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Abstract: This research investigated the effects of different thermoplastics types and different kinds of
straw on selected properties of polymer-straw boards. Polyethylene, polyethylene, and polystyrene
of virgin and of recycled origin were used for bonding the boards. Three kinds of straw were used:
rape (Brassica napus L. var. napus), triticale (Triticosecale Witt b m.), and rye (Secale L.). Five-layer
polymer-straw boards were produced. The obtained boards differed in both the materials they
were made of and the moisture content (7, 25, and 2% for the core, the middle, and the face layers,
respectively), and 30% of straw particles were substituted with thermoplastics added to the face
layers. It was found that properties of polymer-straw boards strongly depend on both the kind of
straw and the type of polymer used. The best mechanical properties were obtained for rye straw
and polystyrene or recycled polymers, whereas the best hydrophobic properties were observed for
rape straw combined with recycled polyethylene or polypropylene. Although recycled polymers
improved the hydrophobic properties of the boards, they impaired their mechanical properties
in comparison with the reference ones. However, in terms of bending strength, they still met the
requirements for heavy duty load-bearing boards for use in humid conditions (20 MPa for P7 boards
according to EN 312).

Keywords: polymer-straw boards; thermoplastic polymers; straw; hydrophobicity; mechanical properties

1. Introduction

Wood-based materials, especially particleboards, have been greatly popular for many
years. The quality of technological lines, excluding those requiring chips of specific type,
e.g., OSB (oriented strand board) [1–6], enables processing of practically any type of wood
into particleboards. Wood generated as waste from sawmill production processes [7–9],
from forest fires [10], post-consumer or recycled wood, or fine and undersize chips [11–18]
are easily used in these processes. This ease of the use of wood material even of low quality
does not hinder a search for alternate materials for production of furniture or construction
boards. Therefore, works on the possible use of straw from various cereal species for
production of particleboards [19–30] or even boards as demanding as OSB [31–33] are
continued. Particles from these straws can partly substitute wood chips or be used as a
homogeneous component of manufactured boards. Wheat, rye, rice, or even maize straws
are used most commonly. These materials represent an attractive substitute for wood due to
a range of useful properties of products, of which they are a main component. For example,
they provide better hygroscopicity, better thermal [34] and acoustic [35] insulation, and
lower [36] specific weight, and they are much cheaper than wood. Attempts to use straw
in particleboards were already made in the 1960s; however the problem of worse gluing
of straw particles, when compared with wood, was hard to overcome. Problems with
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gluing, as well other issues related to urea-formaldehyde (UF) or phenol-formaldehyde
(PF) resins, can be solved by using pMDI (polymeric diphenylmethane diisocyanate)
adhesive [32,37–39]. Straw particles glued with pMDI adhesive and formed into medium-
or high-density boards can be successfully used in furniture or construction sectors. In
this second industry, these boards can be used for structural applications [30,33,39,40].
However, the company VestaEco uses straw particles glued with pMDI in its technology
for production of insulation materials [41].

Particles obtained from straw were also successfully used as a filler for manufactur-
ing of wood plastic composites (WPC) [42,43]. WPCs are commonly manufactured from
meal, sawdust, or fine chips by various ways, such as compression molding, extrusion, or
injection [44]. These methods ensure better mixing of components, but require much finer
fractions of lignocellulosic fillers. The use of methods commonly used for production of
wood-based materials offers some solutions to this problem [45–53]. In this case, layers
of lignocellulosic and thermoplastic materials can be formed alternately or thermoplastic
material with particles of a size similar to plant particles can be used [53–56]. Typical ther-
moplastic materials for WPC production include polypropylene, polyethylene, polystyrene,
or polyvinyl chloride.

