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Abstract

Thermal phenomena such as heat transfer enhancement, heat transfer deterioration,

and flow instability observed at supercritical pressures as a result of fluid property

variations have the potential to affect the safety of design and operation of

Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of

both heat transfer correlations and Computational Fluid Dynamics CFD physical

models. These phenomena observed at supercritical pressures need to be

thoroughly investigated.

An experimental study was carried out by Xi to investigate flow instability in

parallel channels at supercritical pressures under different mass flow rates,

pressures, and axial power shapes. Experimental data on flow instability at inlet of

the heated channels were obtained but no heat transfer data along the axial length

was obtained. This numerical study used 3D numerical tool STAR-CCM+ to

investigate heat transfer at supercritical pressures along the axial lengths of the

parallel channels with water ahead of experimental data. Homogeneous axial

power shape HAPS was adopted and the heating powers adopted in this work were

below the experimental threshold heating powers obtained for HAPS by Xi. The

results show that the Fluid Centre-line Temperature FCLT increased linearly below

and above the PCT region, but flattened at the PCT region for all the system
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parameters considered. The inlet temperature, heating power, pressure, gravity and

mass flow rate have effects on WT (wall temperature) values in the NHT (normal

heat transfer), EHT (enhanced heat transfer), DHT (deteriorated heat transfer) and

recovery from DHT regions. While variation of all other system parameters in the

EHT and PCT regions showed no significant difference in the WT and FCLT

values respectively, the WT and FCLT values respectively increased with pressure

in these regions. For most of the system parameters considered, the FCLT and WT

values obtained in the two channels were nearly the same. The numerical study was

not quantitatively compared with experimental data along the axial lengths of the

parallel channels, but it was observed that the numerical tool STAR-CCM+

adopted was able to capture the trends for NHT, EHT, DHT and recovery from

DHT regions. The heating powers used for the various simulations were below the

experimentally observed threshold heating powers, but heat transfer deterioration

HTD was observed, confirming the previous finding that HTD could occur before

the occurrence of unstable behavior at supercritical pressures. For purposes of

comparing the results of numerical simulations with experimental data, the heat

transfer data on temperature oscillations obtained at the outlet of the heated

channels and instability boundary results obtained at the inlet of the heated

channels were compared. The numerical results obtained quite well agree with the

experimental data. This work calls for provision of experimental data on heat

transfer in parallel channels at supercritical pressures for validation of similar

numerical studies.

Keywords: Mechanical engineering, Nuclear engineering

1. Introduction

Experimental and numerical research activities are ongoing worldwide to develop

Gen IV reactors to be built in the near future. With growing demand for energy, it

becomes necessary to improve Energy Sustainability, Economics, Safety and

reliability, and Proliferation resistance and physical protection of nuclear energy

systems. Gen IV reactors were selected by the Generation IV International Forum

(GIF) to achieve these purposes. Energy Sustainability focuses on sustainability of

energy generation, ensuring long-term availability of nuclear fuel, and by effective

nuclear fuel utilization and minimization of waste. Economics focuses on

competitiveness of nuclear energy in terms of production cost, financial risk and

life cycle cost compared to other energy sources. Safety and reliability focuses on

the reactor type having very low chances of experiencing core damage, and there

must not be the need for on-site emergency response. Proliferation resistance and

physical protection focuses on the reactor type being a very unattractive route for

diversion or theft of weapons-usable materials, and preventing terrorist acts by

providing increased physical protection (GIF, 2002; Chaudri et al., 2013).
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A theoretical nuclear power plant cooled and moderated with supercritical water

termed SCWR, one of the Gen IV reactors, is under study with the purpose to

achieve a high thermal efficiency, improve safety and economic competitiveness

compared to existing Light Water Reactors LWRs. In fact, SCWR is a logical

extension of existing Pressurized Water Reactor (PWR) and Boiling Water Reactor

(BWR) combined with the existing technology of super-critical water cooled fossil

fuel fired power plants. The most typical designs include Supercritical Light Water

Reactor (Super LWR) and Supercritical Water-cooled Fast Reactor (SWFR) in

Japan, High Performance Light Water Reactor (HPLWR) in Europe, CANDU-

SCWR in Canada, American SCWR in the USA and SCWR with mixed spectrum

core (SCWR-M) in China (IAEA-TECDOC-1746, 2014; Zhao et al., 2014).

