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Abstract: Coronary atherosclerosis is a complex, multistep process that may lead to critical compli-
cations upon progression, revolving around plaque disruption through either rupture or erosion.
Several high-risk features are associated with plaque vulnerability and may add incremental prog-
nostic information. Although invasive imaging modalities such as optical coherence tomography
or intravascular ultrasound are considered to be the gold standard in the assessment of vulner-
able coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role
for non-invasive methods in this context. Biomarkers associated with deleterious pathophysio-
logic pathways, including inflammation and extracellular matrix degradation, have been correlated
with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT)
angiography has been the most extensively investigated technique, significantly correlating with
invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as
radiomic-based approaches represent additional concepts that may add incremental information.
Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising
results through the various image sequences that have been tested. As far as nuclear cardiology is
concerned, the implementation of positron emission tomography in the VCAP assessment currently
faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose
use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most
adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combi-
nation of imaging and circulating inflammatory and extracellular matrix degradation biomarkers
in diagnostic and prognostic algorithms may represent the essential next step for the assessment of
high-risk individuals.

Keywords: vulnerable plaque; atherosclerosis; coronary CT angiography; non-invasive imaging;
biomarker

1. Introduction

As a leading cause of morbidity and mortality, atherosclerotic cardiovascular diseases
are constantly at the forefront of scientific research to further unveil their pathophysiologic
basis and to develop appropriate diagnostic and therapeutic approaches. Undoubtedly, the
development of a plaque is the critical complication of atherosclerosis and the investigation
of its features may guide a tailored management of patients with atherosclerotic cardio-
vascular diseases. In the context of coronary artery disease (CAD), significant progress
has been made towards the assessment of coronary atherosclerotic plaques, since several
characteristics have been identified as high-risk for rupture or erosion, leading to the devel-
opment of acute coronary syndromes (ACS). According to these properties, the plaques
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which are prone to rupture or erosion may be defined as vulnerable plaques. Although in-
vasive imaging methods remain the gold-standard in the evaluation of vulnerable plaques,
non-invasive modalities may be critical in the early detection of those abnormalities. In
this review article, we summarize the latest advances in the non-invasive assessment of
vulnerable coronary atherosclerotic plaques (VCAP).

2. Features of the Vulnerable Coronary Atherosclerotic Plaque

The process of atherosclerosis is complex, consisting of multiple steps. The invasion of
low-density lipoprotein (LDL) molecules in the subendothelial space through the aid of
extracellular matrix proteoglycans and the ensuing LDL oxidation consist of the pivotal
initial step [1]. Endothelial dysfunction and permeability are key factors involved in the
accumulation of the large LDL particles [2]. Traditional cardiovascular risk factors are im-
plicated in the progression of endothelial dysfunction [2]. Following endothelial activation,
an array of molecules (selectins, adhesion molecules) facilitate leukocyte rolling, adherence,
and penetration in the subintimal space [3]. Those leukocytes are then differentiated into
macrophages and engulf oxidized LDL, transforming into foam cells due to the presence
of esterified cholesterol in lipid droplets [4]. Consequently, noxious inflammatory and
oxidative responses arise [5,6], together with the activation and proliferation of vascular
smooth muscle cells (VSMCs) in the media layer [7]. VSMCs in particular may also dis-
play phagocytic actions through the uptake of oxidized LDL, given that they are major
contributors in atherosclerotic plaques [8,9].

Following their establishment, coronary atherosclerotic plaques progress through
the continuous accumulation of lipids, the proliferation of VSMCs, and the decreased
synthesis and increased degradation of collagen (Figure 1). The thinning of the fibrous
cap follows, together with the apoptosis and defective efferocytosis, which contributes
to the formation of a rich lipid core. Such plaques may also be termed as a thin-cap
fibroatheroma (TCFA) [10]. Moreover, areas of calcification may also develop due to
increased calcium deposition and decreased clearance. Spotty or microcalcification may
lead to plaque instability [11]. Additionally, positive remodeling and plaque growth
will promote neoangiogenesis, with the newly formed microvessels that stem from the
vasa vasorum being another point of concern due to their ability to cause intraplaque
hemorrhage [12].
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Figure 1. The characteristics of vulnerable plaque. A lipid-rich necrotic core, which is the outcome
of macrophage multiplication and engulfment of LDL together with VSMC multiplication and
differentiation into macrophages, may be detected. Moreover, decreased collagen synthesis and
enhanced collagen degradation from the action of interferon-γ and MMPs, respectively, lead to the
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thinning of the fibrous cap. Other deleterious processes may also occur, such as the defective
efferocytosis of cells, the spotty microcalcification as a result of inflammation and reduced collagen
synthesis, and the vasa vasorum-derived neoangiogenesis. LDL: low-density lipoprotein, MMP:
matrix metalloproteinase, MP: macrophage, TH1: type 1 T helper cell, VSMC: vascular smooth
muscle cell.

