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Virtual accident curb risk
habituation in workers by restoring
sensory responses to real-world warning

Namgyun Kim,1,5 Laurent Grégoire,2,5 Moein Razavi,3 Niya Yan,2 ChangbumR. Ahn,4,6,* and Brian A. Anderson2,*

SUMMARY

In high-risk work environments, workers become habituated to hazards they
frequently encounter, subsequently underestimating risk and engaging in unsafe
behaviors. This phenomenon has been termed ‘‘risk habituation’’ and identified as
a vital root cause of fatalities and injuries at workplaces. Providing an effective
intervention that curbs workers’ risk habituation is critical in preventing occupa-
tional injuries and fatalities. However, there exists no empirically supported
intervention for curbing risk habituation. To this end, here we investigated how
experiencing an accident in a virtual reality (VR) environment affects workers’
risk habituation toward repeatedly exposed workplace hazards. We examined
an underlying mechanism of risk habituation at the sensory level and evaluated
the effect of the accident intervention through electroencephalography (EEG).
The results of pre- and posttreatment analyses indicate experiencing the virtual
accident effectively curbs risk habituation at both the behavioral and sensory
level. The findings open new vistas for occupational safety training.

INTRODUCTION

Humans can become habituated to a variety of sensory signals.1–3 In high-risk workplaces, workers often

become habituated to risks associated with tasks they perform frequently and consequently engage in

unsafe behaviors.4–10 This behavioral tendency has been defined as risk habituation and identified as

one of the key contributors to occupational injuries and fatalities.9,11 For example, in road work zones,

workers’ vigilance to approaching struck-by hazards (e.g., construction vehicles) is apt to diminish after

frequent exposures.12–16 In many instances of struck-by fatal accidents between construction vehicles

and pedestrian workers, the construction vehicles were traveling at a speed of less than 10 mph9,12,17;

workers failed to avoid the approaching vehicles because they ignored the warning alarms from the

vehicles.18

In spite of periodic safety training, workers tend to focus on their work tasks while ignoring hazards they

routinely encounter.19–21 Curbing workers’ risk habituation is thus critical to prevent injuries and fatalities

at workplaces. Theoretically, a human’s habituation can be identified when stimulus-evoked responses

decrease in amplitude (e.g., the intensity of sensory responses in the brain) and/or frequency (e.g., the

number of behavioral responses elicited by the stimulus) with repeated exposure.1,3,22,23 Observing the

developmental process of workers’ risk habituation in real-world settings is quite challenging,24 and as a

result, the treatment of risk habituation within the scientific literature has been largely at the conceptual

level. There is very little research that directly measures and quantifies workers’ risk habituation, and there

exists no empirically supported intervention for curbing workers’ risk habituation, particularly at the sensory

level.

The advancement of virtual reality (VR) technologies offers solutions for observing workers’ risk habituation.

VR enables us to expose workers to close-to-real hazardous situations without risking actual injury and

observe workers’ behaviors in response to repeated exposure to workplace hazards.25–28 VR also allows

us to provide time-sensitive interventions when workers’ risk habituation is observed. In our previous study,

we developed a method of observing and an intervention that curbs behavioral indicators of risk habitua-

tion using VR technologies.29 Our intervention is based on the principle of one-shot learning—rapid and

substantial changes in human behaviors associated with a salient episodic memory.30–32 It has been
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theorized that workers who experienced an occupational injury or accident in the past perceive greater

risks associated with workplace hazards and tend to behave more safely.4,12,33 In an effort to elicit similar

changes in participants’ risk perception of frequently encountered hazards, in our previous study, we

exposed naive student participants to a virtual accident.29 Furthermore, to empirically examine the effect

of experiencing a virtual accident on risk habituation, we created a virtual work environment in which visual

attention could be measured. The VR environment exposes participants to repeated struck-by hazards

associated with construction vehicles and measures participants’ vigilant orienting behaviors in response

to auditory warning alarms from those construction vehicles. During the experiment, participants experi-

enced a virtual accident upon the emergence of habituated behaviors. Although experiencing the VR

accident promoted vigilant behaviors in the student participants,29 such vigilant behaviors could simply

reflect compensatory goal-directed attention to a revealed threat (i.e., participants actively monitor the

vehicle’s movements once they learn it can strike them in the VR task). Whether such vigilant behaviors

are the result of changes in how the sensory experience of the alarm is processed is not known, nor is

whether such an intervention could curb behavior in experienced construction workers who are subject

to significant levels of real-world risk habituation. To this end, the present study aimed to examine the

consequence of experiencing the VR accident at the sensory level.

Here, we examined the potential neural indicators of workers’ risk habituation using electroencephalog-

raphy (EEG). Event-related potentials (ERPs) provide a measure of stimulus-evoked neural responses

with high temporal precision.34 ERPs could allow us to determine whether experiencing the VR accident

alters the early or late stages of attentional processing. A modulation of early components is thought to

be associated with perceptual, more automatic processing,35 while later components are generally asso-

ciated with more strategic, controlled cognitive processes.36 In two sessions, performed before and after

the VR intervention, we recorded ERPs to alarm and control sounds using the equiprobable paradigm

(a variant of the oddball paradigm37,38). The alarm sound was similar to the warning signal used in both

our VR environment and real construction sites. We mainly focused on two ERP components, one early

(N1) and one late (P3), known to be sensitive to auditory habituation.39–41 Thus, EEG measures aimed to

clarify the cognitive mechanisms that underlie the attenuation of risk habituation to warning signals after

experiencing an accident in the VR environment. We hypothesized that construction workers would

show a blunted ERP response to the alarm sound compared to the control sound and that this difference

would either diminish or go away after experiencing the virtual accident. Such an outcome for the

N1 component would provide direct evidence for the effect of the VR accident experience on the automatic

sensory processing of warning signals. In contrast, the same outcome for the P3 component would suggest

that the increase of vigilant behaviors observed after a VR accident29 ensues from controlled cognitive

processes, such as goal-directed attention mechanisms. We supposed that an alteration of the automatic

sensory processing, reflected by theN1 component, would havemore long-lasting effects on behavior, and

in consequence, would strongly support the utility of the VR intervention to curb risk habitation in

construction workers.