Research to understand and predict fluid flow and heat transfer at supercritical

pressures is a major concern of nuclear engineers worldwide because of drastic

variations in fluid properties at the vicinity of pseudo-critical temperature (Shitsi

et al., 2017). These variations in fluid properties, coolant inlet temperature range

(250–280 °C) and coolant exit temperature range (500–625 °C) among other

factors of SCWR operated at supercritical pressures are likely to produce heat

transfer characteristics different from that obtained at sub-critical pressures.

Critical point of water is associated with critical temperature of 374.0 °C and

critical pressure of 22.1 MPa. The general purpose of heat transfer research at

supercritical pressures is to provide information and data; heat transfer correlations

and other physical models; and numerical tools for the design of heat transfer

equipment, licensing heat transfer facilities and safety assessment of operation of

heat transfer facilities.

Yang et al., 2007 carried out numerical investigation of heat transfer in upward

flows of supercritical water in circular tubes and tight fuel rod bundles using the

commercial CFD code STAR-CD 3.24. Adopting the three-dimensional (3-D) tool

STAR-CD 3.24, simulations were performed in flow-channels of the two main

lattices such as square lattice and triangular lattice fuel rod bundles. The turbulence

models including the two-layer model (Hassid and Poreh) and standard k–ε high Re
model performed better in predicting heat transfer at supercritical pressures than

the other models that were assessed. A strong non-uniformity of the circumferen-

tial distribution of temperature at the cladding surface in the square lattice bundle

with a small pitch-to-diameter ratio (P/D) was also observed. This phenomenon

was not observed in the triangular lattice bundle with a small P/D. Sharabi et al.,

2008 and Sharabi, 2008 reported cyclic occurrence of heat transfer deterioration

and restoration during flow oscillations in heated channels with supercritical fluids.

They mentioned that it was not certain whether spacer grids in reactor core

configurations could generate turbulence which would prevent the occurrence of

heat transfer deterioration HTD. HTD was also predicted to occur before the

occurrence of unstable behavior at supercritical pressures. Wang et al., 2014 and
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Wang et al., 2016 carried out an experimental investigation of heat transfer at

supercritical pressure in a 2 × 2 rod bundle with water. Influences of the

parameters including heat flux, system pressure and mass flux on heat transfer

were examined. The maximum and minimum wall temperatures were observed

respectively at the surface facing the corner gap between the heated rod and the

ceramic tube, and at the surface facing the center sub-channel. The difference

between maximum and minimum wall temperatures was found to be dependent on

the heat flux or mass flux. The bulk temperature distribution through the flow

cross-section was not uniform, and temperature variation became small as the bulk

temperature approached the pseudo-critical temperature. Some selected heat

transfer correlations developed for supercritical water were assessed against the

test data. Prediction of the Jackson correlation most closely predicted the test data.

Zhang et al., 2014 numerically investigated heat transfer of supercritical fluid,

Freon R12, in a 7-rod bundle. Some selected turbulent models were assessed for

predicting the heat transfer performance of Freon R12 through the rod bundle. The

turbulence models performed well in predicting the experimental data in the

normal heat transfer region. The ω type turbulence models performed better in

predicting heat transfer quantitatively in the deteriorated heat transfer region near

the critical region. Strong non-uniform circumferential temperature distribution

near the pseudo-critical temperature region was also observed.

Gu et al., 2015a and Gu et al., 2015b performed experimental studies to investigate

heat transfer to supercritical water in a 2 × 2 rod bundle with two channels. Water

flowed downward in the first channel and then flowed upward in the second

channel to cool the rod bundle. Results of their studies showed that heat transfer

behavior inside the rod bundle was similar to those observed in tube or annuli.

Jackson and Fewster, and Bishop et al. correlations gave the best predictions when

compared with the experimental data among some selected heat transfer

correlations that were tested and evaluated. Gu et al., 2016 performed similar

experimental studies on heat transfer to supercritical water in the 2 × 2 rod bundle

with two channels. The rod bundle was wrapped with wires to produce mixing

effect on heat transfer. Deterioration in heat transfer and significant non-uniformity

of circumferential wall-temperature distribution around the heater rods were

observed in the bundle. There was significant reduction in heat transfer

deterioration due to the mixing effects produced by the wire wraps. The

enhancement in heat transfer due to the presence of wire wraps became obvious

under a high mass flux condition. Huang et al., 2016 carried out a review of heat

transfer at supercritical pressures involving some selected fluids such as water,