3. Clinical Significance of Vulnerable Coronary Atherosclerotic Plaque

The correlation of high-risk features of VCAP with clinical events has been thoroughly
described. In a landmark prospective study of 697 ACS survivors that underwent percu-
taneous coronary intervention (PCI) with intravascular ultrasound (IVUS), TCFAs were
predictive of major adverse cardiovascular events (MACE) related to non-culprit lesions
(HR 3.35, 95% CI 1.77–6.36, p < 0.001), together with plaque burden exceeding 70% and
minimal luminal area ≤4 mm2 [13]. The prevalence TCFAs was significantly higher in
patients with ruptured culprit coronary plaques compared to eroded ones, while the non-
culprit lesions in patients with ruptured culprits were also characterized by TCFAs [14]. For
ST-elevation myocardial infarction (STEMI) in particular, the non-culprit obstructive lesions
consist of a TCFA in half of the cases, together with other vulnerability features [15]. Culprit
ruptured plaques in individuals with STEMI possess more vulnerability features compared
to culprit eroded plaques, possibly explaining the variability of clinical outcomes of these
two distinct morphologies [16]. When comparing patients with STEMI and non-STEMI
(NSTEMI), vulnerability features (microvessels, calcification, TCFAs) were more common
in culprit and non-culprit lesions of STEMI patients [17]. Culprit TCFAs were independent
predictors of STEMI and non-culprit TCFAs were associated with the incidence of MACE
at the two-year follow-up [17]. In the group of patients with diabetes mellitus with optical
coherence tomography (OCT)-derived fractional flow reserve-negative lesions, TCFAs were
identified in 25% of the study population and were the strongest predictor of incident
MACE consisting of cardiac mortality, target vessel myocardial infarction, clinically driven
target lesion revascularization or unstable angina requiring hospitalization at 18 months
(HR 5.12, 95%CI 2.1–12.3, p < 0.001) [18].

Recognition of the vulnerable plaque morphology has prompted research towards the
interventional management of such lesions. It should be initially mentioned that complete
revascularization was superior to culprit-only revascularization regarding the reduction
of future adverse cardiovascular events in patients with STEMI in the Complete versus
Culprit-Only Revascularization Strategies to Treat Multivessel Disease after Early PCI for
STEMI (COMPLETE) trial [19]. A randomized control trial of patients with vulnerable
non-obstructive lesions treated with either a bioresorbable vascular scaffold plus optimal
medical therapy or optimal medical therapy alone found superior efficacy and similar safety
of the intervention at a median follow-up of 4.1 years [20]. Ongoing studies should further
clarify the importance of vulnerable plaque-guided percutaneous coronary intervention.

4. Non-Invasive Assessment of the Vulnerable Coronary Atherosclerotic Plaque

Although OCT and IVUS remain the gold-standard in the assessment of VCAPs,
their invasive nature mandates the development of non-invasive modalities, including
circulating biomarkers and imaging methods, which can promptly and accurately evaluate
the presence of high-risk features and potentially aid the risk stratification and management
of high-risk patients (Figure 2).
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Figure 2. Multimodality non-invasive assessment of vulnerable coronary atherosclerotic plaques
(VCAP). Combination of imaging (CCTA, MRI, or PET) and circulating markers of inflammation
and extracellular matrix degradation could potentially enhance VCAP diagnostic and prognostic
assessment. CCTA: coronary computed tomography angiography, CRP: C-reactive protein, FAI: fat
attenuation index, MMP: matrix metalloproteinase, MRI: magnetic resonance imaging, PET: positron
emission tomography, PMR: plaque-to-myocyte ratio, PTX: pentraxin, PVAT: perivascular adipose
tissue, TBR: target-to-background ratio.