RESULTS

Decrease in vigilant orienting behaviors toward auditory warning alarms

As repeated exposure to workplace hazards might lead to a decrease in workers’ vigilant behaviors as an

attentional consequence of risk habituation, we examined (1) the magnitude of reduction in workers’

vigilant behaviors to repeatedly exposed auditory warning alarms from construction vehicles and (2) the

effectiveness of experiencing the VR accident caused by participants’ low vigilance (Figure 1A). At a con-

struction site, workers are apt to direct most of their attention to their work tasks and pay less attention to

surrounding hazards.42–44 Thus, to create an immersive virtual environment and accelerate participants’

habituation, we designed a virtual road-cleaning task. The task involved removing all debris and cleaning

the entire surface of the road with a broom. The participant’s actual/physical sweeping motion was

synchronized in the VR environment via motion controllers attached to a real broomstick (Figure 1B). In

the experiment, while participants were performing the road-cleaning task, construction vehicles continu-

ously moved back and forth. Auditory warning alarms sounded to warn the proximity of the vehicles (Fig-

ure 1C). Measuring the decrease in participants’ visual attention to an approaching hazard provides an

empirically rigorous way of observing the development of risk habituation.45,46 Therefore, we measured

participants’ vigilant orienting behaviors using the eye-tracking sensors embedded in the VR headset

(Figure 1D). One exposure to the hazard was defined as one reciprocal movement of the vehicle moving

behind the participant. In each exposure to the hazard, when a participant looked back and checked the
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approaching vehicle, the response time—the elapsed time between the presentation of the auditory

warning alarm and a participant’s hazard-checking behavior—was documented. The frequency of vigilant

behaviors (checking rate) was also recorded. A VR accident was triggered upon repeated ignoring of the

approaching vehicle (see Figure 1E and STAR Methods).

In the first VR session, 20 out of 31 participants experienced the VR accident triggered by their ignorance of

the approaching vehicles (i.e., accident group; AG), and 11 participants did not experience the accident

because they exhibited regular hazard checking while performing the task (i.e., no accident group; NAG).

Does the repeated exposure to struck-by hazards result in a delay in workers’ vigilant behaviors in the VR

environment? To answer this question, we tested a bivariate linear regressionmodel. The regressionmodel

for AG positively predicted participants’ response time (vigilant orienting behavior) in the first VR session

(Figure 2A; R2 = 0.13, F(1, 54) = 7.16, p = 0.008; B1 = 0.49, p = 0.008, 95% confidence interval [CI] (0.13, 0.85)).

With the increase in the number of exposures to the hazards, the AG’s vigilant behaviors were delayed.

Consequently, participants in AG experienced the VR accident. The regression model for NAG was also

significant (Figure 2A; R2 = 0.02, F(1, 249) = 5.78, p = 0.017; B1 = 0.13, p = 0.033, 95% CI (0.02, 0.25)).

However, the R2 value was relatively low because participants in NAG were constantly vigilant toward

the hazards. Thus, the association between repeated exposure to the hazards and workers’ vigilant behav-

iors was attenuated. To investigate further the difference in habituation tendency between AG and NAG,

we tested a multiple linear regression analysis model (Figure 2A; R2 = 0.08, F(3, 303) = 8.92, p < 0.001). The

result indicated that the interaction between response time and the occurrence of the VR accident

Figure 1. Experimental procedure and intervention model

(A) The experiment timeline. Each experiment session consisted of the VR experiment (preceded by practice) and an EEG session measuring sensory

responses to signals. The two experiment sessions were scheduled a week apart.

(B) Schematic of the VR experimental setup with a VR headset, motion controllers, and eye-tracking sensors embedded in the VR headset. The participants’

task was removing all debris and cleaning the entire surface of the road with a broom. The participant’s actual/physical sweepingmotion was synchronized in

the VR environment via motion controllers attached to a real broomstick.

(C–E) Schematic of the experimental and intervention scenario. While the participants were performing the road-cleaning task, construction vehicles

continuously moved back and forth. Auditory warning alarms sounded to warn the proximity of the vehicles. The eye-tracking sensors documented

participants’ vigilant orienting behaviors. The participants’ ignorance of approaching vehicles triggered a VR accident.

(F) The overview scene of the VR road construction environment.

(G and H) The participants performed the virtual road-cleaning task using a real broom with motion controllers.

(I) The example of participant’s vigilant orienting behavior to check approaching hazards during the VR task.
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approached significance (B3 = 0.36, p = 0.052, 95% CI = �0.01, 0.71). The result of the first VR session

indicated the AG’s vigilant orienting behavior was slowed with the increase in the number of exposures

to the hazard, culminating in the triggering of the VR accident. On the other hand, the NAG’s vigilant ori-

enting behavior did not significantly slow down over time. Therefore, to supplement the results of the anal-

ysis of response time, we analyzed the frequency of participants’ vigilant orienting behaviors (checking

rate). There was a significant difference in checking rate between AG and NAG (Figure 2B; Z = 217,

p < 0.001). This further suggests that NAG exercised heightened levels of attentiveness toward approach-

ing hazards as compared to AG and, as a consequence, did not experience the VR accident.