carbon dioxide and hydrocarbon fuels flowing in smooth and enhanced tubes. They

found out that heat transfer in enhanced tubes was much better than that in smooth

tubes. Rahman et al., 2016 reviewed studies on supercritical water heat transfer

with the aim of providing references for SCWR researchers. It was found out that
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most of the CFD studies and experimental studies were performed with single tube

geometry due to the complexity of parallel channel geometry. Because of studies

performed with parallel channel geometry could provide detailed information to

the design of the SCWR core, they called for more studies in parallel channel

geometry at supercritical pressures in the future. Xi (Xi et al., 2014a) and Shitsi

et al., 2017 respectively carried out experimental and numerical studies and

investigated flow instability in parallel channels at supercritical pressures under

different mass flow rates, pressures, and axial power shapes. Experimental and

numerical data on flow instability at inlet of the heated channels were obtained but

no heat transfer data along the axial length was obtained. The objective of this

work is to address heat transfer in parallel channels with water at supercritical

pressure. The capability of the numerical tool STAR-CCM+ adopted to capture the

trends for Normal heat transfer (NHT), Improved or Enhanced heat transfer (IHT

or EHT), Deteriorated heat transfer (DHT) and recovery from DHT regions is

investigated along the flow channel. NHT is characterised with wall heat transfer

coefficients or wall temperatures similar to those observed at subcritical convective

heat transfer far from the critical or pseudo-critical region. In NHT regime, the

bulk fluid temperature or the fluid centre-line temperature FCLT is below the

pseudo-critical temperature. IHT or EHT is characterised with higher values of the

wall heat transfer coefficient or low values of wall temperature. The IHT or EHT

regime is observed near the critical or pseudo-critical point. DHT is characterised

with lower values of the wall heat transfer coefficient or higher values of wall

temperature. The DHT regime is observed when the wall temperature is greater

than the pseudo-critical temperature and the bulk temperature or the FCLT is less

than the pseudo-critical temperature. Effects of parameters such as heating power

(or heat flux), mass flow rate, inlet temperature, gravity and pressure on

supercritical heat transfer are discussed based on obtained wall temperatures WTs

and fluid centre-line temperatures FCLTs.

2. Theory

2.1. Reference experimental setup and adopted 3D geometry

The geometry adopted by Xi (Xi et al., 2014a) in investigating flow instability at

supercritical pressures is adopted in this study. Only the fluid region was

considered. Xi performed a flow instability experiment in parallel channels with

supercritical water in Nuclear Power Institute of China (NPIC). Influences of

parameters such as system pressures, inlet mass flow rates, inlet temperatures and

axial power shapes on flow instability were investigated. The STAR-CCM+ 3-D

mesh of the geometrical model and the Wall mesh adopted by Shitsi et al., 2017

were also adopted in this work. Schematic diagrams of experimental test facility,

the test section and INCONEL 625 pipe used for the parallel channels in the test

section are presented in the numerical study carried out by Shitsi et al., 2017. The
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test section of the geometrical model consists of two parallel channels with inner

diameter 6 mm, outer diameter 19 mm and heated length of 3105 mm. The total

mesh size with 1.0 mm base size and 7 prism layers of the two tee bends, four

diffusers and 2 heated parallel channels is approximately 2997000. Different mesh

sizes have been examined before deciding on the optimum mesh size of 2997000

cells to save computational time. Polyhedral Mesher, Prism Layer Mesher and

Surface Remesher were selected for the meshing. Half of the full geometry

(symmetrical boundary condition) was used in order to save computational time.

Non-Slip wall boundary condition was adopted at the wall. Adiabatic boundary

condition was adopted for the non-heated walls and heat flux boundary condition

was adopted for the heated walls of the parallel channels. Mass flow rate inlet and

pressure outlet boundary conditions were adopted for the inlet and outlet

respectively. The heating powers applied in the experiment are net heating powers

applied to the fluid region. The heat loss had been taken care off in the experiment.

The numerical simulation considered only the fluid region and the net heating

powers were applied to the fluid region too for the numerical simulations. The

focus of the study is not on effects of heating structures where the thickness of the

pipe has to be taken into consideration. Detailed information on the experimental

facility and the flow instability experiment can be found in Xi et al., 2014a.

