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Arterial hypertension, dyslipidemia, alterations in glucosemetabolism and fatty liver, either

alone or in association, are frequently observed in obese children and may seriously

jeopardize their health. For obesity to develop, an excessive intake of energy-bearing

macronutrients is required; however, ample evidence suggests that fructose may

promote the development of obesity and/or metabolic alterations, independently of

its energy intake. Fructose consumption is particularly high among children, because

they do not have the perception, and more importantly, neither do their parents, that

high fructose intake is potentially dangerous. In fact, while this sugar is erroneously

viewed favorably as a natural nutrient, its excessive intake can actually cause adverse

cardio-metabolic alterations. Fructose induces the release of pro-inflammatory cytokines,

and reduces the production of anti-atherosclerotic cytokines, such as adiponectin.

Furthermore, by interacting with hunger and satiety control systems, particularly by

inducing leptin resistance, it leads to increased caloric intake. Fructose, directly or

through its metabolites, promotes the development of obesity, arterial hypertension,

dyslipidemia, glucose intolerance and fatty liver. This review aims to highlight the

mechanisms by which the early and excessive consumption of fructosemay contribute to

the development of a variety of cardiometabolic risk factors in children, thus representing

a potential danger to their health. It will also describe the main clinical trials performed

in children and adolescents that have evaluated the clinical effects of excessive intake

of fructose-containing drinks and food, with particular attention to the effects on blood

pressure. Finally, we will discuss the effectiveness of measures that can be taken to

reduce the intake of this sugar.
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INTRODUCTION

The younger generations are increasingly subjected to early and
significant exposure to sugar, and fructose in particular (1).
Fructose is associated with the development of obesity (2), high
blood pressure (3) and of the metabolic syndrome (4), factors
that increase the risk of developing cardiovascular disease in
adulthood, the leading cause of death in the world (5). Although
in children there is no precise definition of metabolic syndrome
due to the lack of agreement of scientific societies on the cut
off values of individual parameters, it is accepted that, even
in childhood and adolescence, obesity is frequently associated
with excess visceral adiposity, glucose metabolism disorders,
increased blood pressure (BP) and triglycerides and decreased
HDL cholesterol. It is believed that hyperinsulinism is the
pathogenic mechanism underlying these alterations. Fatty liver is
also frequently observed (6, 7). Generally, for developing excess
weight it is necessary that the intake of calories exceeds the energy
expenditure. Fructose, however, could have an additional role
in the development of obesity and cardiometabolic alterations
independent from the energy provided by the nutrient itself. In
fact, fructose may induce metabolic alterations by stimulating
the production of some substances such as uric acid, lactate,
methylglyoxal, ceramide. In addition, compared to other sugars,
it induces a much greater production of triglycerides and free
fatty acids (FFA) leading to energy imbalance (8). Fructose
also promotes a state of chronic inflammation through the
release of pro-inflammatory cytokines, while it blocks others
with a protective effect, such as adiponectin. Moreover, its
interaction with the control systems of hunger and satiety,
through the establishment of leptin resistance, induces an
increase in caloric intake. Finally, fructose has been found to
stimulate the secretion of vasopressin (8). The knowledge of
these specific effects of fructose should direct physicians toward
using preventive strategies aimed at limiting its consumption,
especially in childhood. Newborn children already show an
innate predilection for the sweet taste and fructose is the
natural substance that arouses this sensation the most (9). In
the light of new findings on the metabolic role of fructose,
the current high consumption of free sugars, especially by
children and adolescents, should be of great concern. This
review will specifically focus on the changes in clinical variables
associated with fructose consumption and the role of fructose
in the early development of cardiometabolic risk factors, with
the aim of increasing the awareness of these changes in the
medical community, particularly pediatricians, and all health
care providers dealing with children.

SOURCES OF FRUCTOSE

The term “simple sugars” refers to the monosaccharides glucose,
fructose and galactose and the disaccharides sucrose, lactose
and maltose. From a nutritional point of view, the definition
suggested by the World Health Organization (WHO) of “free
sugars” excludes intrinsic sugars present in foods, such as
lactose in milk and fructose in fruits, whereas it includes sugars
added during the industrial or home preparation of foods and