Intervention effect of a single VR accident experience on vigilant orienting behaviors

Can experiencing a single VR accident following behavioral indicators of risk habituation curb the tendency

to ignore relevant hazards, and is that intervention effect sustained? To answer these questions, we asked

the participants to complete the VR task a week after the first participation. The result from the multiple

linear regression model for AG, which examines the effect of number of exposures on response time in

the second VR session, indicated a significant negative interaction between response time in the second

VR session and the VR accident experience in the first VR session (Figure 3A; B3 = 0.45, p = 0.007, 95%

CI = 0.12, 0.77), while this interaction was not significant in NAG (Figure 3C; B3 = 0.09, p = 0.29, 95%

CI = �0.08, 0.26). In addition, AG presented a significant difference (Figure 3B; t19 = �11.09, p < 0.001,

95% CI (�73.98, �50.48), d = �3.08) in the checking rate between the first and second VR sessions, while

NAG did not (Figure 3D; t10 = 0.52, p = 0.62, 95% CI (�0.12, 0.18), d = 0.20). After experiencing the VR ac-

cident in the first session, AG exhibited consistent vigilant orienting behaviors in the second VR session.

The result confirmed that experiencing a single VR accident triggered by the ignoring of a hazardmitigated

participants’ habituation and increased participants’ vigilant orienting behaviors.

Intervention effect on sensory-perceptual processing of warning alarms

Participants passively listened to the alarm sound and a matched control sound while neural responses to

the sounds were recorded using EEG, both before the initial VR session and after the second session.

Grand-average ERP waveforms are illustrated as a function of the type of sound for each EEG session in

Figure 4. Analyses performed within the 220–420 ms time window revealed a significant main effect of

type of sound, F(1, 18) = 16.44, p < 0.001, h2p = 0.477, with higher ERP amplitudes for the control sound

than for the alarm sound, no significant main effect of session, F(1, 18) = 0.24, p = 0.627, h2p = 0.013, and

no significant interaction between the type of sound and session, F(1, 18) = 2.53, p = 0.129, h2p = 0.123.

These results suggest greater early attention to the control sound than to the alarm sound consistently

across the two sessions.

Analyses performed within the 540–660 ms time window revealed a significant main effect of type of sound,

F(1, 18) = 8.15, p = 0.011, h2p = 0.312, with higher ERP amplitudes for the control sound than for the alarm

Figure 2. Behavioral risk habituation and the occurrence of the VR accident

(A) The slopes for the effect of theoccurrence of theVRaccident on response time in the first VR session (see the STARMethods

section for details) for AG and NAG. The shaded envelope indicated the 95% CI for predictions from the linear model.

(B) The average frequency of checking behaviors (checking rate) ofNAGandAG. Standarderror bars of themean are included.
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sound, no significant main effect of session, F(1, 18) = 0.49, p = 0.494, h2p = 0.026, and crucially, a significant

interaction between the type of sound and session, F(1, 18) = 5.12, p = 0.036, h2p = 0.222, indicating that ERP

amplitude differences between the control sound and the alarm sound significantly decreased after the VR

training. Subsequent t-tests showed that ERP amplitudes were significantly greater for the control sound

than for the alarm sound before the VR training, t(18) = 3.06, p = 0.007, d = 0.70, whereas ERP amplitudes

between the two sounds did not differ significantly after the VR training, t(18) = 0.58, p = 0.284, d = 0.13.

Analyses performed within the 804–980 ms time window also revealed a significant main effect of type of

sound, F(1, 18) = 12.64, p = 0.002, h2p = 0.413, with higher ERP amplitudes for the alarm sound than for the

control sound, no significant main effect of session, F(1, 18) = 0.15, p = 0.706, h2p = 0.008, and no significant

interaction between the type of sound and session, F(1, 18) = 0.70, p = 0.413, h2p = 0.037. Thus, late attention

to the alarm sound was higher than to the control sound, and this effect did not differ across the two

sessions.

Participants who experienced at least one accident in the VR training (N = 16)

We performed the same analyses as above after removing participants who did not experience the acci-

dent in the VR training (N = 3). Results are overall consistent with those observed in the whole group

(see details below). The only notable difference was observed within the 220–420 ms time window.

Grand-average ERP waveforms are illustrated as a function of type of sound for each EEG session in

Figure 5. Analyses performed within the 220–420ms time window after stimulus onset revealed a significant

main effect of type of sound, F(1, 15) = 10.49, p = 0.006, h2p = 0.412, with higher ERP amplitudes for the

control sound than for the alarm sound, no significant main effect of session, F(1, 15) = 0.25, p = 0.628,

h2p = 0.016, and an interaction between type of sound and session close to significance, F(1, 15) = 4.22,

Figure 3. Intervention effect on increasing vigilant orienting behaviors

(A) The slopes for the effect of the number of exposures on response time in AG for each VR session. The shaded envelope

indicated the 95% CI for predictions from the linear model.

(B) Average checking rate of AG for each VR session. On each box, the central mark indicates the median. The whiskers

extend to the highest value and the lowest value.

(C) The slopes for the effect of the number of exposures on response time in NAG for each VR session. The shaded

envelope indicated the 95% CI for predictions from the linear model.

(D) Average checking rate of NAG for each VR session. On each box, the central mark indicates the median. The whiskers

extend to the highest value and the lowest value.
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p = 0.058, h2p = 0.220, suggesting that ERP amplitude differences between the control sound and the alarm

sound tended to decrease after the VR training. Subsequent t-tests showed that ERP amplitudes were

significantly greater for the control sound than for the alarm sound before the VR training, t(15) = 3.19,

p = 0.006, d = 0.80, whereas ERP amplitudes between the two sounds did not differ significantly after

the VR training, t(15) = 0.82, p = 0.423, d = 0.21.