To ensure that the inlet and outlet pressure loss coefficients employed in the

experiment and numerical simulation are the same, the pressure jump model was

used in the numerical simulation to adjust the inlet and outlet pressure loss

coefficients. The inlet and outlet pressure loss coefficient used in the experiment

are:

Kin1 = 4.1, Kin2 = 4.3; and Kout1 = 3.9, Kout2 = 3.8

2.2. Physical models

Mass conservation equation (Equation (1)):

∂�
∂t

þ ∇:ð� uÞ ¼ 0 (1)

U- Momentum equation (Equation (2)):

∂ð�uÞ
∂t

þ divð�u uÞ ¼ divðugraduÞ � ∂P
∂x

þ �∂ð�u02Þ
∂x

� ∂ð�u′v′Þ
∂y

� ∂ð�u′w′Þ
∂z

" #

þ Su (2)
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V- Momentum equation (Equation (3)):

∂ð�vÞ
∂t

þ divð�v uÞ ¼ divðugradvÞ � ∂P
∂y

þ �∂ð�u′v′Þ
∂x

� ∂ð�v02Þ
∂y

� ∂ð�v′w′Þ
∂z

" #

þ Sv (3)

W- Momentum equation (Equation (4)):

∂ð�wÞ
∂t

þ divð�wuÞ ¼ divðugradwÞ � ∂P
∂z

þ �∂ð�u′w′Þ
∂x

� ∂ð�w′v′Þ
∂y

� ∂ð�w02Þ
∂z

" #
þ Sw (4)

Energy conservation equation (Equation (5)):

∂ð�TÞ
∂t

þ divð� u TÞ ¼ div
λ

Cp
gradT

� �

þ �∂ð�u′T ′Þ
∂x

� ∂ð�v′T ′Þ
∂y

� ∂ð�w0T 0 Þ
∂z

" #
þ ST (5)

where the symbols have their usual meanings (Xi et al., 2014b; Versteeg and

Malalasekera, 1995).

Three different turbulence models were tested for their capability of capturing the

trends for NHT, EHT, DHT regions; and also for their capability of capturing the

trend for recovery from DHT region in parallel channels with water at supercritical

pressures. These turbulence models include Standard Low Reynolds Number k-ε
model (LIEN), Standard k–ε model and k-ω SST model (Cd-Adapco, 2015). The

all y+ wall treatment is adopted for LIEN, and high- y+ wall treatment is adopted

for Standard k–ε model and k-ω SST model.

The turbulence kinetic energy and dissipation rate equations (Equations (6) and

(7)) to be solved in Standard Low Reynolds Number k-ε model (LIEN) are

respectively described as:

∂ �kð Þ
∂t

þ ∂ �kuj
� �
∂xj

¼ ∂
∂xj

μþ μt
δk

� �
∂k
∂xj

� �
þ Gk þ Gb � �εþ Sk (6)

∂ �εð Þ
∂t

þ ∂ �εuj
� �
∂xj

¼ ∂
∂xj

μþ μt
δε

� �
∂ε
∂xj

� �
þ C1εf 1

ε

k
Gk þ Gbð Þ � C2εf 2�

ε2

k
þ Sε (7)

The turbulence kinetic energy and dissipation rate equations (Equations (8) and (9)

to be solved in standard k-ε model are respectively described as:

∂ �kð Þ
∂t

þ ∂ �kuj
� �
∂xj

¼ ∂
∂xj

μþ μt
δk

� �
∂k
∂xj

� �
þ Gk þ Gb � �ε� YM þ Sk (8)
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∂ �εð Þ
∂t

þ ∂ �εuj
� �
∂xj

¼ ∂
∂xj

μþ μt
δε

� �
∂ε
∂xj

� �
þ C1ε

ε

k
Gk þ C3εGbð Þ � C2ε�

ε2

k
þ Sε (9)

The turbulence kinetic energy and specific dissipation rate equations (Equations

(10) and (11)) to be solved in k-ω SST model are respectively described as:

∂ �kð Þ
∂t

þ ∂ �kuj
� �
∂xj

¼ ∂
∂xj

μþ μt
δk

� �
∂k
∂xj

� �
þ Gk þ Gb � Yk þ Sk (10)

∂
�ω

∂t
þ ∂

�ωuj
∂xj

¼ ∂
∂xj

μþ μt
δω

∂ω
∂xj

� þ Gω þ Dω � Yω þ Sω (11)

Equations (12) (13) (14) are definitions of some constants in Equations (6)–(11).

