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Abstract

Models describing the process of stem-cell differentiation are plentiful, and may offer

insights into the underlying mechanisms and experimentally observed behaviour. Wadding-

ton’s epigenetic landscape has been providing a conceptual framework for differentiation

processes since its inception. It also allows, however, for detailed mathematical and quanti-

tative analyses, as the landscape can, at least in principle, be related to mathematical mod-

els of dynamical systems. Here we focus on a set of dynamical systems features that are

intimately linked to cell differentiation, by considering exemplar dynamical models that cap-

ture important aspects of stem cell differentiation dynamics. These models allow us to map

the paths that cells take through gene expression space as they move from one fate to

another, e.g. from a stem-cell to a more specialized cell type. Our analysis highlights the

role of the transition state (TS) that separates distinct cell fates, and how the nature of the

TS changes as the underlying landscape changes—change that can be induced by e.g. cel-

lular signaling. We demonstrate that models for stem cell differentiation may be interpreted

in terms of either a static or transitory landscape. For the static case the TS represents a

particular transcriptional profile that all cells approach during differentiation. Alternatively,

the TS may refer to the commonly observed period of heterogeneity as cells undergo sto-

chastic transitions.

Author summary

Current emphasis on single cell analysis, especially in the context of the human and

mouse cell atlas projects, is on characterizing the transcriptomic signatures of different

cell states. This is clearly of great importance, as even the number of different cell types,

e.g. in humans, is not known with any satisfying degree of certainty. There are enormous

challenges in mapping these states, but this will still only provide a partial answer. Impor-

tantly, the way in which cells differentiate, and the way in which gene expression changes

over the course of differentiation will still be unknown. Here we use a dynamical systems
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perspective to consider the nature of, and dynamics during, the transition between differ-

ent cell types (or cell states). We show how the developmental landscape (in Waddington’s

sense) and the nature of the transition states change in response to external stimuli and

discuss this in the context of stem cell differentiation (as well as its potential reversal). In

particular, we discuss how the nature of the landscape at the transition state, as well as the

presence of non-gradient dynamics, has strong implications for the identifiability of dif-

ferentiation dynamics from experimental data.

Introduction

Cells are not inert objects. They have finite lifetimes with typically well defined origins and

ends. And over the course of their lifetime—which lasts anything from minutes to many years

—change in response to environmental, physiological and, potentially, developmental signals

[1]. Some of these changes are minor, e.g. changing the expression of certain proteins in

response to an environmental signal, or the activity of an enzyme as part of metabolism. Oth-

ers relate to longer-term, less reversible, or more profound changes in cell state; including

commitment to replication, apoptosis, or differentiation. The former set of changes can be

viewed as tactical decisions which are made in response to (typically transient) changes in a

cell’s environment [2], whereas the latter are of more strategic importance for the cell and,

where relevant, potentially the organisms as a whole [3, 4].

In humans, a single fertilized egg cell eventually gives rise to some 35 trillion cells in the

adult. How many cell types there are remains an unanswered question, but some aspects of the

process by which an omni-potent stem cell differentiates into a more specialized cell are now

becoming clearer. Remodeling of the gene regulatory networks—typically in response to sig-

naling events—change the transcriptional program of the cell, thereby leading to a concomi-

tant change in cell phenotype/state. We will here assume for ease of argumentation, that the

molecular state of a cell can reflect the true state of the cell, its phenotype, but stress that this

may only be a poor substitute for a more direct biological or phenotypic characterization.

The popular metaphor of the Waddington’s epigenetic landscape has come to predominate

much of the discussion about cell differentiation processes: cells are described as marbles roll-

ing through a landscape of hills and valleys drawn towards local points of minimum elevation

[1]. An individual ball starts its journey in a valley at the back of the landscape and as it pro-

gresses forward (the passage of time in the original formalism) and downward; it might face

branching points along the path, representing the series of (typically binary) fate choices made

by a developing cell. Every point a ball travels through represents a cellular state, for example a

specific level of expressed RNA or protein. Although the number of possible states is theoreti-

cally infinite, the number of phenotypes observed in actual cells are often very limited. In this

view, the final basins of low elevation where a high proportion of cells end up correspond to

these experimentally observable, terminal cell types.

The key insight offered by the landscape is to illuminate how genetically identical cells can

attain distinct phenotypes following differentiation, and furthermore how these phenotypes

persist in daughter cells. While such persistence and memory effects are understood to result

from the epigenetic and proteomic state of the cells, the landscape itself is widely regarded to

be shaped by the underlying gene regulatory network [5, 6]. In this way, models describing the

co-regulation and interactions between different genes may also be understood to describe the

epigenetic mechanisms underlying persistent stem cell differentiation.

Transition state characteristics during cell differentiation
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The landscape notation has been widely used as a qualitative way of understanding and

illustrating the dynamics driving development [7–9]. Moreover, even though Waddington

may not have intended his landscapes to be any more than a conceptual tool, landscapes can

be given quantitative meaning: exploring the behaviour of the underlying network in terms of

a probabilistic landscape framework. A succession of studies have recently proposed different

approximations to potential functions that can serve as mathematical descriptions of the epige-

netic landscape for a cell fate regulatory network. Here the elevation of the surface reflects the

probability of observing a particular state in phase space [6, 10–14]: states that have the highest

probability locally will have lower potential and hence will act as the valley-bottoms on the

landscape, surrounded by a basin of attraction, which in this picture would correspond to cells

with slightly different states but exhibiting the same phenotype.