Their advantage is a possibility of their reuse for production of the same or other
products. In both cases, products of standard quality are obtained. These materials should
be recovered when they become a municipal waste. In the European Union, basic rules
and definitions concerning waste management are specified in the Waste Framework
Directive [57]. Recovered plastics usually undergo mechanical recycling. However, thermo-
plastic waste can undergo either material or energy recycling. The energy recycling through
incineration can always be the last stage in the cycle of the product life. About 6.3 billion
tons of waste plastics are fabricated each year all over the world, while only a slight part of
them (~9%) are recycled. Consequently the majority of them (~79%) are accumulated in
the environment. [58]. Although it may appear strange, the demand for recycled plastics in
Europe represents ca. 6% of the total demand for plastic materials. Therefore, it seems that,
with overproduction of straw (it is estimated that, in the UK alone, as much as 4 million
tonnes of straw are wasted every year), a direction enabling combining these two materials
into a product of advantageous physical and mechanical properties is a correct one for the
coming years.

Thus, the presented study aimed to combine wastes of straw and thermoplastics
into polymer-straw board and to determine the effect of a kind of straw and a type of
thermoplastics on both mechanical and physical properties of manufactured polymer-
straw boards.

2. Materials and Methods
2.1. Materials

Rye (Ys), triticale (Ts), and rape (Rs) straws were used in the study. The straw was
obtained in an unshredded form and then shredded in a laboratory mill. An attempt was
made to obtain chopped straw of a length similar to pine chips (Pw) used in the middle
layer in particleboard production. Particles obtained by shredding were additionally sieved
on a screen with 0.5 × 0.5 mm2 mesh, to remove very fine and dust fractions. Samples
for size and bulk density determinations were collected from prepared batches of the
material. Linear dimensions of particles obtained this way are shown in Table 1. A detailed
description is provided in publication [29]. Data included in Table 1 shows that obtained
particles differ mainly in their thickness. This parameter is difficult to influence during the
shredding process. Thickness of grass stalks is much lower than that of rape straw, and this
translates into a lower thickness of obtained particles. The linear dimensions influence bulk
density of obtained fractions. In this case, fractions for board manufacturing produced
by shredding rye and triticale straws had similar bulk density of 60 kg/m3, while bulk
density of fractions obtained from rape straw was 80 kg/m3. Bulk density of pine chips
was over twice as high as that of cereal chips.
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Table 1. Linear dimensions and bulk density of straw and wood particles used in the study.

Material Symbol
Properties of Particles

Length
(mm)

Width
(mm)

Thickness
(mm)

Bulk Density
(kg/m3)

Rape straw
(Brassica napus L. var. napus) Rs 14.06 ± 9.8 2.18 ± 1.08 0.62 ± 0.43 80 ± 2.0

Triticale straw
(Triticosecale Witt b m.) Ts 18.26 ± 12.5 2.55 ± 1.25 0.30 ± 0.25 60 ± 1.2

Rye straw (Secale L.) Ys 16.81 ± 11.6 1.70 ± 0.79 0.25 ± 0.17 60 ± 2.3

Pine wood particles (Pinus sylvestris L.) Pw 13.72 ± 11.1 2.03 ± 1.10 1.04 ± 0.52 130 ± 1.9

The following thermoplastic materials, differing in types, forms, and softening point,
were used in the study:

• PP—polypropylene,
• HDPE—high density polyethylene,
• LDPE—low density polyethylene,
• PS—polystyrene,
• LDPE rec. yellow—low density polyethylene from recycled scraps of yellow plastic,
• LDPE rec. pink—low density polyethylene from recycled scraps of pink plastic,
• PP recycled—polypropylene from reusable packaging.

In these studies, both native/virgin and recycled polymers were used. Their basic
characteristics and appearance are presented in Table 2.

Table 2. Basic properties of the investigated thermoplastics.

ThermoPlAstic Type Density [g/cm3]
Softening Point

[Vicata (A50)]
MFR

(Melt Flow Index) Photo

PP 0.9 150 ◦C 4 g/10 min
(230 ◦C/2.16 kg)
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Table 2. Cont.