4.1. Circulating Biomarkers

Inflammation represents a cardinal feature of atherosclerosis [4] and, unavoidably,
several inflammatory biomarkers have been assessed regarding plaque vulnerability
(Tables 1 and 2). Starting with the most studied inflammatory marker, C-reactive pro-
tein (CRP), its high levels were associated with the presence and the burden of TCFAs
in patients with an ACS [21–23], as well as with plaque rupture [24]. The presence of
increased CRP and high-risk features in OCT of patients hospitalized for an ACS may be an
important prognostic clue for subsequent events [25]. However, other studies have found
no association of CRP with lipid-rich plaques or with TCFAs [26,27], with the study of
Koga et al. additionally pointing towards the association of pentraxin-3, another marker
indicative of inflammation, with TCFAs instead of CRP [27]. A recent study further con-
firmed this hypothesis, with post-PCI pentraxin-3 being inversely correlated with fibrous
cap thickness and positively correlated with lipid core length [28]. Critically, post-PCI
pentraxin-3 values ≥ 4.08 ng/mL were identified as independent predictors of incident
MACE [28]. Patients with STEMI and elevated pentraxin-3, together with plaque rupture
or erosion, were at increased risk for future MACE [29].

Table 1. Comparison of non-invasive modalities for vulnerable plaque assessment.

Biomarkers CCTA cMRI PET

Vulnerable plaque
characteristics

↑ hsCRP
↑ PTX-3
↑MMP-9

↓ Plaque attenuation
↑ Remodeling index
↑ perivascular FAI

Ring-like
enhancement

Spotty calcifications

↑ PMR
↑ CNR

↑ TBR
↑ CMA
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Table 1. Cont.

Biomarkers CCTA cMRI PET

Clinical correlates

Correlation with
OCT/IVUS-derived

plaque characteristics
+ +++/++++ +++ ++

Gaps in evidence
Ideal sampling site

(Peripheral vein,
lesion location)

Radiomic-based
approaches Definite cutoffs

Ideal radiotracer
PET/CT or PET/MRI

Lack of definite cutoffs
Limitation of myocardial

uptake in FDG-PET
Motion correction

Modality features

Accessibility ++++ +++ ++ +

Cost + ++ +++ ++++

Side-effects -

Radiation exposure
Anaphylactic reaction

to IVCM
CI-AKI

Anaphylactic
reaction to IVCM

Nephrogenic
systemic fibrosis

Anaphylactic reaction

CCTA: coronary CT angiography, CI-AKI: contrast-induced acute kidney injury, CMA: coronary microcalcification
activity, cMRI: cardiac magnetic resonance imaging, CNR: contrast-to-noise ratio, FAI: fat attenuation index,
FDG: fluorodeoxyglucose, hsCRP: high sensitivity CRP, IVCM: intravenous contrast medium, IVUS: intravascular
ultrasound, MMP-9: matrix metalloproteinase-9, OCT: optical coherence tomography, PET: positron emission
tomography, PMR: plaque-to-myocardium ratio, PTX-3: pentraxin-3, TBR: target-to-background ratio. ↑ indicates
increased, ↓ indicates decreased, number of + indicates the strength of the correlation.

Table 2. Available non-invasive modalities in the assessment of vulnerable coronary atherosclerotic
plaques.

Biomarkers

CRP ↑ levels associated with
→ ↑ prevalence and burden of TCFAs
→ Plaque rupture
→ ↑ Incidence of subsequent events

Pentraxin-3 ↑ levels associated with

→ ↑ TCFAs
→ ↑ lipid core length
→ ↓ Fibrous cap thickness
→ Ruptured vs. eroded plaques
→ ↑ incidence of MACE

MMP-9 ↑ levels associated with
→ TCFA in culprit lesions
→ Ruptured plaques/plaque disruption

CCTA features

Spotty calcifications Associated with
→ Percentage of necrotic core
→ Prevalence of TCFA

↓ Plaque attenuation
±

Positive remodeling
±

Ring-like enhancement

Associated with
→ Prevalence of TCFA in culprit lesions
→ Plaque component volumes
→ ↑ incidence of ACS

Necrotic core/fibrous
plaque ratio Associated with → Prevalence of TCFA
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Table 2. Cont.