beverages. Free sugars also include those contained in honey,
fruit juices and nectars (10). The free sugars that are present in
food are glucose, fructose and sucrose. The sucrose molecule is
composed of glucose and fructose and is broken down in the
intestinal lumen by the disaccharidase enzyme. For this reason,
the free sugars absorbed by the intestine are glucose and fructose.
Fructose can be taken as a nutrient or it can be generated
in the body through the polyol pathway which allows the
transformation of glucose into fructose, through the intermediate
compound sorbitol, by the enzymes aldose reductase and sorbitol
dideoxygenase (11). This metabolic pathway, which is activated
under conditions of physical or chemical stress, is especially
important in some mammals that live in conditions of extreme
temperature, lack of fluids and/or hypoxia, such as, for example,
animals that hibernate (12, 13). In humans, the polyol pathway
is activated in para-physiological or pathological states, such as
decompensated diabetes, hyperuricemia, hyperosmolarity due to
dehydration or excessive salt intake, oxidative stress, hypoxia or
ischemia (13). However, in humans and especially in children,
fructose excess is virtually always due to excessive intake (14).
Fructose is contained in fruit, but in minimal percentages
compared to the weight of the fruit itself. On the other hand,
fructose is present in a high concentration in honey, it represents
half of the content of sucrose (the normal table sugar) and reaches
55–60% in high fructose corn syrup (HFCS) abundantly used by
the food industry, especially to sweeten soft drinks. Recently, the
use of pure fructose, wrongly perceived by consumers as a natural
product, has been gaining ground (Table 1). Most commercially
available fructose is obtained by glucose isomerization of corn
starch, with the same chemical process used to produce HFCS.
Soft drinks, energy drinks, fruit juices and nectars, and generally
free sugars in liquid form represent the main source of fructose
consumed by children and adolescents. Even children in the first
year of life can be exposed to an excessive intake of fructose,
especially through the consumption of homogenized fruit. In
many of these products, concentrated fruit juices made from
high-fructose syrups are added. In this way it is possible to add
the misleading claim “contains only fruit sugars” on the label.

CONSUMPTION OF FREE SUGARS AND
FRUCTOSE

At the end of the 1700s, per capita sugar consumption in the
English population was about 2 kg per year, and throughout
the 1800s it did not increase much. Subsequently there was a
dramatic increase in the use of this nutrient, reaching about
70 kg/year in 2000 in the US. Parallel to this phenomenon the
prevalence of obesity and type 2 diabetes increased dramatically
(14). As already mentioned, the greatest contribution to the
excess of free sugars in the diet is accounted for by beverages
that are sweetened with high-fructose syrups (15). It has been
estimated that in the year 2000 the consumption of sugar-
sweetened beverages (SSBs) in the US was 500ml per person
per day, about 190 liters per year, with a 5-fold increase from
the 1950s to 2000 (16). In children, the introduction of free
sugars into the diet starts very early, reaching high levels already
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TABLE 1 | Dietary sources and endogenous production of fructose.

Dietary sources (fructose content)

Fruit (depending on ripening degree): Oranges (3.2%), bananas (5.2%),

strawberries (2.3%), tangerines (2.8%), apples (8%), pears (6%), lemon

(0.9%) Vegetables: Carrots (2.3%), lettuce (0.3%), eggplant (1.4%), bell

peppers (1.5%), peas (0.5%), tomatoes (1.7%), zucchini (1%),

Honey (40%)

Sucrose (50%)

High Fructose Corn Syrup (55%, industrial production of

sugar-sweetened beverages, cakes, baked goods, pastries, catch-up

sauces)

Concentrated juice, e.g., some homogenized fruits (over 60%)

Fructose as sweetener (100%)

Fruit juice, palm sugar, maple syrup (variable amounts)

Main conditions for endogenous fructose production from

glucose through activation of the polyol pathway [ref. (11–13)]

Hyperglycaemia (decompensated diabetes mellitus)

Hyperuricemia

Heat stress

Oxidative stress

Hyperosmolarity (dehydration or dietary high salt content)

Hypoxia

Ischemia

in the first 3 years of life (17). However, pre-adolescence and
adolescence are characterized by the highest consumption of free
sugars (18, 19). Even in this age group, the greatest contribution
to the intake of free sugars is given by the consumption of sugar-
sweetened beverages. In fact, for many children, the limit of 10%
of daily calories from simple sugars recommended by the WHO
is exceeded solely by the consumption of SSBs (20). Available data
are not sufficient to evaluate the exact amount of fructose, by
disaggregating it from the total amount of sugars consumed, but
it is reasonable to think that fructose constitutes at least 50% of
the total intake of free sugars. Some information is provided by
two American surveys carried out at a certain distance of time,
the first referring to the years 1977–1978 (21) and the second
considering the years 1999–2004 (14). When comparing these
two surveys it can be seen that, in the time lapse between the
two surveys, the consumption of fructose naturally present in
food (mainly in fruit) has undergone a sharp decrease, while
the consumption of added fructose tripled for all age groups.
In childhood and adolescence, fructose consumption is much
higher than in adulthood. In fact, the average consumption of
added fructose in male teenagers is 68 g per day, about twice that
of adults (14).