σk ¼ 1; σε ¼ 1:2;C1ε ¼ 1:44;C2 ¼ 1:9;C3ε ¼ tanjw== g

w⊥ g
j (12)

C1 ¼ max 0:43;
η

ηþ 5

� �
; η ¼ S

k
ε
; S ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2SijSij
p

(13)

f 1 ¼ 1:0; f 2 ¼ 1� 0:3exp �Ret2
� �

;Ret ¼ �k2

με
(14)

where the terms: Sk, Sε, and Sω are user-specified source terms; C1ε, C2ε, C3ε, C1

and C2 are constants (turbulence model coefficients); Gk (turbulent production), Gb

(buoyancy production), Gω (production of ω), YM (Compressibility Modification),

μt (turbulent viscosity), Dω (Cross-Derivation), Yω (dissipation of ω due to

turbulence) and f1, f2 (damping functions) are obtained from additional equations

associated with respective models (Cd-Adapco, 2015; Xi et al., 2014b). The other

undefined terms have their usual meanings.

As in many other available CFD codes, STAR-CCM+ makes use of finite volume

discretization technique to discretize the equations. The method of discretization is

beyond the scope of the work.

3. Results

3.1. Turbulence models consideration

There are several studies that obtained the finding, turbulence model adopted in 3D

numerical studies, has significant effect on the performance of a numerical tool

used to predict heat transfer in fluid flow and heat transfer systems (Cheng et al.,

2007; Yang et al., 2007; Wen and Gu, 2010; Angelucci et al., 2013; Liu et al.,

2013; Zhang et al., 2014). Three turbulence models, namely, k-ω SST, LIEN and

Standard k-ε were tested for their capability of capturing the trends for NHT, EHT,

DHT regions; and also for their capability of capturing the trend for recovery from

DHT region in parallel channels with water at supercritical pressures. Implicit

formulation and time step of 0.01 s were adopted. Segregated flow approach was
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adopted to solve the governing equations. The simulations carried in this work are

3-D unsteady state simulations. NIST Table (NIST, 2002) was used to calculate

physical properties of water.

Fig. 1 and Fig. 2 respectively show performance of the three turbulence models

TMs in capturing heat transfer at system pressures of 23 MPa (with pseudo-critical

temperature PCT of 377.5 °C) and 25 MPa (with PCT of 384.9 °C), 125 kg/h mass

flow rate, 200 °C inlet temperature and 72 kW total heating power for the two

channels. Uniform axial power shape, where constant heat flux or heating power is

applied to the heated sections of the parallel channels, was adopted for all the

numerical simulations. Influence of gravity on heat transfer HT was taken into

consideration in all the simulations, unless it was stated otherwise. At 23 MPa, the

three TMs produced nearly the same trend and values for fluid centre-line

temperature FCLT. The three TMs produced similar trends for NHT up to 390 °C

wall temperature WT, produced nearly the same trend and values in the EHT

region near the 390 °C WT located at 1.1 m length of the heated axial length of

3.105 m. LIEN and Standard k-ε TMs developed sharp rise in the WT (DHT

region) up to 600 °C for LIEN and 690 °C for Standard k-ε. DHT region was also

observed for k-ω SST model up to WT of 600 °C. The enhancement in HT was

observed again after DHT region for all the three TMs (recovery from DHT

region), but k-ω SST produced large WT values than LIEN and Standard k-ε TMs

towards the end of the heated length. The WT values towards the end of the axial

[(Fig._1)TD$FIG]

Fig. 1. Performance of turbulence models at 23 MPa.
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length were nearly the same for LIEN and Standard k-ε TMs. The FCLT and WT

values produced by the TMs in each of the two channels were nearly the same for

both system pressures of 23 MPa and 25 MPa. The trends for WT and FCLT values

observed for NHT, EHT, DHT and recovery from DHT regions for the three TMs

at 25 MPa were similar to those obtained at 23 MPa. But only LIEN produced

sharp rise of WT values in the DHT region at 25 MPa. The enhancement in HT

after DHT region was remarkable for both Standard k-ε and LIEN TMs compared

to that of k-ω SST model at 23 MPa (recovery from DHT region). The

enhancement in HT after DHT region was remarkable for only LIEN compared to

that of Standard k-ε and k-ω SST TMs at 25 MPa (recovery from DHT region).