Analyses performed within the 540–660 ms time window after stimulus onset revealed a significant main

effect of type of sound, F(1, 15) = 6.04, p = 0.027, h2p = 0.287, with higher ERP amplitudes for the control

sound than for the alarm sound, no significant main effect of session, F(1, 15) = 2.18, p = 0.160,

h2p = 0.127, and crucially, a significant interaction between type of sound and session, F(1, 15) = 8.84,

p = 0.009, h2p = 0.371, indicating that ERP amplitude differences between the control sound and the alarm

sound decreased significantly after the VR training. Subsequent t-tests showed that ERP amplitudes were

significantly greater for the control sound than for the alarm sound before the VR training, t(15) = 3.01,

p = 0.009, d = 0.75, whereas ERP amplitudes between the two sounds did not differ significantly after

the VR training, t(15) = 0.26, p = 0.801, d = 0.06.

Analyses performed within the 804–980 ms time window after stimulus onset revealed a significant main

effect of type of sound, F(1, 15) = 8.71, p = 0.010, h2p = 0.367, with higher ERP amplitudes for the alarm sound

than for the control sound, no significant main effect of session, F(1, 15) = 0.08, p = 0.778, h2p = 0.005, and no

significant interaction between type of sound and session, F(1, 15) = 0.95, p = 0.345, h2p = 0.059.

DISCUSSION

We developed a VR safety training environment that exposes experienced construction workers to

repeated struck-by hazards and simulates a virtual accident upon the attentional consequence of risk habit-

uation. We warned participants about potential struck-by hazards and requested that they pay attention to

approaching vehicles for safety purposes. However, during the experiment, participants became

accustomed to repeated exposure to warning alarms associated with struck-by hazards and focused largely

on performing the road-cleaning task. Our data show that, overall, participants became increasingly

inattentive to struck-by hazards in our VR task, with a substantial proportion of these construction workers

experiencing a virtual accident upon repeated ignoring of the hazard. Our findings demonstrate that

construction workers’ risk habituation can be observed in the intentionally designed VR environment,

thereby providing the potential for manipulating and intervening in risk habituation, a major causal factor

of fatal accidents at workplaces.

We further investigated the intervention effect of experiencing the single VR accident on curbing risk habit-

uation. Experiencing the VR accident significantly affected participants’ risk habituation. For participants

who experienced the VR accident, a progressive slowing of response time in visual checking was no longer

observed in the second session, and the frequency (checking rate) of participants’ vigilant orienting behav-

iors significantly increased across sessions, with the intervention effects sustaining over at least one week.

The findings dovetail with the results of previous conceptual studies claiming that workers who experienced

Figure 4. Grand-average ERP waveforms at the Cz-Fz electrode sites for alarm and control sounds

(A) Before and (B) after the VR training. The gray rectangles indicate the time window of the three ERP components

analyzed.
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work-related injuries or accidents in real life tend to perceive greater risks associated with workplace haz-

ards.4,12,33 The results of this study also suggest thepotential of VR as aone-shot learningplatform that leads

to rapid changes in workers’ behaviors with a salient and memorable accident experience.

Our findings also demonstrate that individual workers have different risk habituation tendencies. During

the VR task, some participants consistently responded to the warning alarms with vigilant orienting across

both VR sessions. However, participants who engaged in the VR accident in the first session frequently

ignored the approaching construction vehicles and showed rapidly decaying vigilant orienting behaviors.

Our VR task, therefore, differentiates between participants who are more or less prone to risk habituation.

The direct measurement of workers’ behavioral responses in the VR environment may help researchers and

construction safety managers identify which workers are risk prone or vulnerable to risk habituation,

thereby allowing for the provision of tailored safety training. Such tailored safety training may also help

workers recognize their risk habituation tendencies toward repeatedly encountered workplace hazards

and allow them to understand when they engage in risky behaviors.

The results of EEGdata analyses also support the intervention effect of our VR trainingon restoringworkers’ sen-

sory responses to warning signals. EEG data are consistent with behavioral effects observed in the VR sessions,

especially for the ERP componentmeasured within the 540–660ms timewindow, which presumably reflects the

N1because this component is the first negativewave response recorded after auditory stimulusonset.47 TheN1

timewindow is usually earlier (between 100 and200ms after stimulus onset48,49), but the timediscrepancy could

be due to the specificity of sounds presented in our study (i.e., long- and non-monofrequency), which largely

differ from short- and monofrequency sounds commonly used in auditory EEG studies (e.g., 60 ms39; 50 ms50;

70 ms41). The alarm sound presented in the EEG sessions was extracted from the alarm signal used in real con-

struction sites to increase the ecological validity of our experiment.51 The auditory N1 component is related to

early attention34,52 and sensitive to habituation.39,50

Early attention to the control sound was greater than to the alarm sound before completing the VR training,

as reflected by the ERP amplitude difference within the 540–660 ms time window, suggesting a conse-

quence of habituation to the alarm sound resulting from real-world construction experience preceding

the experiment. A potential way to mitigate this issue in construction sites could be to employ a variety

of alarm sounds and present them in random sequences (i.e., the use of a specific alarm sound would

not be predictable by workers). This method might significantly reduce habituation to each specific

warning signal, and as a consequence, workers would be less inclined to engage in unsafe behaviors stem-

ming from ignorance of a hazard.

