Ponnudurai, 2019).
In the ocean, there are symbiotic relationships that allow organ-
isms to share habitats and to interact with each other for benefits

which have light-limited and chemical-rich conditions, are sup-
ported by chemoautotrophic bacteria as primary producers (Corliss
etal.,, 1979; Powell & Somero, 1986; Van Dover, 2000; Vetter, 1985).
In addition, some vent invertebrates are constrained primarily
by their nutritional reliance on bacterial symbionts (Cavanaugh
et al., 1981; Felbeck & Childress, 1988).
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Chemoautotrophic symbionts were first discovered in the ves-
timentiferan tubeworm Riftia pachyptila at hydrothermal vents
along the Galapagos Rift in 1981 (Cavanaugh et al., 1981). Since
then, taxonomic and biogeographic knowledge of bacterial symbi-
onts of diverse vent organisms including mytilid mussels, provannid
snails, alvinocaridid shrimps, and bythograeid crabs has steadily ad-
vanced (Duperron et al., 2006; Fujiwara et al., 2000; Goffredi, 2010;
Ponnudurai, 2019; Suzuki et al., 2006; Williams, 1980; Won
et al., 2003; Zbinden et al., 2008; Zhang et al., 2017). According
to previous studies, bacterial symbionts densely populate specific
organs and tissues of their hosts. Vestimentiferan endosymbionts
occur densely in bacteriocytes within a highly vascularized inter-
nal organ, the trophosome (Jones, 1988). Meanwhile, some vent
organisms, including mytilids, provannids, and alvinocaridids, con-
tain dense aggregations of endo- and/or episymbionts on the gills
or in branchial chambers (Distel et al., 1995; Dubilier et al., 2008;
Duperron et al., 2006; Petersen et al., 2010). In terms of the inter-
actions between hosts and symbionts, the representative symbiont
of vestimentiferans, Candidatus Endoriftia persephone, has a broad
geographic distribution as well as wide ranges of vent habitats and
hosts (Di Meo et al., 2000; Perez & Juniper, 2016). In addition, some
mytilid mussels show dual symbiosis, having two bacterial sym-
bionts with different metabolic functions (Duperron et al., 2007,
2008; Jang et al., 2020). Based on these studies, the distribution,
occurrence, and transmission of bacterial symbionts are assumed
to be influenced by various factors, including habitat features, vent
fluid composition, and the geographic distribution of their hosts
(Vrijenhoek, 2010). However, previous studies have generally been
conducted separately for various host species, preventing compre-
hensive analyses of the competitive interactions between hosts in
various taxonomic groups and their symbionts.

The gill, which is one of the most extensively studied organs
in relation to symbiosis, is the major organ of gas exchange and

direct uptake of various organic and inorganic components from
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water, and its basic structure and function are similar across most
aquatic animals (Riisgard, 1988; Rivera-Ingraham et al., 2016; Wood
& Soivio, 1991). The uptake rates of dissolved gases and chemical
compounds are influenced by their concentrations and molecular
weights, environmental conditions, and species-specific anatomical
features of the gill (Black & McCarthy, 1988; Hayton & Barron, 1990;
Jgrgensen, 1974; Perry & Laurent, 1993). In chemosynthetic hydro-
thermal vent environments, gills also function as a point of entry
for highly concentrated toxic materials, such as cadmium, copper,
mercury, sulfur, and methane, into the internal tissues (Cavanaugh
et al., 1981; Serafim et al., 2006; Felbeck, 1981; Lee et al., 2015;
Vetter, 1985). Bacterial symbionts related to gills are assumed to
play key roles in supporting host metabolism and other physiolog-
ical functions, such as carbon fixation, detoxification of metals,
and oxidation of sulfides and methane (Cavanaugh et al., 1988;
Childress et al., 1986; Jannasch, 1985; Ponsard et al., 2013; Powell &
Somero, 1986; Zbinden et al., 2015).