Even though the landscape depiction might be adopted to many decision making processes

over the lifetime of a cell, its major uses are still in describing development and stem cell differ-

entiation processes [15, 16]. In this context the final attractors of the landscape are differenti-

ated cell types with well-defined patterns of robust gene expression, and differentiation occurs

through transitions along the surface, while some cells might reside or return to the original

basin of the pluripotent phenotype.

Mathematically, we can draw on a vast body of work to characterize the cell states defined

in terms of steady-states of molecular concentrations. For the sake of clarity, we consider X to

denote the state of the system (e.g. the whole set of mRNA and/or protein abundances), which

evolves according to the stochastic differential equation (SDE)

dX ¼ f ðX; yÞ dt þ gðX; ZÞ dWt; ð1Þ

where f(X; θ) describes the deterministic dynamics of the system, and g(X; η) dWt captures the

stochastic components of the dynamics; these functions being parametrized by (typically vec-

tor-valued) θ and η, respectively. If the latter can be ignored we recover a more conventional

ordinary differential equation (ODE), commonly written as

dX
dt
¼ f ðX; yÞ: ð2Þ

This, setting the left-hand side equal to zero, allows us to solve for the (deterministically)

stationary states of the system, which if they are stable, i.e. if they are attractors, we assume cor-

respond to distinct cell states.

While many stationary states of the system may describe the recognizable, robust cell phe-

notypes, others may correspond to the so-called intermediate cell states (ICS) [17]. These are

states with a particular molecular phenotype, but without the particular function that usually

accompanies traditionally defined cell types. ICS have been observed experimentally in epithe-

lial-mesenchymal transition [18] and hematopoietic differentiation [19, 20]. Here, by examin-

ing models for stem cell differentiation from a dynamical systems perspective, we explore how

the related concept of transition states (TS) may arise, and how their properties are affected by

external signals.

If the set {X1, . . ., Xq} denotes the set of stable stationary/attractor states of (2), we identify

them with the valleys/local minima in the corresponding epigenetic landscape for the system,

which in turn correspond to robustly defined cellular phenotypes. Classifying the stability of

these solutions (e.g. in the presence of stochastic effects), and the basins of attraction has been

one of the long-standing problems in dynamical systems theory. Closely linked to it is the

question of how different stationary points can be reached from one another: is there a particu-

larly favored path that the system traverses as it moves from, say Xi to Xj (1� i, j� q)? In
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general, any two stable stationary states of a dynamical system must be separated by an unsta-

ble stationary state. As will be discussed, such transition states may sometimes correspond to

the experimentally observed ICS.

In the context of stochastic dynamical systems, the most probable paths between

stationary states correspond to those that minimize the action associated with them [21]:

the so-called minimum action paths (MAP). This concept has allowed several previous

investigations to shed light on the typical routes taken through gene expression space

between phenotypes in stochastic models of cellular differentiation. For example [22]

obtained the most probable paths between phenotypes in a 52 gene network describing stem

cell behaviour. These paths were obtained via the method detailed in [23], wherein a kinetic

path framework is developed both to obtain most likely paths and to calculate a landscape.

Similarly, in [14], the geometric minimum action method [24] is used to obtain the most

probable transition paths in a stem cell differentiation model, while [25] obtained paths

for a model of epithelial-mesenchymal transition. In this work we use a similar approach,

obtaining the most probable paths in the forward (differentiation) and reverse (reprogram-

ming) directions, but with a particular emphasis on the transition states through which

these paths pass.

Below we will use a set of illustrative examples that allow us to study the transitions between

stationary solutions of (stochastic) differential equations, with an emphasis on dynamical sys-

tems in the context of stem cell differentiation. In particular we shall be investigating the con-

cept of transition states (TS), as recently discussed and reviewed by [5]. For representative

model systems we discuss two competing definitions for the transition state in the context of

static and transitory landscapes. For static landscapes we shall employ the concept of the MAP

to examine typical transition paths. We first discuss the properties of transition states for an

exemplar “toy” system before applying the same analysis to a developmental model. In particu-

lar we will aim to answer four linked questions:

• What defines a TS for a stochastic dynamical system?

• How long does the system spend at the TS?

• Is the TS the same for both differentiation and reprogramming?

• How does the epigenetic landscape, and especially the TS change, in response to external

signals?

Results

The potential landscape and transition states in a bistable system

In order to exemplify some key properties of stochastic dynamical systems in the context of

potential landscapes we provide a simple model that exhibits some of the hallmarks found in

real developmental systems. The model we provide is, however, not intended to represent any

particular biological process, but serves as a simple example in which potential landscapes and

transition states may be described. We will use this model to firstly demonstrate the distinction

between gradient and non-gradient dynamics, before examining two definitions for the con-

cept of the transition state.

Limitations to gradient based dynamics. The SDE defined in (1) above describes a

dynamical system with both deterministic and stochastic components. In general, the deter-

ministic forcing vector f(X; θ) of such SDEs may be decomposed into the sum of the gradient

of a potential,rU, and a remaining component often referred to as the curl or flux [26, 27].

Transition state characteristics during cell differentiation
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This decomposition may be written as,

f ðX; yÞ ¼ � rUðX; yÞ þ fUðX; yÞ: ð3Þ

The underlying concept is that the potential describes the portion of the dynamics that

determines the basins of attraction (and thus the most probable states). This potential thereby

gives an intuitive explanation for the observed behaviour; the dynamical system will tend to

stay near to the minima in the potential and will move away from regions of higher potential.