Importantly, the ERP amplitude difference between the control and the alarm sound within the 540–660 ms

time window significantly decreased after the VR training. This outcome is consistent with results observed

within the 220–420 ms time window when analyses were performed only with participants who experienced

a VR accident. Thus, we found physiological evidence of the VR training reducing habituation to the alarm

sound at an early stage of attentional processing. The mechanism for sensory N1 habituation is thought to

Figure 5. Grand-average ERP waveforms at the Cz and Fz electrode sites for alarm and control sounds

(A) Before and (B) after the VR training for participants who experienced at least one accident in the two VR sessions

(N = 16). The gray rectangles indicate the time window of the three ERP components analyzed.
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be related to refractoriness of cell populations involved in basic sensory processing systems rather than

high-level cognitive processes exerting top-down control over sensory cortex,53,54 suggesting that the

reduction of the N1 amplitude difference between the two sounds observed after the VR training is not

due to explicit, top-down strategies. No modulation of later ERP components was observed after the VR

training. Previous studies reported habituation of auditory stimuli for late components (e.g., P341,55), but

this outcome could be evidenced only in specific conditions (e.g., when attentional resources available

to perform the task are reduced39). Altogether, the EEG data suggest that the VR training enhances early

attentional and sensory-perceptual processing of auditory stimuli signaling a potential danger in construc-

tion sites.

The present study demonstrates habituation built up from protracted real-world experience in the first EEG

session that is largely abolished following the VR accident intervention. That is, our data show that a singu-

lar experience can undo the consequences of months to years of routine exposure to sensory signals. Such

an apparently profound effect on sensory habituation is, to our knowledge, unprecedented and opens new

vistas in studies of perception and learning. The consequences of habituation may be much more plastic

and sensitive to change than previously thought, particularly in the context of an affectively salient precip-

itating event. Future research should explore the modulability of sensory habituation more broadly and

how it responds to recent salient events.

Limitations of the study

Several limitations of this study should be noted. To avoid manipulation on participants’ behaviors, during

the VR experiment, the VR accident was triggered in response to participants’ vigilant orienting behaviors.

Therefore, the samples were unevenly distributed, and the number of participants who did not experience

the VR accident was relatively small. During the experiment, some participants also never exhibited any

vigilant orienting behaviors. The data from these participants were included only in the vigilant behavior

frequency analysis. The Occupational Safety and Health Administration (OSHA) recognizes four leading

causes of fatal accidents—falls, struck-by, caught-in/between, and electrocution hazards (i.e., fatal-four

hazards).56 In this study, we focus on observing and curbing construction workers’ risk habituation to

struck-by hazards associated with construction vehicles. Future work could extend the proposed interven-

tion to curb workers’ habituation to other fatal-four hazards.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

Figure 6. Example of a sequence of events in the EEG sessions

(A) The example of EEG experiment.

(B) A sequence included four sounds (of 600 ms) separated by an interstimulus interval of 3,500 ms, 4,500 ms, or 5,500 ms.

The first sound of a sequence was presented 1,750 ms or 2,750 ms after a background image appeared (which

corresponded to the beginning of a sequence) to make sure that the EEG signal related to the processing of the sound

was not (or minimally) affected by the processing of the image. The fourth sound terminated 1,750 ms or 2,500 ms before

the end of the sequence. To keep constant the duration of each sequence, the five intervals that preceded and followed

the sounds always lasted 18 s in total. All the possible combinations of intervals that met this requirement were presented,

in a random order. Thus, each sequence lasted 20.4 s.
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tact, Changbum R. Ahn (cbahn@snu.ac.kr)

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data: Experimental data is available from the lead contact on reasonable request.

d Code: This paper does not report the original code.

d Additional Information: Any additional information required to reanalyze the data reported in this paper

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

A total of thirty-five construction workers (32 males and 3 females) aged between 20 and 43 years (mean

age: 27.26 years, s.d: 6.09 years) were recruited from a construction company in the United States. All

the participants were pedestrian workers working at heavy civil construction projects. The experimental

protocol was approved by the Institutional Review Board (IRB) at Texas A&M University (IRB 2019-

1270D). Informed consent was obtained from all participants. The experiment was conducted in a quiet

space at a safety training facility of the construction company. During the experiment, the access to the

facility was controlled. To examine the sustained intervention effect, each participant was asked to partic-

ipate in a second session one week later. Each session, including the VR experiment and the EEG

REAGENT or RESOURCES SOURCE IDENTIFIER

Software and algorithms

VIVE SRanipal Eye Tracking SDK HTC Corporation Version 1.1.0.1

Unreal Engine Epic Games, Inc. Version 4.22.3

Autodesk 3dS Max Autodesk Inc. Version 2019

Autodesk Maya Autodesk Inc. Version 2019

PsychoPy Open Science Tools Ltd. Version 2021.1.4

OpenBCI GUI OpenBCI Version 5.0.4

OpenSync library OpenSync Version 3.0

Logic Pro X Apple Inc. Version 10.6.3

Python Python Software Foundation Version 3.8.2

Python SciPy toolbox SciPy Version 1.4.1.33

MNE-Python package https://doi.org/10.5281/zenodo.7314185 Version 0.24
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method
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experiment, took approximately 3–3.5 h. Thus, each participant took a total of 6-7 h to complete both ses-

sions. All participants voluntarily participated in this study. Participants were compensated with $200 for

participating in the study. Data from four participants—who did not return for their second study session

(N = 2) or withdrew from the experiment because of motion sickness (N = 2)—were discarded. Thus, data

from thirty-one participants entered the VR training data analyses. Among the thirty-one road construction

workers who completed the two VR sessions, the data of twelve participants were excluded from the EEG

analyses due to technical problems/malfunction systems (N = 8; i.e., loss of data due to a dysfunction of the

Bluetooth system) or artifacts in the EEG recordings (N = 4; see event-related potential analyses section) in

at least one of the two EEG sessions.

METHODS DETAILS

Overview

We designed and performed the experiment with actual road construction workers (1) to examine workers’

behavioral and sensory habituation to repeated auditory warning alarms from construction vehicles and (2)

to validate the sustained intervention effect. An overview of the experimental procedure is provided in

Figure 1A. In the first session, the participants first completed the EEG session, then the VR training. A

week later, the participants completed the second session, with the VR training first and the EEG session

afterward.