Biomarkers

Perivascular FAI ↑ values (≥−70.1 HU)
associated with

→ Culprit lesions
→ Predictive of all-cause and

cardiac mortality
→ Incremental prognostic value on top

of clinical and other imaging features
→ 7.3-fold higher risk of cardiac death

in the presence of ↑ FAI and
traditional high-risk plaque features

PVAT radiomic profile Associated with ↑ prediction of incident MACE

cMRI features

PMR ↑ values (≥1.4)
associated with

→ Vulnerable plaque characteristics and
their number

→ Periprocedural myocardial injury

CNR ↑ values associated with
→ Culprit lesions
→ Prevalence of TCFA

Nuclear imaging features

TBR ↑ values (>1.25)
associated with

→ Low-attenuation plaques
→ Prevalence of TCFA and lipid core

CMA ↑ values (>0)
associated with

→ Low-attenuation plaques

ACS: acute coronary syndrome, CCTA: coronary computed tomography angiography, CMA: coronary microcalci-
fication activity, cMRI: cardiac magnetic resonance imaging, CNR: contrast-to-noise ratio, CRP: C-reactive protein,
FAI: fat attenuation index, HU: Hounsfield units, MACE: major adverse cardiovascular events, MMP: matrix met-
alloproteinase, PMR: plaque-to-myocardium ratio, PVAT: perivascular adipose tissue, TBR: target-to-background
ratio, TCFA: thin cap fibroatheroma. ↑ indicates increased, ↓ indicates decreased.

Extracellular matrix (ECM) degradation is crucial in the formation of vulnerable
plaques [30]. As a result, ECM biomarkers have been tested in this domain (Tables 1 and 2).
Among them, matrix metalloproteinase (MMP)-9 has been associated with the presence
of TCFAs in the culprit lesion of patients with an ACS, with an area under the receiver
operating characteristic curve (AUROC) of 0.83 and an optimal cutoff of 9.9 ng/mL [31].
MMP-9 levels ≥ 65.5 ng/mL were associated with ruptured plaques in patients with
ACS [32]. In stable CAD patients with elevated lipoprotein (a), MMP-9 was independently
associated with VCAPs [33]. Dynamic changes in MMP-9 have also been studied. A
significant elevation in plasma MMP-9 is noted soon after plaque disruption in patients
undergoing PCI, and is higher for those with an ACS or with lipid-enriched plaques [34].

While it appears that the role of biomarkers in the assessment of VCAPs is limited to
date (Tables 1 and 2), their combination into models might be of use. As shown in the study
of Kook et al., such a model consisting of soluble lectin-like oxidized low-density lipoprotein
receptor-1, MMP-9, white blood cell count, and the peak creatine kinase-myocardial band
had decent AUROC (0.84), sensitivity (62.2%), and specificity (97.6%) for identification of
plaque rupture in 85 patients with ACS, at a cutoff of 0.614 [35]. Furthermore, the addition
of inflammatory biomarkers on top of imaging features of high-risk plaques may enhance
the risk stratification for incident MACE [36]. Adequately sized clinical trials should be
designed to assess the importance of combining circulating biomarkers with imaging
features for the detection of VCAPs. Moreover, microRNAs are being investigated in the
management of atherosclerotic diseases [37,38], and preliminary results have associated
their levels with vulnerable plaque characteristics [39].
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4.2. Computed Tomography Coronary Angiography

The use of multi-slice computed tomography (MSCT) for the identification of vul-
nerable plaque characteristics has been investigated thoroughly (Tables 1 and 2, Figure 3).
Initially, in the study of Pundziute et al., on 50 patients with stable CAD or ACS, the
presence of a non-calcified or mixed plaque was a predominant finding in ACS compared
to calcified plaques in stable CAD [40]. Interestingly, plaques characterized as TCFAs in
IVUS were usually of mixed morphology in MSCT [40]. Similar results have been reported
previously, with the presence of high-risk features (positive remodeling, spotty calcification,
non-calcified plaques) being associated with ACS compared to stable CAD [41]. Small
spotty plaque calcifications identified through coronary CT angiography (CCTA) were also
correlated to the percentage of necrotic core and the prevalence of TCFA as assessed with
IVUS [42].
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Figure 3. Coronary CT angiography findings of high-risk coronary atherosclerotic plaques. Certain
identifiable patterns are indicative of a vulnerable plaque phenotype, namely (a) low plaque attenua-
tion, (b) spotty calcification, and (c) the napkin ring sign. Reproduced with permission from Marwa
Daghem et al. [41], British Journal of Pharmacology; published by John Wiley & Sons Ltd., 2021, used
under Creative Commons CC BY 4.0 license. HU: Hounsfield units. Yellow arrow indicates positive
remodeling, red arrow indicates spotty calcification, blue arrow indicates the napkin ring sign.