A number of methods exist for determining the decomposition in which the potential is

defined; however, by far the most common is via the steady state probability distribution over

the state space, where U/ −ln(Ps(X)). Numerous studies have obtained landscapes based

upon this approach, either using methods that directly obtain the steady state distribution [25,

28, 29], or use extensive simulations to estimate the distribution empirically [11, 30–32]. Alter-

native approaches include those based upon variational principles and the action in moving

between any two points [12, 23, 28], empirical Lyapunov functions [33], approximations to the

Lyapunov functions [34], or an orthogonal decomposition of the vector field [35]. Regardless

of the method, the concept of dynamics composed of both a potential and vector field is com-

monplace, and the potential is indeed related to the idea of an epigenetic landscape.

In order to elucidate the distinction between gradient-based and rotational dynamics we

first examine a simple bistable system expressed in SDE form. We define the system in terms

of a pre-specified two-dimensional potential U(X; θ), chosen as,

Uðx1; x2Þ ¼ lðx4
1
þ x4

2
Þ � ax2

1
þ bx1: ð4Þ

This potential is displayed in Fig 1A and 1B and can be seen to consist of two minima at

(x1, x2)� (±1, 0) and one saddle point at (x1, x2)� (0, 0). Given such a potential field, we may

then define the vector field f(X; θ) as the sum of −rU and a component fU chosen here to be

such thatrU � fU = 0. This choice of an orthogonal component is convenient for demonstra-

tion purposes but may not be possible for general vector fields [36]. Given the choice of U in

(4), these two components are given as

� rU ¼
2ax1 � 4lx3

1
� b

� 4lx3
2

" #

; ð5Þ

fU ¼ CðXÞ
4lx3

2

2ax1 � 4lx3
1
� b

" #

; ð6Þ

respectively, where C(X) can be any scalar state dependent function, chosen here to be a simple

constant c. The vector field components shown in Fig 1B display the two components of f. The

black vectors can be seen to point in the direction of decreasing U and represent the −rU
component. The white vectors represent the curl component of the vector field and are parallel

to the contours of U due to the orthogonality. Together these components on average lead to

spiralling paths leading towards the potential surface’s minima. With sufficient stochastic forc-

ing the system may also make intermittent transitions between the two potential wells.

Fig 1C displays the probability distribution over the state space defined by the variables x1

and x2. The distribution is clearly strongly linked to the landscape displayed in Fig 1A and 1B,

(it is in fact implied by it) and is seen to peak at (x1, x2)� (±1, 0). By contrast the system

spends relatively little time around the origin which is the third, unstable, fixed point of the

system. It is worth noting that the distributions for the cases with and without a curl compo-

nent are practically indistinguishable. This is typical for such systems and is the basis for
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identifying a landscape based upon the probability distribution alone [26]. However, a corol-

lary of this is that only part of the dynamics are readily identifiable based upon static data [37];

in a biological context, knowing the transcriptomic states of cells tells us very little about the

paths through transcription space taken during differentiation.

Static landscapes and the transition state. The simple model discussed above consists of

a fixed potential U, parametrized by the vector θ = [λ, α, β]. This potential defines a static land-

scape since the potential itself remains constant with time. Given such a static landscape, we

can define a transition state (TS) for the system based upon the most probable transition paths

between the two stable fixed points. In the limit of small noise, the transition paths follow a

particular route, that of least action [21]. These paths are known as the minimum action paths

(MAP), and for a system in which the gradient and curl components are orthogonal, Freidlin

and Wentzell further demonstrated that they follow a particular route: _X ¼ rU þ fU . These

paths are displayed in Fig 1D.

The transition paths in both directions clearly pass through the unstable fixed point at

X = (0, 0). This may therefore be identified as the transition state Xt, and represents a location

in state space that, with high probability, the system will pass through when transitioning

Fig 1. The two-dimensional SDE model. (A) surface plot of the potential field U; (B) the vector field decomposed into

the gradient (black) and curl (white) components; (C) the two-dimensional histogram generated from a long-run

simulation of the system; (D) The minimum action paths (MAP) between stationary points Xi. On exit from an

attractor the MAP follows a path _X ¼ rU þ fU , before following a “free fall” path back towards a stationary point.

https://doi.org/10.1371/journal.pcbi.1006405.g001
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between the two attractors of the system. In the context of stem-cell differentiation, such a

state might represent a particular transcriptional configuration through which all cells transi-

tion when changing between a given two phenotypes. It is therefore important to consider

which properties of the system determine how long is spent near this state, since this has impli-

cations for our ability to locate TSs, or map the path through gene expression space between

cell fates from experimental single-cell data [5, 38, 39]

In a dynamical systems context, the linear stability of fixed point such as Xt can be deter-

mined from the Jacobian at this point. Here, we examine the eigenvalues of the Jacobian,

which provide information regarding the local stability and typical trajectories following a

small perturbation [40]. Eigenvalues with negative real part imply trajectories that decay

towards the fixed point, while those with positive real part imply exponentially growing trajec-

tories. In general, the real parts may be associated with the local landscape while the imaginary

parts describe the locally orthogonal curl component.

For our example defined by Eq 5, the positive real eigenvalue may be shown to be deter-

mined by the parameter α. We therefore simulate the system with two different values of α,

while keeping the ratio α/λ constant. Example trajectories from such simulations are displayed

in Fig 2.