Apparatus

Virtual reality experiment

The HTC Vive Pro Eye (HTC Corporation, New Taipei City, Taiwan; resolution: 2880 x 1600 pixels; field of

view: 98� horizontal and 98� vertical; refresh rate 90 Hz) and Dell Precision T5820 (Dell, Round Rock, TX,

USA; CPU: Intel i9-10900 3 3.7 GHz; RAM; DDR4 128 GB; GPU: Nvidia GeForce RTX 3080) were used to

display the VR environment. Eye movement was recorded using eye-tracking sensors embedded in the

HTC Vive Pro Eye with a peak frequency of 90 Hz.

EEG experiment

A Dell Precision T3620 (Dell, Round Rock, TX, USA) equipped with PsychoPy software v2021.1.457–59 was

used to present the stimuli on a Dell P217H monitor. The participants viewed the monitor from a distance

of approximately 70 cm in a dimly lit room. Participants also wore Etymotic ER4XR 45U high fidelity, noise-

isolating in-ear earphones (Etymotic Research, Elk Grove Village, IL, USA) to listen to all sounds.

The equipment used to perform measurements by EEG was the OpenBCI Board Kit of 32 bits and USB

Dongle (www.openbci.com), with a cap containing 20 electrodes pre-organized according to the interna-

tional 10-20 system.60 For our study, we have used 15 channels from the 10–20 electrode placement system:

C3, C4, Cz, F3, F4, Fz, Fp1, Fp2, P3, P4, Pz, T3, T4, T5, T6. We embedded OpenSync library in PsychoPy58 to

synchronize and record EEG signals with the associated alarm/control task markers.61 All electrode imped-

ances were kept below 15 kU. The EEG was sampled and digitized at 125 Hz.

Virtual reality experiment procedure

Virtual reality environment

A road maintenance working environment in which participants would be part of an asphalt milling crew

was selected for the experimental scenario and designed. The VR environment was created using Unreal

Engine v.4.22.3.62 All components included in the VR environment were created using Autodesk 3dS

Max v.201963 and Autodesk Maya v.2019.64 To create a VR environment that effectively elicits participants’

risk habituation, the experimental scenario focused on repeated exposure of participants to potential

struck-by hazards associated with construction vehicles, with associated auditory warning alarms from

the vehicles. The movement of virtual construction vehicles was designed to respond to a participant’s

behavior. The reciprocal back-and-forth movement of a vehicle (i.e., street sweeper) that travels behind

a participant is controlled by the real-time measurement of its distance from a participant. When the street

sweeper reaches the designated minimum distance to a participant—7.5 m, the street sweeper turns off its

warning alarm and begins to reverse, thereby repeatedly exposing a participant to the risk of a potential

runover accident without interfering with the participant’s virtual road cleaning task. While a participant

is performing the sweeping task, dump trucks repeatedly pass by very close to the participant. All the

construction vehicles in the VR environment emit operating sounds and auditory warning alarms
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(i.e., beeping sounds), and these warning alarms are carefully designed to create a realistic auditory expe-

rience. The sound attenuation function was adopted. The volume of audio sources is changed in response

to the distance and angle between a participant and the audio sources. A participant thus can recognize

the proximity and direction of the approaching hazard based on the warning alarms, similar to a real-world

road construction site. To design a close-to-real virtual environment, the experimental scenario was

reviewed by three experienced construction safety managers at nationwide heavy civil construction

companies.

Task in the VR training

While working at a road construction/maintenance site, workers are apt to direct most of their attentional

resources to a work task and become less attentive to workplace hazards.42–44 Thus, we designed a virtual

road cleaning task not only to accelerate participants’ risk habituation within a short time period but also to

promote active participation in the experiment. During the VR experiment, a participant was asked to

perform a road cleaning task in a road maintenance work zone. The task was to remove all debris and clean

the surface of the working lane with a broom. A participant’s physical sweeping movement with an actual

broomstick was captured by VR motion controllers attached to the broomstick and synchronized in the VR

environment with a virtual broom.

Vigilant orienting behavior measurement

In this study, we defined vigilant orienting behavior as hazard-checking behavior—participant’s eye and/or

head movement to check approaching construction vehicles. While working at a dangerous workplace,

workers must pay attention to a hazard in order to correctly respond to it. Therefore, recognizing and

evaluating the risk associated with workplace hazards require selective attention (specifically, visual

attention).45,65–67 Although orienting behavior does not always lead to workers’ proper risk perception

of workplace hazards,68,69 visual attention is a vital requisite for enhanced risk perception.45 Visual attention

is intimately related to eye movements,46,70 and visual checking of surrounding hazards in workplaces is an

essential safety behavior. Therefore, measuring the latency (response time) in participants’ visual attention

responses to repeatedly encountered workplace hazards provides a concrete and empirically grounded

analytical approach to monitoring risk habituation development. In this regard, to measure the latency

pattern in participants’ visual attention to the approaching construction vehicle, an eye-tracking system

was embedded into the VR environment. During the experiment, eye-tracking sensors integrated with

the VR headset document what a participant is looking at with a peak frequency of 90 Hz. The eye move-

ment monitoring system documents the latency of exhibiting vigilant orienting behaviors (response time in

each exposure), and the frequency of vigilant orienting behaviors. The collected data from the VR training

was preprocessed as follows:

In this study, we defined one exposure to the struck-by hazard as one reciprocal movement of the street

sweeper traveling behind a participant. During the VR training, when a participant exhibited a vigilant

orienting behavior (looking back and checking the proximity of the approaching vehicle for the first time

in each exposure), the latency of response time (i.e., the delay between the beginning of the alarm sounds

and participants’ vigilant orienting behaviors) was documented.