Although a more precise characterization of plaque composition can be achieved with
IVUS, a good correlation between the CT plaque classification and the IVUS-derived plaque
composition has been noted [43]. When MSCT was compared to OCT in patients with
ACS or stable CAD, important observations were reported. OCT-detected TCFAs in culprit
lesions had a greater degree of positive remodeling and a lower attenuation value compared
to non-TCFA culprit lesions [44]. Moreover, a ring-like enhancement in CT (plaque core
with low CT attenuation surrounded by a rim-like area of higher CT attenuation) was
common in TCFA, but with limited diagnostic accuracy (sensitivity: 44%, specificity 96%),
however [44]. In the study of Ito et al., the assessment of coronary atherosclerotic plaques
in 81 patients with clinically suspected CAD through OCT and MSCT demonstrated that an
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attenuation value of ≤62.4 Hounsfield Units (HU), a remodeling index (ratio of the outer
cross-sectional vessel area at the site of the plaque divided by the outer area at the proximal
reference site) ≥1.08, and a signet ring-like enhancement were independent predictors of
OCT-defined TCFA in the multivariate analysis [45]. The diagnostic accuracy of plaque
attenuation was the highest, with an AUROC of 0.859 [45]. The previously mentioned
elements, together with the napkin-ring sign, were predictive of incident ACS in the study
of Otsuka et al. [46]. In the study of Tomizawa et al., the investigators suggested that the low-
attenuation plaque volume and remodeling index should be used as continuous values in
conjunction with the napkin-ring sign in order to increase overall sensitivity and specificity
to 94% and 91%, respectively [47]. Contrast/plaque attenuation ratios, created from CCTA
for the characterization of each plaque component, were significantly correlated with IVUS-
determined plaque component volumes [48]. A high necrotic core/fibrous plaque ratio
may be related to IVUS-derived TCFA [49]. Increased epicardial fat volume and density
have also been recognized as independent predictors of TCFAs [50,51].

Dual-source CT (DSCT) represents another non-invasive method of atherosclerotic
plaque evaluation through the simultaneous image capture of two X-ray systems. As a
result, enhanced temporal resolution and speed of acquisition can be achieved when paired
with a significantly reduced radiation dose. Concerning VCAPs, they are associated with
low CT values, with large cross-sectional plaque and lipid core areas. The differentiating
ability of DSCT remains inadequate, however, with sensitivity and specificity of 73.1% and
94% in detecting TCFA, respectively [52]. A low-attenuation plaque volume greater than
8 mm2, derived from DSCT, had a remarkable diagnostic potential regarding IVUS-defined
TCFA, with accuracy, sensitivity, and specificity of 91%, 84.6%, and 96.8%, respectively [53].