ThermoPlAstic Type Density [g/cm3]
Softening Point

[Vicata (A50)]
MFR

(Melt Flow Index) Photo

LDPE_RZ 0.37 * 89 ◦C Nd
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compounds can be used both as agents binding wood or straw particles with each other,
and as adhesion promoters for systems composed of lignocellulosic material and thermo-
plastic polymer. Therefore, we decided to use a polymeric diphenylmethane diisocyanate
adhesive (pMDI, Ongronat®2100, BorsodChem Group, Kazincbarcika, Hungary) in our
study. Ongronat®2100 is a brown (20 ◦C, 1013 hPa) non-flammable liquid of a density
1.23 g/cm3, viscosity of 210 mPa·s, contractual dry matter content of 100%, NCO content
of 30.6%, and chlorine hydrolytic 127 mg/kg.

2.2. Manufacturing of Polymer-Straw Samples

In the laboratory conditions, five-layer boards were produced, of the following shares
of individual layers: 12.5%:12.5%:50%:12.5%:12.5%. The individual layers varied in terms
of the type of material and moisture content (Figure 1):

• face layers (1, 5) were made of straw of 2% moisture content, with 30% polymer
addition,

• intermediate layers (2, 4) were made of straw of 25% moisture content,
• the core layer (3) was made of pine chips of 7% moisture content.
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Figure 1. Structure of manufactured boards.

Our previous studies [59] indicate that it is advantageous to use lignocellulosic mate-
rial of low moisture content, i.e., below 4%, in manufacturing polymer containing products,
and this observation is supported by other authors [60–62]. For this reason, the lignocel-
lulosic material intended for face layers was dried to a level below 2%. To accelerate the
process of heat transfer into the board, intermediate layers were manufactured of material
with 25% moisture content. It is consistent with a general practice of particleboard produc-
tion [63–65]. Therefore, the boards produced without thermoplastics were evaluated prior
to actual experiments. The following materials were prepared:
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• single-layer boards made only of pine chips with 7% moisture content;
• three-layer boards, with a core layer of pine chips and face layers of straw particles of

moisture content of ca. 7%;
• five-layer boards of the same structure as the boards with polymers.

Table 3 presents systems of the manufactured boards with symbols assigned.

Table 3. List of boards produced and symbols used.

Board
Code

Number of
Board Layers Polymer Type Kind of

Straw

Materials/Polymer Share (as %) in Board Layers

Layer

1 2 3 4 5

Pw 1 Without polymer Without
straw Pw/0; one-layer board

Rs-Pw 3 Without polymer Rs Rs/0 - Rs/0 - Rs/0
Ys-Pw 3 Without polymer Ys Ys/0 - Ys/0 - Ys/0

Rs-Pw-0 5 Without polymer Rs Rs/0 Rs/0 Pw/0 Rs/0 Rs/0
Ys-Pw-0 5 Without polymer Ys Ys/0 Ys/0 Pw/0 Ys/0 Ys/0
Ts-Pw-0 5 Without polymer Ts Ts/0 Ts/0 Pw/0 Ts/0 Ts/0

Rs-Pw-PP 5 PP Rs Rs/30 R/0s Pw/0 Rs/0 Rs/30
Ys-Pw-PP 5 PP Ys Ys/30 Y/0s Pw/0 Ys/0 Ys/30
Ts-Pw-PP 5 PP Ts Ts/30 Ts/0 Pw/0 Ts/0 Ts/30