The trajectories shown in Fig 2A, while all starting from the same initial conditions display

high variability due to the stochastic nature of the system. Paths diverge towards one of the

two stable equilibria for which x1� ±1. The rate at which this divergence occurs varies consid-

erably, although most seem to have undergone this divergence after eight time units. By con-

trast, the trajectories in Fig 2B diverge towards the stable states in much less time, although the

relative variability is similar. This may be attributed to the larger positive eigenvalue which

governs the time-scale of the process. This is in turn related to the shape of the landscape as

also shown in Fig 2: a larger positive eigenvalue leads both to a higher barrier in the potential

between the two stable states as well as steeper roll off. The time spent at the transition state

Fig 2. Influence of eigenvalues. Slice through the potential and example trajectories away from the transition state

under different model parameters: (A) small positive eigenvalue (α = 0.4); (B) large positive eigenvalue (α = 1.6). For a

larger positive eigenvalue the wells of the system are deeper and the curvature is greater, leading to more rapid

movement away from the transition state.

https://doi.org/10.1371/journal.pcbi.1006405.g002
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must reflect the curvature of the landscape, which in turn is quantified by the eigenvalues of

the Jacobian.

The results of Fig 2 demonstrate that once the transition state is reached, the time spent

there depends upon the shape of the landscape. Another important consideration is the fre-

quency with which the TS might be reached, and therefore transitions between attractors can

occur. This frequency is dependent on both the shape of the landscape and the magnitude of

the noise, quantified by σ, and for simple systems may be expressed directly in terms of these

parameters [41]. As would be expected, transitions become less likely with increasing α as the

wells of the landscape become deeper, while with increasing σ transitions become more likely

as the noise can more readily perturb the system out of the basins of attraction.

Transitory landscapes: The competing definition for a transition state. While the sys-

tem described above consists of a static landscape, a modified system might be formed by hav-

ing parameters change over time. Here β alters the landscape, shifting which stable state is

preferred. A landscape where parameters change may be referred to as transitory, as the shape

of the potential is time-varying. In the context of epigenetic landscapes, the transitory interpre-

tation gives an alternative viewpoint somewhat contrary to Waddington’s original, yet not

without precedent in the literature [12, 42].

By varying β over a suitable range, the system changes from one in which there is a single

stable equilibrium at positive x1 to the bistable system displayed in Fig 1, to one with a single

stable equilibrium at negative x1.

We demonstrate the concept of a transitory landscape by generating an ensemble of simula-

tions in which β varies linearly over time from -0.5 to 0.5, (β = t − 0.5). Fig 3A shows the vari-

ance across this ensemble of simulations for the state variables x1, x2. While the variance of

x2 remains constant, the variance of x1 can be seen to begin and end at very low values but

transition through a time-period of high variance. This high variance is associated with the

Fig 3. The transition state in a transitory landscape. (A) The variance of the two states across 5000 simulations in which β is linearly varied with time; (B) Probability

distributions of the two states at three different values of β; (C) The potential U at each of the three values of β. The high variance “transition state” corresponds to

intermediate values of β in which significant bistability generates large heterogeneity.

https://doi.org/10.1371/journal.pcbi.1006405.g003
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bistability of the system that is observed for small absolute values of the parameter β, as dis-

played in the probability distribution for which β = 0.0 in Fig 3B.

The time-period of high variance displayed in Fig 3A is analogous to the transition state

concept posited by [5]. In the context of stem cell development, high variance across an

ensemble of simulations is equivalent to high heterogeneity across a population of cells at the

same developmental stage.

It is also worth noting at this point that the choice between a static or transitory landscape

is really an issue of model complexity: as an alternative we can consider β to be an additional

state rather than a model parameter. The system would therefore be three-dimensional with

some additional dynamics governing how this third state x3 = β evolves with time. Both models

will be able to capture the same behaviour but would differ in the way they described it: the

landscape of the former being two-dimensional and time-varying while that of the latter being

static and three-dimensional.

The transition states and landscapes in a developmental model

With the insights derived from this illustrative model, we continue our analysis with a model

that incorporates some of the dynamic relationships involved in stem cell differentiation [43].

The model focuses on four key players: Nanog (N), the complex Oct4-Sox2 (O), Fgf4 (F), and

Gata6, (G) a typical differentiation marker. A schematic representation of their network is

shown in Fig 4A; all arrows stand for non-linear interactions that account for implicitly

modelled species and processes, like the formation of the Oct4-Sox2 complex, or Nanog

dimerization. In addition, Leukaemia inhibitory factor (LIF), is also included in the model: the

concentration of LIF (L) is treated as an external control, through which the environment of

the cells is modified. Full details of the model are given in the methods section, while further

analysis may be found in [44].

The probabilistic landscape and system behaviour. In this model, high expression of

Nanog and Gata6 indicate stem cell and differentiated phenotypes respectively. Since there is

mutual inhibition between these two molecules, a state where both are simultaneously high or

low is unlikely. Fig 4B shows example simulations with L = 50 and intermediate initial expres-

sion levels, under which conditions many cells stay pluripotent (upper), but some stochasti-

cally shift into a differentiated state (lower). In general, simulations initiated with high values

of Nanog, Fgf4 and Oct4-Sox2 will fluctuate around these high values, before ultimately

switching to a configuration with high Gata6 and low expression levels of the other molecules.

The time at which this switch occurs is highly variable, but the switch itself is seen to be irre-

versible, indicating that the differentiated state is in some sense more stable.

In order to gain further insight into the behaviour of the system we compute the probabilis-

tic landscape for L = 50. This computation is achieved by performing a large number of simu-

lations over a fixed time-period, from which the final expression levels are sampled (Fig 4C(i)).