The imaging of coronary perivascular adipose tissue (PVAT) with the so-called perivascu-
lar fat attenuation index (FAI) through CCTA deserves an honorable mention (Tables 1 and 2,
Figure 4). Perivascular FAI assesses adipocyte lipid content and size, indicative of vascular
inflammation, with close correlation to inflammation detected by PET [54]. As a result,
coronary inflammation and subclinical CAD may be identified. Perivascular FAI was
associated with non-calcified atherosclerotic plaques and was increased in culprit lesions
of patients with ACS [54]. These observations led to the hypothesis that the early detection
of such lesions may be essential in identifying vulnerable plaques in vulnerable patients.
This hypothesis was tested in the Cardiovascular RISk Prediction using Computed To-
mography (CRISP-CT) study, involving 1872 and 2040 participants in the derivation and
validation cohorts, respectively [55]. The perivascular FAI around the right coronary artery,
with a cutoff of ≥−70.1 HU, was found to be predictive of all-cause (adjusted HR: 2.55,
95% CI 1.65–3.92, p < 0.001) and cardiac mortality (adjusted HR: 9.04, 95%CI 3.35–24.40,
p < 0.001) and was, therefore, selected as the marker of coronary inflammation [55]. The
results were confirmed in the validation cohort. Importantly, the addition of high perivas-
cular FAI to a risk prediction model consisting of age, sex, cardiovascular risk factors
(hypertension, hypercholesterolaemia, diabetes, smoking, and adipose tissue volume), the
extent of coronary artery disease (modified Duke coronary artery disease index), and the
number of high-risk plaque features added significant incremental prognostic value for
all-cause (∆AUC: 0.042, p = 0.0083) and cardiac mortality (∆AUC: 0.075, p = 0.0069) [55]. The
new predictive model incorporating perivascular FAI at the optimal cutoff was also more
efficient in the classification of patients, as it was highly specific with excellent negative
predictive value [55]. It should be noted that perivascular FAI was associated with clinical
endpoints both for primary and secondary prevention across all of the examined sub-
groups [55]. In a post-hoc analysis assessing traditional high-risk plaque features (at least
one of positive remodeling, low-attenuation plaque, spotty calcification, or napkin-ring
sign) with FAI at the previously proposed cutoff, the presence of both high-risk plaque
features and high FAI was associated with a 7.3-fold higher risk of cardiac death after
adjustment for several factors compared, even when compared to the presence of high-risk
plaque features alone [56]. The observations were similar, albeit attenuated, when FAI
was assessed at the left anterior descending artery with a cutoff of ≥−79.1 HU [56]. Statin
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treatment has been found to decrease the perivascular FAI in high-risk lesions, representing
an appealing approach for the monitoring of patient response and the assessment of the
residual risk [57].
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Figure 4. (A) Perivascular fat attenuation index (FAI) in the proximal area of the coronary ves-
sels. (B) Perivascular FAI in the proximal segment of the right coronary artery (RCA). Perivascu-
lar fat occupies an area equal to the diameter of the vessel. Reproduced with permission from
Oikonomou et al. [55], Lancet; published by Elsevier, 2018, used under Creative Commons CC BY
4.0 license. HU: Hounsfield units, LAD: left anterior descending artery, LCx: left circumflex artery.

Perivascular FAI may also help discriminate the atherosclerotic changes with other in-
flammatory diseases such as myocarditis, which may present similarly to an ACS. However,
perivascular FAI values are lower in the case of myocarditis compared to atherosclerosis, as
recently demonstrated by Baritussio et al. [58]. Moreover, its use in chronic autoimmune
inflammatory diseases needs to be elucidated further, since patients with psoriasis had
significantly lower vascular inflammation assessed by perivascular FAI [59], opposed to
the common belief that chronic low-grade inflammation in such pathologic states leads to
a greater extent of inflammatory atherosclerotic changes. Although no differences were
noted regarding the use of biologic therapy or statins in this study [59], Elnabawi et al. had
previously shown a decrease in perivascular FAI following the use of biologic therapy in
patients with moderate-to-severe psoriasis [60].

CCTA radiomics may be an important next step in advancing the recognition of
vulnerable plaques via CT (Tables 1 and 2), being superior in diagnostic accuracy compared
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with the conventional high-risk plaque features from IVUS, OCT, or positron emission
tomography (PET) [61–63]. Radiomic profiling of PVAT remodeling alterations has also
been investigated. Adipose tissue wavelet-transformed mean attenuation was sensitive
in detecting PVAT inflammation, while features of radiomic texture were related to PVAT
fibrosis and vascularity [64]. As far as their relationship with MACE is concerned, the
development of a machine learning algorithm consisting of the fat radiomic profile was
derived from a training cohort and then validated in 1575 individuals of the Scottish
Computed Tomography of the Heart (SCOT-HEART) trial, improving prediction of incident
MACE compared to standard features assessed by CCTA (∆C-statistic: 0.126, p < 0.001) [64].
Moreover, the fat radiomic profile was increased in ACS patients compared to matched
controls and it remained unchanged after a six-month follow-up, possibly indicating
permanent changes in PVAT [64]. Ultimately, the recently developed CaRi-Heart® device,
incorporating the evidence from the previously mentioned studies, drastically improved the
risk stratification of patients compared to conventional models (∆C-statistic: 0.149, p < 0.001
in the validation cohort) [65].