Rs-Pw-
PP_R 5 PP_R Rs Rs/30 R/0s Pw/0 Rs/0 Rs/30

Ys-Pw-
PP_R 5 PP_R Ys Ys/30 Y/0s Pw/0 Ys/0 Ys/30

Ts-Pw-
PP_R 5 PP_R Ts Ts/30 Ts/0 Pw/0 Ts/0 Ts/30

Rs-Pw-
HDPE 5 HDPE Rs Rs/30 R/0s Pw/0 Rs/0 Rs/30

Ys-Pw-
HDPE 5 HDPE Ys Ys/30 Y/0s Pw/0 Ys/0 Ys/30

Ts-Pw-
HDPE 5 HDPE Ts Ts/30 Ts/0 Pw/0 Ts/0 Ts/30

Rs-Pw-
LDPE 5 LDPE Rs Rs/30 R/0s Pw/0 Rs/0 Rs/30

Ys-Pw-
LDPE 5 LDPE Ys Ys/30 Y/0s Pw/0 Ys/0 Ys/30

Ts-Pw-
LDPE 5 LDPE Ts Ts/30 Ts/0 Pw/0 Ts/0 Ts/30

Rs-Pw-
LDPE 5 LDPE Rs Rs/30 R/0s Pw/0 Rs/0 Rs/30

Ys-Pw-
LDPE 5 LDPE Ys Ys/30 Y/0s Pw/0 Ys/0 Ys/30

Ts-Pw-
LDPE 5 LDPE Ts Ts/30 Ts/0 Pw/0 Ts/0 Ts/30

Rs-Pw-
LDPE_RZ 5 LDPE_RZ Rs Rs/30 R/0s Pw/0 Rs/0 Rs/30

Ys-Pw-
LDPE_RZ 5 LDPE_RZ Ys Ys/30 Y/0s Pw/0 Ys/0 Ys/30

Ts-Pw-
LDPE_RZ 5 LDPE_RZ Ts Ts/30 Ts/0 Pw/0 Ts/0 Ts/30

Rs-Pw-
LDPE_RR 5 LDPE_RR Rs Rs/30 R/0s Pw/0 Rs/0 Rs/30

Ys-Pw-
LDPE_RR 5 LDPE_RR Ys Ys/30 Y/0s Pw/0 Ys/0 Ys/30

Ts-Pw-
LDPE_RR 5 LDPE_RR Ts Ts/30 Ts/0 Pw/0 Ts/0 Ts/30

Rs-Pw-PS 5 PS Rs Rs/30 R/0s Pw/0 Rs/0 Rs/30
Ys-Pw-PS 5 PS Ys Ys/30 Y/0s Pw/0 Ys/0 Ys/30
Ts-Pw-PS 5 PS Ts Ts/30 Ts/0 Pw/0 Ts/0 Ts/30
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Thirty percent of the straw were substituted with the thermoplastics which were added
to layers 1 and 5. Regardless of the layer, the particles were glued with pMDI adhesive in
the amount of 4% of adhesive dry weight per dry weight of the lignocellulosic material.
The manually formed mat was prepared to produce the boards with the thickness of 15 mm
and the target density of 600 kg/m3. The unit pressure was 2.5 MPa, the temperature
of heating plate was 200 ◦C and pressing time was 20 s per mm of the board thickness.
Pressing process of the mat was conducted between the metal plates.

After hot pressing the molds with the metal plates were subjected to the cold pressing,
where they were left under 1000 N of load until their temperature was decreased to the
range of 80–100◦C. The dropping temperature was registered with K type thermocouples
attached to both the upper and the lower surfaces of the plates. Three molds with a
dimensions of 700 × 450 mm2 were produced for each variant.

2.3. Board Testing

After the boards conditioning for seven days at 55 ± 5% RH and 21 ± 1 ◦C the produced
panels were tested in terms of following parameters according to the relevant standards:

• bending strength (MOR) and modulus of elasticity (MOE) according to EN 310 [66];
• internal bond (IB) according to EN 319 [67];
• internal bond after the boiling test (V-100) according to EN-1087-1 [68];
• thickness swelling (TS) after 24 h according to EN 317 [69] and water absorption (WA).

The water resistance and mechanical properties investigations involved from 10 to
16 samples in each variant. The other analysis was conducted in three to five replications.

2.4. Statistical Analysis

The results were analyzed using STATISTICA 13.0 package (StatSoft Inc., Tulsa, OK,
USA). The performed analysis was based on ANOVA (analysis of variance) and homo-
geneous groups were distinguished with the use of Tukey’s test (HSD). Homogeneous
groups are marked with lowercase letters. The results were analyzed on the significance
level of p = 0.05.