The landscape is then evaluated as minus the logarithm of this empirical distribution and is

shown in Fig 4C(ii).

The potential landscape displays a narrow valley which provides the most likely connection

between the differentiated and pluripotent states. To compare the final potential landscape

with paths taken by cells, we let cells differentiate in silico. First, we simulate a cell population

in a high LIF medium, with initial values from the N 2 [60, 100], G 2 [0, 16] region and

L = 200. We then change the external conditions, L: 200! 0, and simulate the differentiation

paths. As demonstrated by randomly selected trajectories in Fig 5A, the dynamical paths show

good correspondence with the previously derived static landscape: cells traverse through the

narrow valley between the stem cell and differentiated states.
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Most of the time along typical cell paths is spent in either of the two valleys: cells linger in

the stem cell valley for varying amount of time, but as their Nanog level decreases below a criti-

cal threshold, they quickly transit to the differentiated cell valley. Some trajectories do not exit

the self-renewing state (such as cell 3 on panel A) over the simulated time-course, accounting

for the less populated but still prevailing stem cell population in Fig 4C. We also test the system

in a reversed differentiation scenario: cells already in the differentiated valley are simulated

under high LIF conditions (L = 200) and tracked. The trajectories, shown in Fig 5B, confirm

Fig 4. Potential landscape of the stem cell differentiation model. (A) Schematics of the stem cell differentiation

model. (B) Simulated example of a cell that stays pluripotent (upper axes) and a cell undergoing differentiation (lower

axes). The abundance of each species is indicated by a line coloured according to the filled ovals in (A). (C) Probability

distribution and landscape of the system with L = 50. (i) Scatter plot of the whole population on the Gata6-Nanog

plane. (ii) The landscape computed as the negative logarithm of the probability distribution.

https://doi.org/10.1371/journal.pcbi.1006405.g004
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that once differentiation is achieved the cells cannot regain pluripotency, as consistent with an

irreversible switch-like process.

As is clear from the derived landscape, the majority of the Gata6-Nanog phase space lies

on a high-potential plateau that remains unexplored by the cells, displayed as the large white

Fig 5. Transition paths during differentiation. (A) Trajectories of five randomly selected stem cells after reduction in

LIF concentration (L = 0), plotted on the Gata6-Nanog phase space. (B) Cells started from the differentiated state and

put into L = 200. (C-D) Cells started from the unexplored region of high Gata6 and high Nanog (C) or low Nanog (D)

levels for L = 0. (E) Trajectories started from the transition state under L = 50. Different line colours denote different

cells, as indicated in the legend.

https://doi.org/10.1371/journal.pcbi.1006405.g005
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region of Fig 4C. Therefore, we have to artificially introduce conditions that allow the mapping

of cell dynamics over this region of the phase space. We first uniformly sample cells from an

uncovered volume of four-dimensional space, for example {N, O, G} 2 [60, 100] and F 2 [10,

50]. Next we follow the same experimental procedure as before and induce differentiation

by setting L to 0. Surprisingly, trajectories from this region quickly converge into the Nanog-

high valley and then follow the paths observed on a stem cell starting population, as displayed

in Fig 5C.

Initial values sampled from another region of the high-potential plateau ({O, F, G} 2 [60,

100]; N 2 [20, 50]) result in trajectories that do not follow a direct route (Fig 5D). These

cells first visit a state characterized by simultaneously low Gata6 and Nanog expression, and

then follow the connecting valley to the differentiated cell state/phenotype. Such a state is

reminiscent of the static transition state discussed above, while the phenomenon is consis-

tent for a wide range of initial conditions, suggesting that any cell—unless it has already dif-

ferentiated—has to go through the transition state. Cells that reside in the transition state,

on the other hand, have the ability to progress towards either the stem cell or differentiated

state, as seen in Fig 5E. This is in agreement with other models reporting a distinguished

transition state along the way of cell specialization that has the potential for any cell fate [13,

45, 46].

Most probable paths in the static landscape. The indirect transition paths observed to be

taken by the cells are indicative of a curl component in the dynamics. This finding does not

contradict the landscape of Fig 4C since such components are not captured in the potential,

but is illustrative of the ubiquity of such dynamics.

One implication arising from the presence of curl is that the optimal paths in the forward

and reverse directions will not be identical, as was seen for the toy model in Fig 1D. For this

system the optimal, or minimum action, path in the forward direction may in principle be

inferred from simulations, since this path is also the most probable. However in practice the

high variability between simulations makes the precise path difficult to observe. In the reverse

direction, simulations may never yield a path, and the hypothetical MAP must instead be eval-

uated via an optimization approach, as detailed in [47]. The MAPs in each direction are dis-

played in Fig 6.

As is clear from Fig 6A, the paths in the forward and reverse directions are different,

although both traverse the valley-like region of the Gata6-Nanog landscape shown in Fig 4D.

While the paths are similar, it is important to note that in the four-dimensional space of this

model, they never meet except at the start and end points. However both paths come close to

each other near to the static transition state at low values of both Gata6 and Nanog. While the

reverse path travels to and from the transition state with more-or-less direct trajectories, the

forward path is seen to loop around in a convoluted manner. Such behaviour is indicative of

curl dynamics and is consistent with the complex eigenvalues of the system, as will be dis-

cussed below. The differences between the forward and backward paths may be seen more

clearly in the time-series. In the forward direction, the MAP begins with a slight transient

increase in Fgf4 accompanying a gradual fall in Nanog and Oct4 (Fig 6B). Gata6 rises slowly at

first before rising much more rapidly once Nanog is below a critical level. The mutual inhibi-

tion between Nanog and Gata6 leads to a similar effect in the reverse direction: Gata6 must fall

rapidly, and only once it is below a fairly low level (� 10) does the abundance of the other spe-

cies begin to rise (Fig 6C).