The South-West Pacific Area biogeographic province, our
study area, covers a large area of hydrothermal vents in the
southwestern Pacific Ocean. These vents are relatively young
(<10 Mya) and are enriched in CO,, SO,, H,S, Fe, and particularly
Hg compared to vent fields in other oceans (Auzende et al., 1988;
Lee et al., 2015). The water masses surrounding the area are well
mixed by the South Equatorial Current system (Desbruyéres
et al., 2006; Mitarai et al., 2016). In addition, this region is a ma-
rine biogeographic province with the highest biodiversity, as it
contains diverse vent invertebrates belonging to various phyla,
including mollusks, crustaceans, annelids, echinoderms, and cni-
darians, which are abundant at vent sites with active hydrother-
mal chimneys (Bachraty et al., 2009; German et al., 2011; Thaler
& Amon, 2019).

At the vent of our study site (Figure 1), five dominant co-occurring
invertebrate species,

“Bathymodiolus” manusensis, B. brevior,

Alviniconcha strummeri, Rimicaris variabilis, and Austinograea alayseae,

(b)

FIGURE 1 (a) Map and (b) photograph
of the sample collection site in Tonga
Arc. Red circle indicates the location of
vent site TA25W-I at Volcano 18S. Video
clip of the collection site recorded by full
HD camera mounted on ROV ROPOS is
attached as Supplemental information
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were found under identical environmental conditions (Video S1 and
Figure S1). The mechanisms by which these co-occurring species
share and partition the given resources at a single vent site remain
unknown. In this study, we investigated their coexistence strategies
based on gill-associated symbiotic bacteria (gill symbionts). First,
we obtained 16S rDNA libraries of gill symbionts from these five
sympatric invertebrates and characterized their community compo-
sitions. To clarify the codependent relationship between gill symbi-
onts and their hosts, we constructed phylogenetic relationship trees
of the dominant gill symbionts and discussed their relationships

along with the taxonomic relationships among hosts.

2 | MATERIALS AND METHODS
2.1 | Sample collection

Three species of mollusk (“B.” manusensis, B. brevior, Al. strummeri)
and two crustaceans (R. variabilis, Au. alayseae) were collected from
a single vent site TA25W-I (referred as TA25D in Lee et al., 2019)
in Volcano 18S (Massoth et al., 2007) of the Tonga Arc (24.35°S;
176.57°W; depth 1,067 m) using a scoop and suction sampler on
the remotely operated vehicle (ROV) ROPOS during a cruise on R/V
Sonne in February 2012 (Figure 1). Once onboard, some invertebrate
specimens were immediately preserved in a -80°C deep freezer for
genetic analyses.

Site TA25W-I is part of the Tongan Exclusive Economic Zone
(EEZ). Permission to conduct scientific research activity and col-
lect biological samples in this area was granted by the Minister for
Lands and Natural Resources, Kingdom of Tonga, to KIOST Minerals
Limited, Korea Institute of Ocean Science and Technology.

2.2 | DNA extraction, library preparation and
pyrosequencing

We dissected gill tissues from two frozen individuals per invertebrate
host species. To remove any contaminants from ships, laboratories,
or humans, the dissected gill tissues were rinsed with 70% ethanol
once, and then washed five times with 1x phosphate-buffered saline
(PBS). After it had been washed, genomic DNA was extracted using
the FastDNA SPIN Kit for Soil (MP Biomedicals) following the manu-
facturer's instructions.

To prepare the metabarcoding libraries, first, the V1-V3 region
of the bacterial 16S rRNA gene was amplified using the fusion primer
set B16S-F (5'-CCTATCCCCTGTGTGCCTTGGCAGTC-TCAG-AC-GA
GTTTGATCMTGGCTCAG-3'; underlined sequence indicates the
priming site) and B16S-R (5'- CCATCTCATCCCTGCGTGTCTCCGAC-
TCAG-X-AC-WTTACCGCGGCTGCTGG-3"; “X” indicates a barcode
uniquely designed for each sample and the underlined sequence

indicates the priming site; Table S1). PCR was conducted in 30-pl
volumes containing 1 ul genomic DNA, 4 ul dNTP mixture (2.5 mM
each), 1 ul each primer (10 pmol), 3 ul 10x Ex Taq Buffer (Mg?* plus),