FRUCTOSE METABOLISM

The glucose transporter 5 (GLUT5) allows the uptake of dietary
fructose through the brush border of the enterocyte, while the
glucose transporter 2 (GLUT2) promotes its release from the
basal pole of the cell into the systemic circulation, toward the
portal vein (22, 23). The liver is the key organ for fructose

metabolism. In fact, about 80% of dietary fructose is readily
absorbed by the liver and only a small portion reaches other
tissues (22). In addition to hepatocytes, only enterocytes, renal
tubule cells and some cells of the central nervous system possess
the enzymes necessary for the metabolization of fructose and
the utilization of its metabolites (24). In contrast to glycemia,
which increases strongly after meals intake and needs a long
time to return to pre-prandial levels, fructosemia increases only
slightly even after meals that are rich in free sugars, because
the shift of fructose from the portal vein to the liver is very
rapid. In addition, in the hepatocyte the metabolic pathways
of fructose are uncontrolled, whereas glucose has a metabolism
that is carefully regulated by mechanisms that depend on the
energy level of the cell and the need to maintain glycemia
in a normal range (25). The uncontrolled entry of fructose
into the hepatocyte is a crucial point for the establishment of
metabolic alterations that accompany an excessive and time-
concentrated intake of this nutrient (Figure 1). In the hepatocyte,
fructose is processed by the enzyme phosphofructokinase with
adenosine trisphosphate (ATP) consumption. Excessive fructose
intake therefore leads to a decrease in the energy level of
the cell. Moreover, the degradation of ATP produces inosine
monophosphate from which uric acid is formed. Uric acid on
the one hand stimulates phosphofructokinase, and on the other
hand flows into the circulatory system. Once phosphorylated,
fructose is broken by the enzyme aldolase into two trioses:
glyceraldehyde-3-phosphate and dihydroxyacetone phosphate.
From the first compound pyruvate is generated, which is partially
transformed into lactate that leaves the hepatocyte, passes into
the systemic circulation and makes the uptake of glucose by
muscle cells more difficult, thus increasing insulin resistance
(26). Pyruvate also gives rise to the formation of acetylCoA
that, in the presence of high levels of fructose and uric acid,
tends to be involved in fatty acid production, rather than
being used in mitochondria to produce energy. In case of an
excessive intake of fructose there is an increased production of
FFA that, when secreted as FFA, contribute to induce insulin
resistance, while, when combined with glycerol, are excreted by
the liver as triglycerides. After a high-fructose meal, therefore,
both uricemia and triglyceridemia increase (27, 28). In addition,
some of the fatty acids produced may remain in the hepatocyte
and contribute to the development of fatty liver (29). A side
product of the synthesis of fatty acids, in particular of palmitic
acid, is ceramide, which also favors the establishment of insulin
resistance (30, 31). Another important alteration induced by a
high level of fructose is the production of methylglyoxal derived
from dihydroxyacetone phosphate (32–34). Methylglyoxal is
partly detoxified through the production of lactate, but it also
has the effect of further reducing the passage of acetylCoA
into the mitochondria. Thus, energy production tends to favor
extra-mitochondrial anaerobic mechanisms over mitochondrial
aerobic ones. Methylglyoxal also has an inhibitory action on the
enzyme adenosine monophosphate kinase (AMPK). Inhibition
of AMPK by methylglyoxal promotes a reduction in energy-
producing catabolic pathways, such as glycolysis and fatty
acid beta-oxidation, while activating energy-consuming anabolic
pathways such as gluconeogenesis, cholesterol and fatty acid

Frontiers in Medicine | www.frontiersin.org 3 April 2022 | Volume 9 | Article 792949

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Giussani et al. Fructose Intake and Cardiovascular Risk

FIGURE 1 | Fructose metabolism. AMP, adenosine monophosphate; ADP, adenosine diphosphate; ATP, adenosine trisphosphate; CO2, Carbon Dioxide.

synthesis with release of glucose and very low-density lipoprotein
cholesterol (VLDL) into the circulation. The release of fructose-
derived glucose into the bloodstream via gluconeogenesis results
in an increased demand for insulin. The energy intake accounted
for by fructose is only slightly lower than that of glucose (25);
fructose, however, cannot directly be used for energy purposes,
but it can only indirectly through its transformation into glucose,
fatty acids, and lactate with the production of a series of
metabolites with potential negative effects. Overall, it can be
considered that at the hepatic level about 50% of fructose is
transformed into glucose, 15–20% into glycogen, 15–25% into
lactic acid and the remainder into triglycerides, secreted as VLDL
or stored in the liver (35).