The key observation from the MAPs is that because of the curl component to the dynamics,

the most probable paths and static transition states are different for each direction. Thus, if we

wish to gain insight into the easiest routes for the reprogramming of cells back to pluripotency,

observation of the typical forward paths will likely not be sufficient. Yet despite the differences,
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the paths may meet or come close together at a transition state such as a saddle point in the

landscape [28], as was the case here.

Transitory landscapes in a time-varying model

The behaviour illustrated above suggests the existence of a transition state in the static land-

scape, similar to the saddle point in the toy model discussed above. However, the transition

state may also be defined for a transitory landscape, which in this case may be achieved by

varying the level of LIF, quantified by the parameter L.

Before proceeding to simulations of a transitory system, it is first insightful to examine ana-

lytically how the fixed points (Xi) of the system vary with L. This is achieved by finding the

expression levels at which the rate equations are equal to zero. Three such fixed points are

displayed in Fig 7A for varying L. The three identified fixed points may be associated with

each of the stem-cell, transition and differentiated states of the system. Of these three states it

is only the stem-cell state that is strongly influenced, moving to higher values of Nanog as L is

increased.

In addition to the location of the fixed points, we may also examine the eigenvalues of the

Jacobian at each of them. These eigenvalues, over a range of LIF concentrations, are displayed

in Fig 7B as a scatter plot in the complex plane. Because the system is four-dimensional, each

fixed point has four eigenvalues associated with it, although these may sometimes be very close

together. The eigenvalues for the stem cell and differentiated state can be seen to reside entirely

in the left half plane, a characteristic indicative of the linear stability of these states. In contrast,

Fig 6. Minimum action paths for the developmental model. (A) A comparison of the paths plotted in the Gata6,

Nanog plane; (B) Time series for each of the molecular species in the forward direction; (C) Time series for each of the

molecular species in the reverse direction.

https://doi.org/10.1371/journal.pcbi.1006405.g006
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the transition state is seen to always have at least one eigenvalue with positive real part, and is

therefore unstable. The stem-cell and differentiated states are therefore attractors of the system

while the transition state is a saddle-point in the landscape.

With increasing L, the magnitude of the positive real eigenvalue of the transition state

increases. This implies both that the system will leave this state more rapidly if it passes

through it, but also that arriving at this state is less probable, consistent with the observation

that high L inhibits (initiation of) differentiation. In terms of the underlying landscape, the

increasing positive eigenvalue corresponds to an increasingly steep roll-off away from the sad-

dle point, just as for the toy model displayed in Fig 2.

Fig 7. Varying behaviour of the system with LIF concentration, L. (A) Three of the fixed points of the model with increasing L.

The differentiated and transition state remain unchanged while the stem cell state moves to higher Nanog values. (B) The

eigenvalues of the Jacobian at each of the three fixed points as L increases. The stem cell state becomes locally more stable, as

indicated by the increasingly negative eigenvalues. The transition state becomes increasingly unstable, thereby making transition to

this state less probable. The differentiated state is unaffected, but is seen to be locally more stable than the stem cell state. Complex

eigenvalues are associated with rotational “curl” dynamics. (C) Variation of the probabilistic landscape. Upper plots show a sample

of the sampled points while lower plots show the landscapes. As L decreases the valley at the differentiated state becomes deeper

while that at the stem cell state becomes shallower. At intermediate values the landscape is flatter around the transition state.

https://doi.org/10.1371/journal.pcbi.1006405.g007
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The eigenvalues of the stem-cell state also vary with LIF concentration, in this case transi-

tioning to complex values with increasingly negative real part. This implies increased stabil-

ity of this system and, together with the variation of the transition state eigenvalues, is

consistent with the behaviour of the system under increasing L: increased stability of the

stem cell state.

The eigenvalues of the differentiated state do not vary with L, but all the values are seen to

be more negative than some of those of the transition and stem cell states. This is consistent

with the greater stability of the differentiated state and the tendency for the system to remain

there once it has arrived. Furthermore, these properties of the different states may be related to

the shape of the probabilistic landscapes shown in Fig 7C. As L varies the landscape is seen to

transition from one with a single valley around the stem-cell state to one with two valleys of

varying depth. Further to this, for the case of L = 50 the differentiated state is surrounded by

more tightly spaced contours than is the stem-cell state, and hence higher local curvature; this

is consistent with the relative size of the eigenvalues.

Given the observed variation of the system behaviour, we run simulations in which the

parameter L is varied linearly over time. As for the toy model in section 1, we examine the vari-

ance across a large ensemble of simulations (10,000). This is displayed in Fig 8. The ensemble

starts out with relatively low variance before displaying a period of high variance at intermedi-

ate times. In the context of real experimental data, such high variance would be observed as

large heterogeneity across the sampled cells. This heterogeneity occurs because for this particu-

lar model, there is a distribution of times at which the stochastic switch is made from the stem-

cell to differentiated state. Therefore even though all cells follow a similar path through gene

expression space with very similar start and end points, there is high variability between cells

over a particular period of time.