1.25 U of Takara Ex Tag DNA Polymerase (Takara Biotechnology
Co.), and 19.5 ul distilled water. The thermal cycling program was
as follows: 94°C for 5 min; followed by 30 (for “B.” manusensis, B.
brevior, Al. strummeri, and Au. alayseae) or 35 (for R. variabilis) cy-
cles of 94°C for 30 s, 50°C for 30 s, and 72°C for 30 s; and finally
72°C for 7 min followed by a 20°C hold. All experiments were per-
formed in triplicate. Next, the concentrations of the amplified prod-
ucts were measured using a Nanodrop 1000 Spectrophotometer
(Thermo Fisher Scientific) and 300 ng of each amplified product was
transferred to a single 1.5 ml microcentrifuge tube. The mixed am-
plified products were purified and concentrated using QlAquick Gel
Extraction Kit (Qiagen, Hilden, Germany) following the manufactur-
er's instructions. Finally, the samples passed quality-control testing
for pyrosequencing based on a final concentration of 83 ng/ul and

volume of 31 pl.

2.3 | Data pre-processing and OTU identification

All pyrosequencing results were subjected to Good's coverage esti-
mation to determine the sequencing depth using CLcommunity soft-
ware version 3.46. Subsequently, data pre-processing of raw reads
was conducted following the methods of Jeon et al. (2013). First,
low-quality reads (average Q score < 25 or read length < 300 bp)
were discarded and the specific bacterial reads for each host sample
were sorted using their unique barcodes. The barcode, linker, and
PCR primer sequences were trimmed from both ends of the reads
using pairwise sequence alignment and the hmm-search program
in the HMMER 3.0 package (Eddy, 2011), and chimeric sequences
were removed using UCHIME (Edgar et al., 2011). Based on the clus-
ters of trimmed sequences, which allowed no more than two mis-
matched bases, representative reads were selected for correcting
homopolymer errors (Jeon et al., 2013). The selected representative
reads were defined as OTUs and were classified using the EzTaxon-e
database. Then, taxonomic ranks were defined based on similar-
ity values (x), as follows: x > 97% for species; 97% > x > 94.5% for
genus; 94.5% > x = 86.5% for family; 86.5% > x = 82% for order;
82% > x = 78.5% for class; and 78.5% > x =2 75% for phylum (Tindall
et al., 2010).

2.4 | Characterization of gill symbiont communities

Species-level OTUs were used for subsequent analyses. Species
richness and diversity were estimated with the Chaol and Shannon
indices using the Cluster Database at High Identity with Tolerance
(CD-HIT) method in CLcommunity ver 3.46 (ChunLab Inc.).

To clarify the taxonomic relationships among the dominant gill
symbionts of sympatric hosts, species-level OTUs accounting for
more than 1% of each gill symbiont community were selected. These
OTUs and bacterial 16S rDNA sequences (420-493 bp) associated
with chemosynthetic environments were retrieved from GenBank

and aligned using the Geneious Alignment method implemented
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in Geneious Prime v2020.0.4 (Biomatters) and further corrections
were made through visual inspection. Then a neighbor-joining tree
was constructed using MEGA X (Kumar et al., 2018) with the p-

distance model and bootstrap resampling (1,000 replicates).

3 | RESULTS
3.1 | Diversity of gill symbionts from co-occurring
invertebrate hosts

A range of 4023-7170 reads of the V1-V3 region on the bacte-
rial 16S rRNA gene were obtained from the gill tissues of three
mollusks (“B.” manusensis, B. brevior, Al. strummeri) and two crus-
taceans (R. variabilis, Au. alayseae), with Good's coverage values
>97%, which indicates sufficient sequencing depth to cover the
microbial communities (Table 1; individual variations shown in
Figure S2 and Table S2). The 436 total operational taxonomic units
(OTUs) of gill symbionts from Tongan invertebrates included 21
bacterial phyla. The newly obtained sequences were deposited in
the Sequence Read Archive (SRA) of GenBank under BioProject
PRINA637194 with following BioSample accession numbers:
SAMN15098003-SAMN15098012.

Crustacean hosts had more OTUs than mollusk hosts (Table 1).
In particular, the blind crab Au. alayseae was associated with a large
number of OTUs (more than 300 OTUs) relative to other species.
However, in all hosts, a small number of specific OTUs accounted for
more than 80% of total reads, while most OTUs had abundances of
<1%. In B. brevior, a single OTU, BBG_OTU1, represented 99.3% of
the total reads (Table A1).