The frequency of vigilant orienting behaviors (checking rate, CR) was defined using Equation 1:

CRi =
Number of checking cycles

Number of exposures
(Equation 1)

where number of checking cycles = the number of cycles that a participant succeeded in checking the ap-

proaching street sweeper by a participant i; and number of exposures = the number of exposures to the

struck-by hazard of a participant i.

Intervention (A single memorable experience through a virtual accident experience)

The VR environment includes a system that simulates struck-by accidents with construction vehicles upon a

participant’s habituated ignorance of the approaching vehicles. To make the VR accident simulation a

memorable event, it was dramatized by emphasizing aversive feedback to a participant. The VR accident

simulation includes visual accident scenes, crash sounds, and haptic feedback via the VR motion control-

lers. In the first VR session, the accident with the street sweeper is triggered by a participant’s habituated

ignorance of approaching construction vehicles. To trigger the VR accident upon a participant’s
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habituation, a behavior-checking systemwith amoving window was adopted. Themoving window counted

the number of a participant’s successes in checking the approaching vehicles over the five most recent

exposures. When a participant fails to check on the approaching sweeper in three out of these five expo-

sures, the street sweeper starts to move forward toward the participant until it virtually collides with the

participant. If a participant recognizes the street sweeper’s erratic movement and succeeds in evading

the collision, the street sweeper makes the normal reciprocal movement, and the behavior checking system

also restarts to count the participant’s vigilant orienting behaviors. To provide a participant enough time to

be aware of surrounding hazards while performing the assigned VR road cleaning task, regardless of

participants’ continuous ignorance of the approaching vehicles, the VR accident was not triggered until

at least 10 exposures to the struck-by hazard. Although a failure to visually check on three of themost recent

five exposures serves as a threshold for the VR accident simulation that is to some degree arbitrary, a

participant’s frequent inattention to the repeatedly approaching construction vehicle indicates a proxy

for habituation. The VR accident with the sweeper was only triggered in the first VR session.

In the second VR session, a participant was also required to perform the same road cleaning task and was

exposed to the same types of struck-by hazards at the first VR session (the risk associated with the street

sweeper behind a participant). The latency and frequency of participants’ vigilant orienting behaviors

were measured in the same manner as in the first VR session. To observe the sustained intervention effect

of experiencing the accident on participants’ behaviors, the VR accident with the sweeper was not

triggered in the second VR session. However, to make the VR environment more close-to real, another

VR accident simulation was designed and embedded in the second VR session. During the VR training,

dump trucks repeatedly passed a participant in the next lane of the working lane where a participant

was performing the road cleaning task. The accident with the dump truck was triggered at about 20 min

after the start of the experiment. Once a participant reached an invisible accident trigger point, one of

the dump trucks changed direction and backed up to the lane where the participant was working. The

VR accident with the dump truck was also avoidable if a participant recognized the erratic movement of

the truck and dodged the collision with the dump truck that was heading toward the participant. Again,

the designed and presented struck-by hazards in the VR environment involved auditory warning alarms

when they were heading toward a participant. This dump truck interaction was not of interest in the present

study and was intended to pilot procedures for a potential future study.

EEG experiment procedure

Auditory stimuli

The two auditory stimuli (alarm and control) were made using Logic Pro X software on a 2017 MacBook Pro

(Apple Inc., Cupertino, CA, USA). The original alarm sound—a truck Backing Up Beep sound—was

extracted from video files.71 For creating the control sound, the alarm sound was modified using a sound

equalizer. The sound distribution was equated to have the same magnitude over the spectrum of sound

(from 39 Hz to 14,200 Hz), which generates white noise ambient. The two sounds lasted 600 ms each

and were equated using the normalize function to set the loudness to 23 LUFF.

Procedure

The Oddball paradigm has been widely employed to assess auditory stimulus discrimination.72,73 This

paradigm usually consists of the frequent presentation of one stimulus designated the ‘‘standard’’ inter-

spersed with rare occurrences of one different stimulus designated the ‘‘deviant’’.74 A common alternative

is an equiprobable paradigm, in which each auditory stimulus is presented an equal number of times in a

random order.37,47,75 We opted for the latter paradigm in the present study to efficiently control the habit-

uation of sounds. Note that the equiprobable paradigm is often used as a passive task, which requires no

behavioral response.38

Twenty images of construction sites were used as backgrounds in the EEG sessions. Half of the images were

presented in the first session and the second half in the second session. In each session, each of the 10

images was presented 10 times in a random order with the restriction that the same image could not be

presented two times in a row. We refer to sequence the set of events occurring during the presentation

of one image. Each sequence included four sounds (of 600 ms) separated by an interstimulus interval of

3500 ms, 4500 ms, or 5500 ms. The first sound of a sequence was presented at 1750 ms or 2750 ms after

the beginning of the sequence to make sure that the EEG signal related to the processing of the sound

was not (or minimally) affected by the processing of the image. The last sound of a sequence terminated
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1750 ms or 2500 ms before the end of the sequence. To keep constant the duration of each sequence, the

five intervals that preceded and followed the sounds always lasted 18 s in total. All the possible combina-

tions of intervals that met this requirement were presented, in a random order. Thus, each sequence lasted

20.4 s (Figure 6). In each session, 200 alarm sounds and 200 control sounds were presented. In two consec-

utive sequences, four-alarm sounds and four control sounds were presented in a random order so that the

EEG session never included more than eight similar sounds in a row. Participants had a self-paced break

after 50 sequences in each session.[Insert Figure 6 here]

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analyses

Habituated behavior analyses

In this study, we propose that, in the VR environment, workers’ habituated behaviors to repeatedly exposed

workplace hazards can be observed. We tested this notion through the following steps: The bivariate linear

regression models predicting response time from number of exposures to the hazards were tested using

the following equation:

byi = B0 +B1N+ r (Equation 2)

where byi is response time at number of exposures N; B0 is the intercept of the regression line atN = 0; and is

the slope of the regression that indicates the change in response time for each increase in number of

exposures N. If the test result of the coefficient B1 is significantly positive, the development of participants’

risk habituation can be determined. To avoid data manipulation, if a participant did not check the proximity

of the vehicle until the vehicle reached the minimum distance where it starts to back up, that exposure was

not included in the response time analysis. Additionally, the Wilcoxon Signed-Ranks test was performed to

examine the difference in checking rate between AG and NAG at a = 0.05.