Fig 8. The transition state in a transitory landscape. (A) The variance of the transcription levels across 10,000

simulations in which L is linearly decreased with time as L = 150(1 − t); (B) Probability distributions of the

transcription levels at three different values of L. The high variance “transition state” corresponds to intermediate

values of L at which transitions from the stem cell to differentiated state begin to occur.

https://doi.org/10.1371/journal.pcbi.1006405.g008
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Discussion

Models describing stem-cell differentiation are plentiful [48]. In this work we have examined

one such model, that of [43], from a landscape perspective. Starting our analysis from an illus-

trative model we see that the landscape is strongly linked to the probability distribution over

the state space, and gives an intuitive description of the dynamics. In the stem-cell differentia-

tion model we are able to obtain a landscape that describes the typical system behavior. More-

over, the landscape may be linked to the dynamics in a quantitative manner via the fixed

points Xi and the eigenvalues of the linearized dynamics at these locations: the fixed points

occur at minima, maxima or saddle points in the landscape while the eigenvalues describe the

local curvature.

While the potential landscape describes the tendency of the system to move towards partic-

ular stable states, it cannot fully capture all of the system’s dynamics. A non-gradient contribu-

tion to the dynamics is also generally present, known as the curl. A curl component is thought

to be indicative of non-equilibrium systems, or those which are not closed to external influ-

ences [26]. This is because closed systems always have an available energy such as the Gibbs

free energy which may be quantified and is directly related to the dynamics. For a developing

stem cell, there is a constant exchange of both energy and nutrients via the diffusion of heat

and mass through the membranes of the cell. Such a system is therefore clearly not closed in a

thermodynamic sense, and non-equilibrium effects are bound to be present.

An alternative viewpoint on the presence of curl, is that a curl-free or purely gradient-based

system requires complete symmetry in the interactions between all state variables [37]. In the

context of gene regulatory networks, a necessary condition is that the influence of gene i on

the expression of gene j is exactly the same as in the opposite direction. However even when

this is the case, only in cases where these influences are of a particular functional form will the

necessary symmetry be present. The precise requirement is that
@fi
@xj
¼

@fj
@xi

, since both are equal

to @2U
@xi@xj

. For systems such as a symmetric toggle switch in which there is mutual repression

between two gene products, the standard Hill function form of the interaction does not lead to

this symmetry. Therefore in general, with the exception cases in which the regulatory equa-

tions are specially chosen [49], we may expect a curl component to the dynamics of the system.

Although the potential landscape cannot describe all of the dynamics of cell differentiation,

it can elucidate some pertinent features of the process. One such feature is the static transition

state. Given a static landscape description for a developing cell, we may define transition states

as the saddles in the landscape, corresponding to unstable fixed points of the associated

dynamical system. The behavior of the system at these transition states is linked to the eigen-

values of the linearized dynamics, evaluated at these states. Such saddle points will always have

eigenvalues with a positive real part, the magnitude of which is linked to the speed at which the

transition states may be traversed. In the case that the transition speed is quick, the transition

states may rarely be observed and measured trajectories will appear discontinuous, while if

transitions are slow these states may correspond to the experimentally observed intermediate

cell states.

The static transition states may also be inferred without recourse to the landscape, utilizing

the concept of the minimum action path. Such paths have been evaluated for similar develop-

mental models before [14], and are in general agreement with those found here. The MAPs

describe the most probable routes through state space between any two fixed points. For purely

gradient-based systems these routes simply follow that of steepest climb/descent and are there-

fore identical in both directions between any two points. For two-dimensional systems with an

additional curl component such as the toy model examined above, the paths differ between the
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two directions but will meet at the saddle point between adjacent attractors. Such a saddle

point may therefore be termed a static transition state. For higher dimensional systems such as

the developmental model, the paths are again different but still come close together near to

one of the unstable fixed points. The transcriptional region around this static transition state is

therefore of significance for both differentiation and reprogramming.

An alternative to the static landscape description of the system is one of a transitory land-

scape, in which the potential changes under the influence of an external input or time-varying

parameter. In this framework we may therefore consider an alternative definition for the tran-

sition state as those periods during development in which large heterogeneity is observed.

Such heterogeneity may arise from two effects, firstly from the broad distribution of times for

the transition from one fixed point to another, and secondly from a temporary flattening of

the landscape under the influence of the changing conditions. In the models discussed here,

both effects are present. The variation in switching times is typical of any stochastic system in

which the escape from an attractor occurs due to random perturbations [41] and is therefore

an inherent feature of many processes governed by a gene regulatory network. The temporary

flattening of the landscape is dependent on the particular nature of the interactions between

genes, but there is increasing experimental evidence for such a phenomenon [50]. The obser-

vation of cell-cell variability has become particularly apparent with the recent use of single cell

experimental techniques. For example [51] observed high variability between cells undergoing

transitions from one state to another, while [52] observed an increase in the variability between

cells exiting pluripotency. Similar conclusions have also been drawn from the experimental

work of [53] who suggested that cell fate transitions are linked to a critical change in the under-

lying landscape.

When forming any gene regulatory model, the choice between a static and transitory land-

scape may often be an issue of model complexity. For a gene regulatory network this choice is

akin to that between modelling all of the relevant network interactions, or simply taking a sub-

set of the network and treating the influence of other genes as (time-varying) parameters in

the model. In the particular application of stem-cell development there is evidence that a rela-

tively limited number of genes may be sufficient to describe typical behaviour, although exter-

nal inputs are still required [54]. Such a system may therefore be described by a transitory

landscape.