The phylum Proteobacteria was the only gill symbiont taxon
detected in all hosts. More specifically, y-proteobacterial OTUs
were present in all hosts and were the only symbionts detected
at levels above 1% in B. brevior and Al. strummeri, while a- and f-
proteobacterial OTUs were identified only in Au. alayseae and R. vari-
abilis, respectively (Figure 2). Aside from Proteobacteria, the phylum
Epsilonbacteraeota was abundant only in crustaceans (15.46% for R.
variabilis and 57.8% for Au alayseae). The phyla Spirochaetes (63.2%
for BMS_OTU1 and 1.76% for BMS_OTU2) and Tenericutes (6.1% for

No. of No. of
reads total No. of OTUs > 1%"
Host (mean) OTUs? (% of total reads)
Mollusca
“B.” manusensis 4,835 48 4 (98.5)
B. brevior 5,408 38 1(99.3)
Al. strummeri 7,170 56 2(97.9)
Crustacea
R. variabilis 4,023 152 8(88.8)
Au. alayseae 6,498 326 12 (80.5)

*Threshold for species-level OTUs was 97% similarity.

BMM_OTU1) were abundant in “B.” manusensis, while Bacteroidetes
(12.2% for RVF_OTU1) was dominant in R. variabilis. Although pre-
vious studies have reported phenotypic characterization of these
phyla (Brown, 2010; Paster & Dewhirst, 2000; Stokke et al., 2015),
we were unable to enhance the discussion of these four OTUs be-
cause they showed phylogenetic uncertainties on trees based on
16S rDNA partial sequences (data not shown).

3.2 | Relationship between gill symbionts and hosts

Overall, in mollusks, the gill symbiont community was very sim-
ple, consisting of 1-4 major OTUs (Table Al). Notably, in B. brev-
ior and Al. strummeri, the communities were mainly composed
of the y-proteobacterial OTUs, BBG_OTU1 (99.3%), ASG_OTU1
(60.4%), and ASG_OTU2 (37.5%). On the other hand, the two sym-
patric Bathymodiolus species showed different compositions and
relative abundances of gill symbionts as well as unshared OTUs.
Nevertheless, their y-proteobacterial OTUs, BMG_OTU1 and BBG_
OTU1, formed a monophyletic clade, the Ruthia-Thioglobus group,
and showed 96.7% similarity (Figure 3). In addition, the main OTUs
from Al. strummeri, ASG_OTU1 and ASG_OTU2, clustered into dif-
ferent groups, the Thiobios and Leucothrix-Cocleimonas groups, re-
spectively. The former group is associated with vent snails from the
Pacific Ocean (Nakagawa et al., 2014), while the latter was closely
related to y-proteobacterial OTUs from crustacean hosts (Apremont
et al., 2018; Yoshida-Takashima et al., 2012).

In the two crustacean hosts investigated, the complexity of the
gill symbiont community exceeded that of the mollusks (Figure 2;
Table A1l). Nevertheless, their communities were composed of
OTUs from two bacterial groups, including y-proteobacterial and
campylobacterial OTUs (57.5% and 16.9%) in R. variabilis and o-
proteobacterial and campylobacterial OTUs (17.3% and 59.1%) in Au.
alayseae. Among them, campylobacterial OTUs were found only in
crustacean hosts, which contained three OTUs each. These OTUs
were closely related to Sulfurovum species and divided into three
clades, Sulfurovum clades I-11I (Figure 4), while the y-proteobacterial
OTUs of the crustaceans were divided into two groups, the

Leucothrix-Cocleimonas and unclassified groups, which contain

TABLE 1 Diversity of gill symbiont
communities from five co-occurring
invertebrates living at a hydrothermal vent

Chaol Shannon X
site of the Tonga Arc based on the V1-V3
region of bacterial 16S rDNA
67.7 1.25
73.2 0.34
74.6 1.23
2214 2.61
485.1 3.17

bSpecies-level OTUs accounting for more than 1% of reads in each gill symbiont community.
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m unclassified a-proteobacteria sp. 1
m unclassified a-proteobacteria sp. 2
m unclassified a-proteobacteria sp. 3
m Roseovarius