4.3. Magnetic Resonance Imaging

Despite the fact that cardiac magnetic resonance imaging (cMRI) is not widely adopted
in the evaluation of VCAP, considerable scientific research has been performed in this
domain. Early studies have shown the MRI-assessed area of plaque tissue components
(lipid-rich necrotic core, calcium) correlated with the histopathologic evaluation. Impor-
tantly, those two components could be reliably differentiated from fibrous tissue. The
histopathologically defined vulnerable plaque was associated with a large lipid area and
reduced minimal fibrous cap thickness in MRI [66]. The local stress/strain pattern in
areas of TCFAs was proposed as another index of MRI-defined plaque vulnerability [67].
Plaque wall stress was assessed by Huang et al. using ex-vivo MRI in coronary plaques of
12 deceased patients with the use of three-dimensional fluid-structure interaction models,
thus calculating the critical plaque wall stress [68]. This parameter was significantly in-
creased in patients that died from CAD-related causes compared to the control group, while
the plaque burden did not differ significantly [68]. Segmental pericoronary epicardial adi-
pose tissue volume, quantified by cMRI, has been associated with CT-derived vulnerability
features such as low attenuation and non-calcified or mixed morphology [69].

Moving to non-contrast T1-weighted images, in a prospective study of 568 patients with
suspected or known CAD, the presence of high-intensity plaques [plaque-to-myocardium
signal intensity ratio (PMR) ≥ 1.4] together with a history of CAD was independently
associated with incident coronary events (HR: 3.96; 95% CI: 1.92–8.17, p < 0.001) [70]. Utiliz-
ing this approach in 77 patients with stable CAD undergoing PCI, Hoshi et al. correlated
high-intensity plaques based on the above-mentioned cutoff to IVUS-derived characteristics
of vulnerable plaques [71]. The presence of a high-intensity plaques was also associated
with periprocedural myocardial injury [71]. In another study, high-intensity signal plaques
with PMR > 1 were characterized based on their location as intrawall or intraluminal,
which had important morphological implications [72]. Specifically, intrawall high-intensity
signal plaques had macrophage accumulation in the absence of calcifications, whereas
intraluminal plaques were more commonly met with thrombi and intimal microvessels [72].
Compared to OCT, PMR as a continuous variable was linearly correlated with the number
of high-risk plaque features of the culprit lesion [73]. Among those high-risk features, non-
calcified plaque, thrombus, and intimal vasculature were independently associated with
PMR [73]. Intensive 12-month statin therapy led to the reduction of PMR in high-intensity
plaques [74], thus providing an additional role in the monitoring of patients.

As far as contrast-enhanced cMRI is concerned, early contrast enhancement of a coro-
nary plaque may also be a sign of vulnerability, as it is more frequently encountered in cases
of unstable angina pectoris compared to patients with stable CAD [75]. Moreover, delayed
contrast enhancement with the use of contrast-to-noise ratio (CNR) was significantly higher
in culprit lesions compared to non-culprit lesions [76]. Gadofosveset-enhanced cMRI (GE-
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cMRI) could identify and exclude culprit lesions in ACS or CAD patients (sensitivity: 82%,
specificity: 83%), while the areas where TCFAs were detected through OCT were character-
ized by increased CNR [77]. When comparing GE-cMRI with T1-weighted cMRI in patients
with clinical suspicion of CAD, hemodynamically significant lesions with a quantitative
flow reserve < 0.8 had higher CNR lesion only in GE-cMRI [78].

4.4. Nuclear Imaging

The increasing frequency in the use of nuclear imaging techniques in cardiovascular
diseases has not spared the assessment of VCAP. Initial studies were conducted in cancer
patients, with 18-fluorodeoxyglucose (FDG) PET/CT detecting significant correlations
of target-to-background ratio (TBR) in the region of the left anterior descending artery
with cardiovascular risk factors, pericardial fat volume, and calcified plaque burden [79].
However, myocardial uptake of FDG limited its applicability in the entire patient population
(Tables 1 and 2) [79]. Myocardial FDG uptake could be diminished through consumption
of a low carbohydrate, high-fat meal the night before the procedure [80], a finding which
was confirmed in a randomized trial [81]. However, patients with diabetes mellitus should
be handled with caution, since regular dietary recommendations are usually ineffective, as
these patients may not be able to produce adequate insulin in response to glucose loading.
Therefore, techniques such as the euglycemic-hyperinsulinemic clamp should be applied
for adequate image quality and results [82].