3. Results and Discussion
3.1. Bending Strength and Modulus of Elasticity in Bending of Board Samples

Figures 2 and 3 show the influence of the board production method on their mechanical
properties. The results shown indicate that when a moisture level typical for pMDI-glued
boards is used, the lowest MOR and MOE values are observed for the boards made of
rape particles. Our previous studies [23,29] indicate that the boards made of rape particles
have static bending strength and modulus of elasticity similar to or slightly lower than the
boards made of pine chips. The boards made of straw from popular cereals manufactured
in the similar conditions are characterized by significantly higher strength and modulus
of elasticity than the pine boards [29]. The applied modification, in form of the increased
moisture content in the face layers, resulted in a significant increase in bending strength
and modulus of elasticity of the rape boards and in bending strength only in the boards
made of rye particles.

It can be assumed that the use of very dry particles in the face layers does not neg-
atively affect the quality of the manufactured boards. The increase in moisture content
in the intermediate layer possibly compensates for the negative effect of excessively dry
layers in direct contact with heating panels. The influence of the kind of straw and the
thermoplastic type was analyzed by ANOVA. We decided to present more extensive results
for this analysis only for the influence of the applied modifications on MOR. Figure 4 shows
the influence of the kind of straw in the face layers and the type of polymer used. Similarly
as in control samples, the manufactured rape boards differ significantly from the boards
made from triticale or rye straw.

Differences in strength of the triticale and rye boards are statistically significant,
contrary to results for the systems without polymers (Figure 2). In our previous studies,
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we also did not find statistically significant differences in strength of the boards made
of these straws [29]. In general, all boards containing thermoplastics in their face layers
demonstrate lower strength than the control boards. However, in the case of the boards
with LDPE in their face layers, this decrease in strength is not statistically significant.
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Figure 2. The influence of the board production method and material type on static bending strength: Pl–values for boards
containing polymers.
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The boards with PP or PS addition are characterized by relatively high strength. For
these polymers, mean values of board MOR differ by 1 N/mm2. The boards with the
lowest MOR were obtained when HDPE was used in the face layers. In this case, the
strength is still high, slightly below 20 N/mm2, regardless of the kind of straw used.
When a more extensive statistical analysis was conducted, it was found that the strength
of the boards containing HDPE did not differ significantly from those containing PS
(Figure 5). Furthermore, the boards manufactured with native LDPE are characterized by
static bending strength statistically similar to the boards containing polypropylene. What
is significant is that the boards manufactured with recycled polymers had a higher static
bending strength than those containing the same polymer, but of virgin origin. Although
these differences were not statistically significant in the boards with PP, the LDPE boards
containing recycled polymer demonstrated improved bending strength.

Figure 6 presents a chart for these interactions. The interaction effect is understood
as a simultaneous influence of several factors on a dependent variable in the analysis of
variance. In our case, the null hypothesis about interactions must be rejected. This means
that the thermoplastic polymers used in the study affected the quality of the manufactured
boards always in the same way, regardless of the kind of straw used. Although the straws
used in the study differed, especially the rape straw from the rye or triticale straw, none
of the polymers changed significantly a trend in strength of the manufactured boards. In
all cases, the boards with rye straw achieved the best, and the boards with rape straw the
worst results.
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The effect of the straw kind on modulus of elasticity of the straw-polymer boards was
similar to its influence on static bending strength (Figure 7). The best results were obtained
for rye straw, and the boards with rape straw had the lowest modulus of elasticity. These
differences were statistically significant (F(2, 883) = 580.55, p = 0.0000), as confirmed by the
Tukey’s HSD test.
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Changes in modulus of elasticity caused by the addition of a polymer to the face layers were
consistent with changes in modulus of elasticity observed in previous studies [42,52,54,59]. Although,
in this case, one of the lowest values of modulus of elasticity was observed also for the
boards with HDPE, similarly low values were noted for the boards with LDPE or with
any type of polypropylene. The lowest changes in modulus of elasticity (below 4%) were
found for the boards with polystyrene. In the remaining boards, the decrease in modulus
of elasticity ranged from 8% to 12%.