= Sulfitobacter

= Ralstonia

m Candidatus Thiobios

m unclassified y -proteobacteria sp. 1
m Candidatus Ruthia/Thioglubus

= Alphaproteobacteria (a) Flavobacteriia (F)
Betaproteobacteria (B) Spirochaetes_uc_c (S)
Gammaproteobacteria (y)  Mollicutes (M)
Campylobacteria (C) m Others (<1%)

= unclassified y-proteobacteria sp. 2
Cocleimonas
unclassified Leucothrix
Sulfurovum
unclassified Flavobacteriaceae

m unclassified Spirochaetes
Treponema

= unclassified Mycoplasmatales

m Others (<1%)

FIGURE 2 Composition of gill symbiont communities from five co-occurring invertebrates living at a hydrothermal vent site of the Tonga
Arc at the level of bacterial class and genus. Symbiont communities of the hosts (a) “Bathymodiolus” manusensis, (b) B. brevior, (c) Alviniconcha
strummeri, (d) Rimicaris variabilis, and (e) Austinograea alayseae. Different colors represent different taxa. OTUs accounting for <1% of the

community are labeled as “Others” and presented in black
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FIGURE 3 Neighbor-joining trees based on (a) the 16S rDNA of the y-proteobacteria and (b) the cytochrome c oxidase subunit 1 gene
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of crustacean and mollusk hosts from chemosynthetic environments. Red and blue letters indicate gill symbiont OTUs from crustacean and
mollusk hosts, respectively, identified in this study. OTU names are shown in Table Al. Sequences of isolated bacterial species are shown
in bold. Sequences retrieved from GenBank are presented with their host, collection ocean, and GenBank accession no. Bootstrap values

>60% are given above the nodes
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Sulfurii denitrificans (L40808)
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Shigella flexneri (y-proteobacteria) (X96963)

FIGURE 4 Neighbor-joining tree based on the 16S rDNA of the Campylobacteria related with chemosynthetic environments. Red and
blue letters indicate gill symbiont OTUs from Rimicaris variabilis and Austinograea alayseae, respectively, identified in this study. OTU names
are shown in Table Al. Sequences of isolated bacterial species are shown in bold. Sequences retrieved from GenBank are presented with
their host, collection ocean, and GenBank accession no. Bootstrap values >60% are given above the nodes

diverse y-proteobacteria found in vent crustaceans or environmen-
tal samples, with the exception of ASG_OTU2.

4 DISCUSSION

|
4.1 | Diversity of sulfur oxidizers in the gills of
Tongan invertebrates

Based on metabolite uptake experiments, it has been proposed that
Tongan hydrothermal vent ecosystems are supported by sulfur-
oxidizing bacteria as primary producers and inorganic sulfur com-

pounds as their main energy source (Dubilier et al., 1998; Henry

et al., 2008; Suzuki et al., 2006). In this study, the gill symbiont
communities of Tongan invertebrates were mainly composed of y-
proteobacterial sulfur oxidizers, including Cocleimonas, Leucothrix,
and Candidatus Ruthia/Thioglobus (Figure 3; Table A1). Furthermore,
in crustaceans, campylobacterial Sulfurovum species, which are also
sulfur-oxidizing bacteria, were dominant.

In hydrothermal vent ecosystems, y-proteobacteria are the most
commonly observed sulfur-oxidizing symbionts of invertebrate hosts
(Apremont et al., 2018; Forget & Kim Juniper, 2013; Goffredi, 2010;
Spiridonova et al., 2006). We observed y-proteobacterial OTUs in
all five co-occurring invertebrates from the Tonga Arc. Interestingly,
none of the hosts shared species-level OTUs that accounted for more