There were no significant differences in the WT values produced in the NHT and

EHT regions by the three TMs at 23 MPa and 25 MPa. The significant differences

in the WT values produced by the TMs occurred in the DHT region. In fact, the

TMs produced nearly the same values of FCLT at both 23 MPa and 25 MPa. To

my best of knowledge, there is no experimental data available on HT in parallel

channels at supercritical pressures for comparison of the numerical simulations. k-

ω SST TM was used to obtain results for all the numerical simulations because it

was widely reported in literature to perform better than other TMs in most cases

(Wen and Gu, 2010; Angelucci et al., 2013, Liu et al., 2013; Zhang et al., 2014).

[(Fig._2)TD$FIG]

Fig. 2. Performance of turbulence models at 25 MPa.
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3.2. Influence of pressure on heat transfer

Fig. 3 and Fig. 4 respectively show the effects of system pressures 23 MPa and 25

MPa on HT at both 125 kg/h and 145 kg/h mass flow rates, 200 °C inlet

temperature and total heating power of 72 kW for the two heated channels. For

both 125 kg/h and 145 kg/h, the trend of values for the FCLT behaved nearly the

same for the two system pressures, but the values for 25 MPa were larger than that

of 23 MPa at the PCT region and after the PCT region. The trend for the FCLT

increased linearly but flattened at the PCT region for both mass flow rates. The

finding for FCLT was similar to experimental finding obtained by Wang et al.,

2014; Wang et al., 2016; Gu et al., 2015a; Gu et al., 2015b and Gu et al., 2016 for

bulk fluid temperatures that were analyzed for different system pressures in rod

bundle geometry. NHT, EHT, DHT and recovery from the DHT regions were

observed for the WT values at both system pressures. Pressure had no influence on

WT values in the NHT region at both 125 kg/h and 145 kg/h. The WT values

increased with pressure for both mass flow rates in the EHT region. The WT values

in the DHT region at 23 MPa were larger than that at 25 MPa, but the variations in

the WT values in the recovery from DHT region were not significant for both

system pressures at 125 kg/h and 145 kg/h. The FCLT and WT values were nearly

the same in each of the heated channels for both system pressures operated at 125

kg/h and 145 kg/h except the WT values in channel 1 were larger than that of

channel 2 in the DHT and recovery from DHT regions at 145 kg/h.

[(Fig._3)TD$FIG]

Fig. 3. Influence of system pressure on HT at 125 kg/h.
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3.3. Influence of heating power/heat flux on heat transfer

Fig. 5 and Fig. 6 show respectively the results for influences of heating power on

HT at 200 °C inlet temperature and 125 kg/h mass flow rate for both 23 MPa and

25 MPa. The total heating powers compared include 72 kW (36 kW/1230.1831

kW/m2, for each channel); 68 kW (34 kW/1161.8396 kW/m2, for each channel);

[(Fig._4)TD$FIG]

Fig. 4. Influence of system pressure on HT at 145 kg/h.

[(Fig._5)TD$FIG]

Fig. 5. Influence of heat flux on HT at 23 MPa.
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64 kW (32 kW/1093.4961 kW/m2, for each channel); and 60 kW (30 kW/

1025.1526 kW/m2, for each channel). At 23 MPa, NHT, EHT, DHT and recovery

from DHT regions were observed for all the heating powers compared, the largest

WT values were produced by 72 kW, and the lowest values of the WT were

produced by 60 kW. At 25 MPa, the trends of NHT, EHT, DHT and recovery from

DHT regions for WT values were similar to that obtained for 23 MPa. At both

system pressures, the WT values in the EHT region were nearly the same for all the

heating powers compared. The FCLT values increased with the heating power

except at the PCT region where the values were nearly equal. The trend for FCLT

values increased linearly up to the PCT region, flattened at the PCT region (i.e., the

values were nearly the same and equal to PCT), and increased thereafter along the

axial length. There were no significant differences between the FCLT and WT

values with increase of heating power in each of the heated channels at both system

pressures for the heating powers compared.