3.2. Internal Bond of Board Samples

In general, internal bond strength evaluates properties of the board core. Usually,
except for special boards, in consequence of the pressing process, the density near the
core of the board is the lowest, so this zone is destroyed. The boards manufactured in
the study had the core of the same material, i.e., pine chips. Therefore, we could expect
that the internal bond strength of all boards would be similar in this aspect. However, it
turned out that there was a statistically significant difference in the manufactured boards,
according to the kind of straw used in the face layers (F(2, 247) = 103.23 p = 0.0000). The
tensile strength perpendicular to the board plane was the highest in the boards containing
rape (mean 0.49 N/mm2), followed by rye (mean 0.4 N/mm2), and reaching the lowest
value for triticale (mean 0.38 N/mm2). The polymer type also significant influenced the
board internal bond strength (Figure 8). Internal bond strength of the boards containing
HDPE was similar to that of the control boards. Slightly improved values were obtained
for PP, especially for the recycled material. Internal bond strength of the boards containing
polystyrene and LDPE was comparable and clearly higher than in the control boards.
The best results were obtained for the recycled LDPE. In this case, the rape boards were
characterized by strength exceeding 0.54 N/mm2.
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Figure 8. Influence of a straw kind and a polymer type on tensile strength perpendicular to the board plane.

Considering the type of gluing agent used, these boards should meet requirements for
type P5 or even P7 construction boards. In terms of mechanical properties, the majority of
the analyzed cases met the requirements for boards even of P7 types. Swelling of particle
or straw boards during first 24 h depends, to a large extent, on added agents increasing
board hydrophobic properties. Therefore, evaluation of swelling of the manufactured
boards against EN 312 [70] requirements was difficult, as no improving agent was used.
However, the V100 test was the most important parameter. The manufactured boards
did not meet the requirements of this test. The majority of the boards achieved mean
values of 0.13 N/mm2; however, for type P5 boards to pass this test, the 5th percentile
value of 0.14 N/mm2 is required. As it was expected, no influence of the polymer type
(F(7, 264) = 1.1786, p = 0.31524) on tensile strength perpendicular to the plane after the
boiling test was observed.

3.3. Thickness Swelling and Water Absorption of Board Samples

Another significant factor of the board quality is their thickness swelling after im-
mersion in water. In this case, the applied modification did not affect observed relations
(Figure 9). In general, the boards made of cereal straw showed significantly lower swelling
than those made of pine chips. In this case, swelling of the straw boards, both 3- and 5-layer
versions, was ca. 15% lower than of the boards made of pine chips.
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The boards made of rape particles were characterized by swelling similar or slightly
higher than those made of pine chips. Usually, boards made of rape particles show slightly
lower swelling than pine boards; therefore, the fact that, in this study, the boards of rape
particles, especially the 5-layer boards, achieved slightly higher swelling than pine boards
was rather unexpected. This difference amounted to 4% against the rape boards.

To some extent, high swelling of rape boards with a modified moisture content system
can be explained by their high absorption capacity (Figure 10). They presented nearly
20% higher absorption capacity and, therefore, by 4% greater swelling, did not seem
so important.
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Figure 10. The effect of board production method and type of material on absorption capacity following 24 h immersion
in water.