18-sodium fluoride (NaF) is an alternative tracer that has been used, and is indicative
of calcification and macrophage activity. As there is limited myocardial uptake through the
use of this tracer, motion correction techniques have been additionally applied to enhance
coronary artery plaque visualization, with an encouraging 46% reduction of image noise
being achieved [83]. Triple-gated corrections may further augment the reproducibility
of the examination [84]. As far as atherosclerotic plaque assessment is concerned, NaF
uptake was increased in patients with CAD and correlated with calcium score, while the
18-FDG uptake did not differ according to CAD status [85]. A few vulnerable plaques were
detected in diabetics without known CAD, with a TBR cutoff ≥ 1.5 [86]. The prevalence of
fluoride-positive plaques was higher in patients after an ACS compared to stable CAD in
another study [87]. Other than TBR, the efficiency of coronary microcalcification activity
(CMA) across the entire coronary circulation has been tested in patients with recent ACS
and multivessel CAD [88]. Both CMA and TBR were increased in low-attenuation plaques
compared to the rest, but a CMA threshold >0 was superior in detecting the low-attenuation
plaques compared to a TBR > 1.25, with remarkable sensitivity and specificity (93.1% and
95.7%, respectively) [88].

Using tracers that target specific plaque components is also being investigated. Interest
has been shown towards (68)Ga-DOTATATE, a tracer that binds to somatostatin receptor
2 that is expressed in macrophages. In patients with neuroendocrine tumors, the use of
this tracer in PET/CT demonstrated significantly higher TBR in atherosclerotic plaques
compared to normal coronary arteries [89]. Through the use of a tracer that targets vascular
cell adhesion molecule-1, in-vivo PET/CT imaging of the aorta in murine models was
successful in diagnosing atherosclerotic lesions and their extent [90]. Furthermore, utiliza-
tion of a selective radiotracer for MMP-13 led to superior identification of plaques with
MMP-13 expression, indicative of extracellular matrix remodeling and, thus, potentially
vulnerable [91]. Additionally, (68)Ga-pentixafor is known for its binding ability to the CXC-
motif chemokine receptor 4 (CXCR4), which is implicated in atherosclerosis. Following
PET/CT imaging with this radiotracer, an increased uptake was noted in calcified plaques
and in patients with an increasing number of cardiovascular risk factors [92]. Lastly, the use
of a novel glycoprotein IIb/IIIa-receptor radiotracer, 18F-GP1, has been recently evaluated
in 44 patients after myocardial infarction. Culprit vessels had higher uptake of the radio-
tracer compared to non-culprits, whose uptake was similar to that of controls. The optimal
cutoff of the maximum TBR for the culprit vessel was reported at 1.20 (Sensitivity: 60%,
Specificity: 97%) [93].
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Even though PET/CT has received most of the attention, hybrid PET/MRI imaging
methods may be considered as an option, even though their use has been mostly experi-
mental to this point, aiming at improving image quality [94]. In the only available clinical
study (Tables 1 and 2), the use of 18-NaF in gadobutrol-enhanced PET/MRI led to the iden-
tification of TCFAs and lipid cores in segments with TBR > 1.28 and >1.25, respectively [95].
Interestingly, CNR was correlated with calcified TCFA in cases of TBR > 1.28 [95]. Aware-
ness in the field of nuclear imaging of atherosclerosis is rapidly growing, with the upcoming
clinical studies being eagerly awaited. Finally, it should be stressed that nuclear imaging
studies have no relevant contraindications in subjects with chronic kidney disease, in
contrast to CCTA and cMRI, where there is a concern of serious renal complications such
as CI-AKI and nephrogenic systemic fibrosis (Table 1).

5. Non-Invasive Assessment of VCAP: Current State

To conclude, the presented evidence concerning the progress of non-invasive modali-
ties in the assessment of VCAPs indicates the extensive knowledge we have attained with
regard to the process of coronary atherosclerosis. Identification of such adverse plaque
characteristics may thus represent an appealing option in the holistic management of
patients with CAD by providing incremental prognostic information and tailoring the
therapeutic approach. Published studies have shown a good correlation with invasive
methods or even plaque histology. On top of that, abnormalities in circulating inflammatory
and extracellular matrix degradation biomarkers could indicate an additional risk marker.
However, the lack of large-scale, multicenter randomized clinical trials and registries is a
deterring factor for the widespread implementation of these modalities in everyday clinical
practice. Moreover, uncertainties remain regarding the optimal imaging method of choice,
with most data stemming from CCTA studies. Limited evidence is available from nuclear
imaging studies, which may also face certain limitations concerning myocardial uptake
and motion correction that ought to be resolved. Therefore, upcoming studies should be
adequately designed to provide the needed answers in the existing evidence gaps and
prove the incremental value of the non-invasive, multimodality assessment of VCAPs.
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