3.4. Influence of mass flow rate on heat transfer

Fig. 7 and Fig. 8 respectively show the results for the influences of system mass

flow rates 125 kg/h and 145 kg/h on HT at 72 kW heating power and 200 °C inlet

temperature for both system pressures of 23 MPa and 25 MPa. At both 23 MPa and

25 MPa, the trends of WT values obtained for NHT, DHT and recovery from DHT

regions for the two system mass flow rates were similar, but the WT values for 125

kg/h were larger than that of 145 kg/h. The WT values in the EHT regions were

nearly the same for both system mass flow rates at 23 MPa and 25 MPa. The FCLT

values increased linearly below and above the PCT region, but flattened at the PCT

[(Fig._6)TD$FIG]

Fig. 6. Influence of heat flux on HT at 25 MPa.
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region. The FCLT values at 125 kg/h were larger than that at 145 kg/h but the

FCLT values were nearly the same at the PCT region for both mass flow rates. The

FCLT values in channels 1 and 2 were nearly the same with increase of mass flow

rate. For both system mass flow rates of 125 kg/h and 145 kg/h at 23 MPa and 25

MPa, the WT values in each of the two channels were nearly the same except the

[(Fig._7)TD$FIG]

Fig. 7. Influence of Mass flow rate on HT at 23 MPa.

[(Fig._8)TD$FIG]

Fig. 8. Influence of Mass flow rate on HT at 25 MPa.
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WT values in channel 1 were larger than that in channel 2 for 145 kg/h in the DHT

and recovery from DHT regions.

3.5. Influence of inlet temperature on heat transfer

Fig. 9 and Fig. 10 respectively show influences of inlet temperatures (200 °C, 250

°C and 300 °C) on HT at 72 kW heating power and 125 kg/h for system pressures

of 23 MPa and 25 MPa. At 23 MPa, the FCLT values increased linearly below and

above the PCT region, but flattened at the PCT region. The FCLT values were

nearly the same for both channels 1 and 2. The largest FCLT values were obtained

for 300 °C and lowest FCLT values were obtained for 200 °C but the FCLT values

were nearly the same at the PCT region for all the inlet temperatures compared.

The trends of WT values for NHT, EHT, DHT and recovery from DHT regions

were similar for the inlet temperatures compared, but the largest WT values were

produced by 300 °C and lowest WT values were produced by 200 °C. The WT

values were nearly the same in the EHT regions just before and after the DHT

region for all the inlet temperatures compared at 23 MPa. The differences in WT

values for channels 1 and 2 were not significant but became obvious with increase

in the inlet temperature in the DHT and recovery from DHT regions. At 25 MPa,

the trends for FCLT and WT values were similar to that obtained at 23 MPa, but

the differences in WT values for channels 1 and 2 became obvious only for 250 °C

[(Fig._9)TD$FIG]

Fig. 9. Influence of inlet temperature on HT at 23 MPa.
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inlet temperature in the DHT and recovery from DHT regions, and also the WT

values increased with inlet temperature after the DHT region at 25 MPa.

3.6. Influence of gravity on heat transfer

Fig. 11 and Fig. 12 show influences of gravity on HT at 125 kg/h, 72 kW heating

power and 200 °C inlet temperature for system pressures 23 MPa and 25 MPa

respectively. At both 23 MPa and 25 MPa, nearly the same trends and WT values

for NHT, EHT, DHT and recovery from DHT regions were obtained for the two

systems with or without gravity influence except the WT values for system without

gravity influence were larger than that of system with gravity influence in the DHT

region at 23 MPa. The trends and values for the FCLT obtained for the two systems

were nearly equal. The FCLT values increased linearly below and above the PCT

region, but flattened at the PCT region. The FCLT and WT values for each of the

two channels were nearly the same for the system operated with or without gravity

influence.

3.7. Comparison between numerical simulation and experiment

For purposes of comparing the results of numerical simulations with experimental

data, heat transfer data on temperature oscillations obtained at the outlet of the

heated channels and instability boundary results obtained at the inlet of the heated

[(Fig._10)TD$FIG]

Fig. 10. Influence of inlet temperature on HT at 25 MPa.
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[(Fig._11)TD$FIG]

Fig. 11. Influence of gravity on HT at 23 MPa.

[(Fig._12)TD$FIG]

Fig. 12. Influence of gravity on HT at 25 MPa.
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channels were compared. Fig. 13 compares results of the numerical and

experimental studies of temperature oscillations at the outlet of heated parallel

channels. The numerical simulation was performed at operating conditions

including 190 °C coolant inlet temperature, 125 kg/h mass flow rate and 23

MPa system pressure (Xi et al., 2014a). The maximum temperature obtained at

each of channel 1 and channel 2 heated outlet sections is approximately 380 °C for

the numerical simulation compared to experimental results of 380 °C and 384 °C

respectively (Fig. 13). The amplitude and period of temperature oscillations at the

outlet of heated channels were not significantly developed for both the numerical

simulation and the experiment. This is because, flow instability occurred when the

outlet temperature of the heated channels was closed to pseudo-critical point. The

pseudo-critical point was associated with larger specific heat which turned to limit

the outlet temperature oscillation. Fig. 14 compares numerical results and

experimental data for operating conditions including total mass flow rate of 125

kg/h, system pressure of 23 MPa and inlet temperatures of 180–260 °C. The trends

of the numerical results and experimental data agree quite well and the numerical

results are within the acceptable limit of ±10% compared to the experimental data

(Fig. 15) (Xi et al., 2014a). These results show that the numerical tool adopted

quite well predicted the experimental results obtained at the inlet and outlet of the

heated channels.