As in the case of modulus of elasticity, a chart presenting the effect of individual
polymers was selected from the conducted ANOVA analyzing swelling of the straw-
polymer boards (Figure 11). Additionally, in this case, the boards containing rye had the
best results, followed by triticale, and with the worse results for the boards with the rape
straw. The boards containing polymers were characterized by a much lower swelling when
compared to the boards manufactured without them. Although differences in swelling
between individual board types were not large, the statistical analysis showed that the
use of recycled polymers was the most advantageous. The lowest and similar swelling
values were obtained for the boards with LDPE-RZ, PP_R, and LDPE_RR. Of the boards
containing polymers, those containing HDPE achieved the worst results.
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The absorption capacity is usually not specified for furniture and construction boards.
However, as these solutions are relatively new, Figure 12 presents a chart of interactions
obtained by ANOVA. The result of the analysis itself is less important, as it is consistent
with previous analyses concerning mechanical properties. However, the chart shows that
the kind of straw had a lower influence on absorption capacity of the manufactured boards.
As in previous studies, the boards made of rape straw absorbed much more water than
the remaining straws. However, no clear difference in absorption capacity was observed
between the boards made of rye and triticale straws.
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4. Conclusions

The addition of thermoplastic polymers to board face layers significantly influenced
physical and mechanical properties of manufactured boards. On one hand, improved water
resistance could be observed, manifested as lower swelling or reduced water absorption
capacity, while, on the other, a decrease in bending strength or modulus of elasticity was
seen. However, changes in physical and mechanical properties strongly depended both
on the kind of straw and the type of polymer used. The most advantageous changes in
MOE and MOR were observed for the variant containing rye straw, while better results for
tensile strength perpendicular to the board plane was noted with rye straw.

The most advantageous results of modulus of elasticity and bending strength deter-
minations were obtained for the boards containing polystyrene and recycled polymers.
Changes in water resistance were achieved when recycled polyethylene or polypropylene
were used. Therefore, it can be assumed that recycled polymers more strongly improve hy-
drophobic properties of the boards, with a smaller deteriorating effect on their mechanical
properties. The structure of the straws used, although significantly different from the wood,
still allows to produce the boards having good mechanical and physical properties, when
they are combined with polymers. Furthermore, cereal straws allowed for better shaping of
the structure, so the board bending strength was statistically higher than in boards of wood
particles. Therefore, changes more frequently observed in boards containing polymers
(significant drop in MOR) were not as high barrier in the case of the straw-polymer boards.
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63. Dziurka, D.; Mirski, R.; Łęcka, J. The Effect of Pine Particle Moisture Content on Properties of Particleboards Resinated with
PMDI. EJPAU 2006, 9, 16.

64. Park, B.D.; Riedl, B.; Hsu, E.W.; Shields, J. Hot-Pressing Process Optimization by Response Surface Methodology. For. Prod. J.
1999, 49, 62–68.

65. Kelly, M.W. Critical Literature Review of Relationships between Processing Parameters and Physical Properties of Particleboard. General
Technical Report FPL-10; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1977.

66. EN 310. Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength; European Committee for
Standardization: Brussels, Belgium, 1993.

67. EN 319. Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane of the Board; European Committee
for Standardization: Brussels, Belgium, 1993.

68. EN-1087-1. Particleboards—Determination of Moisture Resistance—Boil Test; European Committee for Standardization: Brussels,
Belgium, 1995.

69. EN 317. Particleboards and Fibreboards. Determination of Swelling in Thickness after Immersion in Water; European Committee for
Standardization: Brussels, Belgium, 1993.

70. EN 312. Particleboards—Specifications; European Committee for Standardization: Brussels, Belgium, 2003.

http://doi.org/10.1177/0731684408093877
http://doi.org/10.3390/polym11111750
http://www.ncbi.nlm.nih.gov/pubmed/31731394
http://doi.org/10.1016/j.indcrop.2013.01.011

	Introduction 
	Materials and Methods 
	Materials 
	Manufacturing of Polymer-Straw Samples 
	Board Testing 
	Statistical Analysis 

	Results and Discussion 
	Bending Strength and Modulus of Elasticity in Bending of Board Samples 
	Internal Bond of Board Samples 
	Thickness Swelling and Water Absorption of Board Samples 

	Conclusions 
	References