Elucidating the subtle relationship between transition states and intermediate cell states

holds the key to linking mathematical models with data. TS are mathematically well defined

unstable fixed points of a dynamical system; ICS are empirically determined accumulation

points in gene expression space. Most likely they correspond to transition states with ‘flat’ local

neighborhoods. Such landscape features will result in slower progress through the transition

state/transitory region which may allow more substantial remodeling of the underlying tran-

scriptional network [17, 39]. We can thus in principle use characteristics of the transition state

or transitory region (see Fig 9) to demarcate two scenarios: (i) for a peaked TS we will see cells

rapidly moving through the TS and being easily missed in single cell transcriptomic assays; (ii)

for a flat TS we will observe ICS behavior [17] and are likely to capture some of the cells in the

vicinity of the TS. This would clearly have implications for further analysis and network infer-

ence [55, 56], and will reflect the extent of network remodeling during differentiation, or the

means by which this is achieved, e.g. 3D genome structure or epigenetic silencing/activation

versus signaling events rapidly affecting transcription factor activity.

An important final consideration, irrespective of the transition state scenarios highlighted

above, is that the presence of curl places limits on the identifiability of the dynamics. Most

experimental data consists of purely static snapshots, from which instantaneous distributions

can be obtained. Methods such as scRNA-seq only allow measurements of transcriptional
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profiles at single instances, and cannot provide the temporal variation of any individual cell.

While this will enable measurement of the typical distribution of cell states, sometimes includ-

ing the intermediate cell states, it will not readily allow measurement of certain characteristics

of the cell paths, as discussed in [37]. The full identification of regulatory dynamics may there-

fore additionally require some measure of derivatives, as may be afforded by future experimen-

tal and analytical techniques [57]; this will still leave considerable challenges to identifying

model structures [58].

Methods

Two-dimensional stochastic model

The two-dimensional toy model is chosen to exemplify some key properties of nonlinear sto-

chastic dynamical systems. It is a two-dimensional extension of a well studied one-dimensional

bistable system [41], known to exhibit a wide range of phenomena. The governing equations

are,

dXt ¼
2ax1 � 4lx3

1
� bþ 4clx3

2

2cax1 � 4clx3
1
� cb � 4lx3

2

" #

dt þ
s 0

0 s

" #

dW t: ð7Þ

Here dWt refers to increments of a Wiener process, which can be interpreted as the time

integral of Gaussian distributed white noise [59].

Unless otherwise stated, the parameter values used in the model were
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Fig 9. Relationship between transition state and observable data. The landscape curvature around the TS affects the

time cells will spend in the vicinity of the TS, and reflects the molecular processes driving differentiation.

https://doi.org/10.1371/journal.pcbi.1006405.g009
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The developmental model

The developmental model consists of four key players: Nanog (N) the complex Oct4-

Sox2 (O), Fgf4 (F) and Gata6 (G). We additionally include the typical cell media LIF (L),

which is a controllable parameter. Applying the quasi-equilibrium assumption, we treat all

modifying interactions as factors in the same birth process, with their associated rates acting

as a weighting on the net production rate. A first order degradation reaction parametrized by

kd is also included for each molecular species, leading to eight reactions with the following

propensities:

a1 ¼
k0Oðk1 þ k2N2 þ k0Oþ k3LÞ

1þ k0Oðk2N2 þ k0Oþ k3Lþ k4F2Þ þ k5OG2
ð8Þ

a2 ¼
k6 þ k7O

1þ k7Oþ k8G2
ð9Þ

a1 ¼
k9 þ k10O
1þ k10O

ð10Þ

a1 ¼
k11 þ k12G2 þ k14O

1þ k12G2 þ k13N2 þ k14O
ð11Þ

a5 ¼ kdN ð12Þ

a6 ¼ kdO ð13Þ

a7 ¼ kdF ð14Þ

a8 ¼ kdG: ð15Þ

The evolution of the system is then described by the combination of these eight reactions

and a stoichiometry matrix S, that defines the integer changes to the copy number of each spe-

cies. This is given as,

S ¼

1 0 0 0 � 1 0 0 0

0 1 0 0 0 � 1 0 0

0 0 1 0 0 0 � 1 0

0 0 0 1 0 0 0 � 1:

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð16Þ
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The parameter values used in the model were
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Numerical and analytical methods

Simulations of the developmental model were performed using the Gillespie algorithm [60], as

is standard for chemical reaction systems. For the analysis of the fixed points, linearized

dynamics and minimum action paths, the system was transformed into the approximate SDE

format. Defining the vector X = [N, O, F, G]>, and the reaction vector a = [ai]>, the SDE

approximation is given as [61]

dXt ¼ Sa dt þ Sdiagð
ffiffiffi
a
p
Þ dW t: ð17Þ

Here diag(v) stands for theRN�N matrix with the elements of vector v in its diagonal and

zeros elsewhere.

The deterministic fixed points of the system may be obtained by solving the equation,

f ðXÞ ¼ SaðXÞ ¼ 0: ð18Þ

Due to the nonlinear nature of the equations, analytical solutions are difficult to obtain.

Solutions were therefore found numerically using the DifferentialEquations.jl
package in Julia [62]. Analysis of the Jacobians was performed symbolically using the

SymPy.jl package.

The minimum action paths were computed via the optimization approach detailed in the

supplementary information of [47]. The MAP are those paths through the state space that min-

imize the Freidlin-Wentzell action functional [21].
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