4. Conclusions

Xi (Xi et al., 2014a) carried out experimental study and investigated flow

instability in parallel channels at supercritical pressures under different mass flow

rates, pressures, and axial power shapes. Experimental data on flow instability at

inlet of the heated channels were obtained but no heat transfer data along the axial

[(Fig._13)TD$FIG]

Fig. 13. Outlet temperature oscillation of each channel, Numerical and experiment. From Shitsi et al.,

2017, with permission from Elsevier.
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length was obtained. This numerical study used 3D numerical tool STAR-CCM+

to investigate heat transfer at supercritical pressures along the axial lengths of the

parallel channels ahead of experimental data. Homogeneous axial power shape

HAPS was adopted and the heating powers adopted in this work were below the

experimental threshold heating powers obtained for HAPS by Xi. Inlet

temperatures ranging from 180 °C to 300 °C, total heating powers ranging from

[(Fig._14)TD$FIG]

Fig. 14. Instability boundary, Numerical and experiment (P = 23 MPa, Mt = 125 kg/h). From Shitsi

et al., 2017, with permission from Elsevier.

[(Fig._15)TD$FIG]

Fig. 15. Comparison between Numerical results and Experimental data. From Shitsi et al., 2017, with

permission from Elsevier.
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60 kW to 72 kW, system pressures of 23 MPa and 25 MPa, and mass flow rates of

125 kg/h and 145 kg/h were the operating conditions for the numerical simulations.

Sensitivity analyses were initially performed on some selected three turbulence

models TMs including LIEN, Standard k-ε and k-ω SST. The TMs tested

performed better in capturing the trends for NHT, EHT and DHT regions; and also

performed well in capturing the trend for recovery from DHT region. There were

no significant differences in the WT values produced in the NHT and EHT regions

by the three TMs at 23 MPa and 25 MPa. The significant differences in the WT

values produced by the TMs occurred in the DHT region. In fact, the TMs

produced nearly the same values of FCLT at both 23 MPa and 25 MPa. Since there

is no available experimental data for comparing the numerical results, k-ω SST TM

was selected for all the numerical simulations because it was widely reported in

literature to perform better than the other TMs in most cases. The following

findings were obtained from the study. The system mass flow rate, heating power,

and inlet temperature have effects on FCLT below and above the PCT region, but

have no effects on FCLT at the PCT region. The FCLT increased with pressure in

the PCT region. The FCLT increased linearly below and above the PCT region, but

flattened at the PCT region for all the operating conditions. The FCLT values in

both channels 1 and 2 were nearly the same for all the operating conditions. The

investigated parameters (inlet temperature, heating power, mass flow rate) have

effects on WT values in the NHT, DHT and recovery from DHT regions. The WT

values increased with pressure in the EHT region. The variations in the WT values

in each of the heated channels 1 and 2 were not significant for change in the

various operating parameters except the WT values in channel 1 were larger than

that in channel 2 in the DHT and recovery from DHT regions with the increase of

pressure at high mass flow rate. The numerical study was not quantitatively

compared with experimental data along the axial lengths of the parallel channels,

but it was observed that the numerical tool STAR-CCM+ adopted was able to

capture the trends for NHT, EHT, DHT and recovery from DHT regions. The

heating powers used for the various simulations were below the experimentally

observed threshold heating powers for flow instability, but HTD was observed,

confirming the finding that HTD could occur before the occurrence of unstable

behavior at supercritical pressures (Sharabi, 2008). For purposes of comparing the

results of numerical simulations with experimental data, the heat transfer data on

temperature oscillations obtained at the outlet of the heated channels and instability

boundary results obtained at the inlet of the heated channels were compared. The

numerical results obtained quite well agree with the experimental data. This work

calls for provision of experimental data on heat transfer in parallel channels at

supercritical pressures for validation of similar numerical studies.
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