Intervention effect analyses

In this study, we propose the VR accident simulation as a one-shot learning platform that curbs workers’

risk habituation, and our theory is that workers’ habituated behaviors decrease after experiencing a VR

accident. We tested this notion using (1) multiple regression analysis estimating response time at number

of exposures and VR accident experience in the first VR session, and (2) a paired-samples t-test evaluating

the intervention effect on the increase in checking rate for both groups (NAG and AG). Multiple regression

analyses were performed to evaluate whether and how a participant’s experience of VR-simulated acci-

dents in the first session affected the latency and frequency of participants’ vigilant orienting behaviors

in the second VR session. A participant’s experience of VR-simulated accidents in the first VR session

was coded as a categorical variable (dummy-coded as 0 for the no accident group [NAG] and 1 for the

accident group [AG]) in the following regression equation:

byi = B0 +B1N+B2A+B3NA+ r (Equation 3)

where byi is the dependent variable (response time) at number of exposures and accident experienceA; B0 is

the simple intercept of the regression line in the no accident group (A = 0, NAG); B1 is the change in the

simple intercept for each increase in number of exposures N; B2 is the difference in simple intercepts,

comparing the accident group (A = 1, AG) with NAG; and is the difference in simple slopes, comparing

AG with NAG.

In addition, paired-samples t-tests were performed to investigate the intervention effect of experiencing

the VR accident in the first VR session on checking rate in the second VR session (pre/post-treatment anal-

ysis). Results were presented as the mean checking rate. Using the Cohen’s effect sizes (d) test the inter-

vention effect was evaluated, with the following criteria: 0.2 = small effect, 0.5 = moderate effect, and

0.8 = large effect.76 During the first VR session ten participants never exhibited vigilant orienting behaviors.

Thus, the data collected from such participants were excluded from the analysis of response time; these

data were only used for the analysis of checking rate.

Event-related potential analyses

Python 3.8.2 and EEGLAB v2021.1 were used to do the data preprocessing and analysis.77,78 First, we used

Python SciPy toolbox and applied a forward-backward (non-causal) high-pass filter with Kaiser window,

transition band of 0.5–1 Hz, and attenuation of 80 dB to remove the drifts from the signal.79,80 Second,
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we used MNE-Python v0.24 package and applied a bandpass filter with 0.5 Hz and 40 Hz cutoff

frequencies.81 Third, we changed the reference of the signals by removing the average of all the 15 chan-

nels from the signals.82,83 Fourth, in order to remove the non-stationary artifacts (e.g., motor artifacts) from

the signal, we implanted the Artifact Subspace Reconstruction (ASR) method in Python (our code is avail-

able at: https://github.com/moeinrazavi/EEG-ASR-Python).84 Fifth, the EEG was segmented relative to the

onset of the presentation of each sound stimulus (alarm/control) onset to create stimulus-locked epochs of

1800 ms that included a 300 ms pre-stimulus period. From each epoch, we subtracted the average of signal

from �300 ms to �100 ms as the epoch baseline.85 Sixth, in order to remove the stationary and non-brain

signal artifacts (e.g., eye blink artifacts), we used Independent Component Analysis (ICA) toolbox in

EEGLAB with MATLAB R2021a.86,87 Finally, we visually removed the significantly noisy epochs from the

data that were not corrected by the mentioned preprocessing steps.

One of the most prominent auditory ERP components observed in oddball and equiprobable paradigms is

N1,88–90 which peaks about 100 ms after stimulus onset and lasts for approximately 100 ms.48,49 N1 is

distributed mostly over the fronto-central region of the scalp (i.e., at the Cz and Fz electrode sites89).

The auditory N1 peak is linked to early attention.34,52 Furthermore, an attenuation of the N1 response

was reported to repeated auditory stimulus presentations and would reflect neural habituation in sensory

cortex.39,50

Pan et al.41 reported a P3 habituation (i.e., a decrease of the P3 amplitude) from auditory single-stimulus

and oddball paradigms.55 Auditory P3 is generally distributed over three midline sites (Cz, Fz, and

Pz)41,55 and peaks within a 220-420-ms time window after stimulus onset.39,41

Given the specificity of sounds used in the present study (long, non-monofrequency), we referred to the

ERP components analyzed by the time-window rather than a specific label (see discussion). Indeed,

auditory stimuli used in EEG studies are usually short and monofrequency (e.g., 60 ms39; 50 ms50;

70 ms41). The alarm sound we used in the EEG sessions was extracted from the alarm signal used in real

construction sites to increase the ecological validity of our test. This sound lasted 600 ms and included

one beep with a rise and a fall. As a consequence, the identification of ERP components observed in our

study requires caution.

Two components, which could correspond to N1 and P3, were measured at the time window of 540-660 ms

and 804-980 ms post-stimulus onset, respectively. We also performed a post-hoc analysis at the time

window of 220–420 ms post-stimulus onset, based on the apparent signal difference observed between

the alarm and control sounds during this period. For these three time windows, we computed the mean

amplitude separately for alarm and control sounds at the Cz and Fz electrode sites, where the deflection

was maximal.

A 2 3 2 repeated-measures analyses of variance (ANOVA) was conducted on mean ERP amplitudes with

type of sound (alarm, control) and session (1, 2) as within-subject variables for each time window.

Subsequent t tests were performed when appropriate.
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