than 1% of total reads for their symbiont community (Table A1). Based
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on the phylogenetic relationship tree, we assumed that the speciation
of Tongan y-proteobacterial gill symbionts is closely related to the
speciation of their hosts (Figure 3). In other words, the Leucothrix-
Cocleimonas group originated from a common ancestor that formed
a symbiotic relationship with the common ancestor of brachyuran
and anomuran crabs and caridean shrimps, while the ancestors of
the Ruthia-Thioglobus and Thiobios groups formed associations with
the ancestors of mytilid-vesicomyid bivalves and vent gastropods,
respectively. These results suggest that Tongan gill symbionts are
more closely affiliated with hosts than with environments. Thus,
Tongan y-proteobacterial gill symbionts have coevolved with their
hosts, and their symbiotic relationships may have been reinforced
by host-symbiont interactions (e.g., bacterial chemotaxis, suppres-
sion of host immune responses, out-competition, and cospeciation;
Beinart, 2019; Charleston & Perkins, 2006; West et al., 2006) rather
than through accidental acquisition due to environment factors.

The campylobacterial Sulfurovum is known as a representative
sulfur-oxidizing epibiont of chemosynthetic ecosystems. It grows
chemolithoautotrophically using sulfur or thiosulfate as an elec-
tron donor and oxygen or nitrate as an electron acceptor (Inagaki
et al, 2004). Although only four Sulfurovum species have been
described to date, many 16S rDNA sequences closely related to
Sulfurovum have been detected in marine sulfidic environments world-
wide (Giovannelli et al., 2013; Huber et al., 2007; Inagaki et al., 2004;
Mino et al., 2014). In this study, AAC_OTU2 of Sulfurovum clade
| showed greater than 97% similarity with 14 other 16S rDNA se-
quences detected from diverse hosts in various regions in the global
ocean (Figure 4). This result indirectly indicates that campylobacte-
rial species with these sequences are distributed globally and have
weak host preference. Moreover, a similar symbiotic relationship
was revealed for members of Sulfurovum clades Il and Ill, as shown
in Figure 4. Based on these results, we further consider studies at
the genome level to understand low variations within 16S rDNA se-

quences among Sulfurovum strains from different oceans and hosts.
4.2 | Higher diversity of bacterial communities in
crustaceans

In all Tongan invertebrates, more than 90% of bacterial OTUs in

gills had abundances <1% (Figure 2). If bacterial communities of
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gills are mainly affected by their external environments, the level
of rare OTUs should be similar in all hosts. However, the bacterial
community diversities, along with the number and read ratio of
rare OTUs, were extremely elevated in crustacean hosts (Table 1,
Figure 2). Based on previous studies with dominant OTUs, dif-
ferentiation of bacterial communities seems to be affected by
symbiont forms, endosymbiont for mollusks versus episymbiont
for crustaceans (Apremont et al., 2018; Duperron et al., 2007).
Although this is one of the important factors for understanding
bacterial communities, it is not sufficient to explain rare OTUs in
this study.

In terms of animal behavior, grooming activities performed by
crustaceans would have positive effect on bacterial fouling (Gebruk
et al., 2000; Thurber et al., 2011). For example, according to an in-
teresting behavioral study of the squat lobster, Kiwa puravida, its
cheliped-waving increases in close proximity to seeps discharging
methane-rich fluids, which is assumed to be a strategy to ensure a
supply of chemical resources for the episymbionts covering its che-
liped setae (Thurber et al., 2011). Generally, the necessity and use-
fulness of symbioses are approached from the perspective of hosts,
rather than that of symbionts. Probably, from the bacterial symbi-
onts’ viewpoint, mobile organisms may be considered better hosts
than sessile ones (Micheli et al., 2002; Van Dover & Fry, 1989; Van
Dover et al., 1988).

4.3 | Competitive interaction between sympatric
bathymodiolin mussels

Sympatric organisms occupying the same ecological niche generally
have strategies to avoid competition for food resources and habitat
(Baumart et al., 2015; Friedlaender et al., 2015). In chemosynthetic
ecosystems, two bathymodiolin mussel species are occasionally
found at the same sites, and such species show different gill symbi-
ont compositions (Table 2). Interestingly, in all three cases presented
in Table 2, one of the two sympatric hosts had a single symbiont
metabolic type, thiotrophic in vents and methanotrophic in seeps,
while the other had dual symbiont types, either methanotrophic-
thiotrophic or carboxydotrophic-thiotrophic (Duperron et al., 2007;
Jang et al., 2020). Generally, bathymodiolin mussels depend on their

gill symbionts for nutrition (Duperron, 2010). Considering given

TABLE 2 Comparison of symbiont types among sympatric bathymodiolin mussels

Ocean Region (site, habitat) Host Species Symbionts? Reference

West Pacific Tonga Arc (TA25W-I, vent) Bathymodiolus brevior T This study
“Bathymodiolus” manusensis C-T

Indian Central Indian Ridge (Onnuri vent field, vent) Bathymodiolus marisindicus T Jang et al. (2020)
Gigantidas vrijenhoeki M-T

Atlantic Gulf of Mexico (Alaminos Canyon, seep) Bathymodiolus brooksi M-T Duperron et al. (2007)
Gigantidas childressi M

3Chemosynthetic types of gill symbionts: C, carboxydotroph; M, methananotroph; T, thiotroph.
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resources available at a single site, differentiation of the gill symbi-
onts to utilize different chemosynthetic metabolisms seems to be a
brilliant strategy for sympatric bathymodiolins to peacefully obtain

nutrition and energy.

4.4 | Minor gill symbionts of Tongan invertebrates

Most studies of bacterial community structures have focused on
the predominant species in particular environments and hosts.
Recently, however, a few studies have discussed the importance
of rare bacteria in various natural communities, such as those
in human organs, polluted soils and water, and biogas plants
(Ainsworth et al., 2015; Sachdeva et al., 2019). Similarly, in che-
mosynthetic environments, the main research targets are thio-
trophic and methanotrophic bacteria, but little is known about
other rare bacteria. In this study, we observed a minor proportion
of two bacterial groups, the p-proteobacteria (3.53% for RVB_
QOTU1) in R. variabilis and a-proteobacteria (7.76% for AAA_OTU1,
5.03% for AAA_OTU?2) in Au. alayseae (Table Al). Although the
functions of these gill symbionts remain unclear, we can assume
that they cohabitate with their hosts and/or other bacteria to
obtain nutrients and act as regulators of physiological processes
(Dubilier et al., 2008; Duperron, 2010).

This study is the first comparison of gill symbiont communities
of co-occurring invertebrates living at a single vent site of the Tonga
Arc. The results indicate that hosts are closely related with their gill
symbiont communities. Thus, each host species has certain lifestyle
traits, that is, it may be either sessile or mobile, filter-feeding or pred-
atory, and competitive or cooperative, leading to the formation of
a specific symbiotic relationship between the host and symbiont.
Eventually, such host-symbiont specificity would potentially reduce
competition, thus promoting the coexistence of densely populated
co-occurring hosts.

Previous studies have focused on certain tissue types of spe-
cific taxa. Therefore, the process by which symbiotic relationships
are formed between hosts and symbionts and the strategies used
to avoid competition among host species in chemosynthetic eco-
systems remains unclear. To improve our understanding of host-
symbiont coevolutionary processes, further research should be
conducted, including adding more host taxa found in deep-sea en-
vironments worldwide and expansion of the targeted host organs
and tissues. Furthermore, to elucidate the functions of symbionts as
regulators of host physiological processes, application of genomics,
as well as community structures and functions of uncultured micro-
organisms based on metagenomics and metatranscriptomics, should

be investigated.
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info:ddbj-embl-genbank/DQ856534
info:ddbj-embl-genbank/MT594545
info:ddbj-embl-genbank/AB121095
info:ddbj-embl-genbank/MT594546
info:ddbj-embl-genbank/MT594547
info:ddbj-embl-genbank/MT594551
info:ddbj-embl-genbank/AB305599
info:ddbj-embl-genbank/MT594552
info:ddbj-embl-genbank/AB611247.1
info:ddbj-embl-genbank/MT594553
info:ddbj-embl-genbank/AB611276
info:ddbj-embl-genbank/MT594554
info:ddbj-embl-genbank/EU555124
info:ddbj-embl-genbank/MT594548
info:ddbj-embl-genbank/FJ535270
info:ddbj-embl-genbank/MT594549
info:ddbj-embl-genbank/JQ287092
info:ddbj-embl-genbank/MT594550
info:ddbj-embl-genbank/AY672515