ROLE OF FRUCTOSE IN THE EVOLUTION

When studying the role of fructose in nutrition it is important
to consider the different environmental conditions that have
occurred during evolution. One of the evolutionary advantages
is represented by the capacity to use the fructose present in fruits
and, in smaller amounts, in vegetables, as an energy substrate.
The predilection and receptors for sweet taste may have evolved
to favor the use of sugars for energy production in herbivorous
and omnivorous animals, but not in carnivorous ones. In
addition to the use of fructose as an energy source, another
evolutionary advantage has also been hypothesized. Fructose
may be a kind of trigger activator of metabolic changes that
may be advantageous in particular environmental conditions,
such as climate change, famine, drought, conditions which only

some species were able to overcome thanks to the ability to
adapt, directing the metabolism to save resources and energy (13,
36). Bears, for example, prepare for hibernation by consuming
ripe fruit and honey, thus taking a large amount of fructose
that, directly or through its metabolites, activates a series of
metabolic changes to ensure their survival during hibernation:
the storage of fat and glycogen, the maintenance of a level of
blood sugar and BP sufficient for vital functions and the decrease
of oxygen consumption (37). During hibernation, the oxidation
of stored fatty acids and glycogen by fructose supply is also an
important source of metabolic water. Such metabolic changes,
that are certainly useful to hibernating animals, can lead to a
series of negative consequences if they occur in a completely
different environmental situation, such as the current one of
our species. Today, the majority of humanity lives in a non-
hostile environment, which requires less energy expenditure and
has many food resources available (38). In this context, the
consumption of sugar, and in particular fructose, on the one
hand stimulates the organism to save energy and resources,
whereas on the other hand contributes to an excessive caloric
intake. Thus, the metabolic changes induced by fructose that
in the past helped our species to survive environmental stress,
today favor the current epidemic of obesity and related diseases.
In this scenario, some additional considerations must be made
concerning uric acid (39). In almost all animal species uric acid
is an intermediate metabolite of the purine catabolism, which
is degraded by the enzyme uricase to allantoin, a water-soluble
substance that is easily eliminated by the kidney. Only in humans
and higher apes uric acid is present in biological fluids, because
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these species have lost the activity of the uricase enzyme (40, 41).
Because increased uric acid has been described to be a risk
factor for hypertension and mortality from cardiovascular causes
(42), it seems odd that this particular mutation was selected and
transmitted during evolution (43). However, in our ancestors a
higher level in uricemia probably had favorable effects. In fact,
somewhat higher values of blood glucose and BP were useful for
fight or flight, while increased insulinemia favored fat storage
that could be useful in times of low food availability. Finally, uric
acid may also have had positive effects on brain function and
immunity (36, 39). Thus, fructose, through the production of uric
acid, may have aided the survival of species that had lost uricase
activity. However, this mechanism is now probably negative in
our current environmental situation, inducing an increase in the
prevalence of obesity and non-communicable diseases. Figure 2
shows the positive and negative effects of endogenous and dietary
fructose and the mechanisms by which these are mediated.
Table 2 summarizes the main effects of a high fructose dietary
intake on the most important organs.

FRUCTOSE, PREGNANCY, AND
LACTATION

The term epigenetics refers to the science that studies the
influence of the environment on the genetic expression, therefore
on the phenotype. The human organism, from conception to the
first 2 years after birth, is particularly sensitive to environmental
stimuli. This period of life is called “The First Thousand

Days” and the Developmental Origins of Health and Diseases
(DPHaD) concept defines the programming of the metabolic
and clinical fate of each individual. Epigenetic modifications
affect not only the first offspring, but can also be transmitted to
subsequent generations. In this context, the diet of the mother
during gestation and lactation is particularly important, both
quantitatively and qualitatively. In particular, the excess of free
sugars and especially fructose, often present in western diets,
may raise concerns. Even if further confirmations are needed,
the results of some studies suggest pregnant women and nursing
mothers to limit these nutrients.

It has long been known that fructose crosses the placenta
(44) by diffusion (45), and probably also by an active transport
mechanism (46). In addition, the feto-placental unit appears to
be able to produce fructose from glucose via the polyol cycle
(47, 48). Thus, fructose has a role in fetal metabolism. The
intake of free sugars and fructose by pregnant women and
nursing mothers is high (49). A diet that is rich in fruit has
been associated with a decreased risk of pre-eclampsia (50) but,
by contrast, excessive consumption of SSBs has been associated
with an increased risk of pre-eclampsia and preterm delivery
(51, 52). Several studies have been conducted in animal models
in which varying amounts of fructose were administered during
pregnancy. In some cases, the amount of dietary fructose was very
high, resulting in an excessive intake of calories and limiting that
of other important nutrients. This makes it difficult to interpret
the results, and particularly to distinguish the direct effect of
fructose from that of excess calories and the presence of other
nutritional deficiencies. The studies performed in animal models

FIGURE 2 | Effects of endogenous and dietary fructose. AMPK, Adenosine monophosphate kinase; NO, nitric oxide. Modified from Johnson et al. (13).
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TABLE 2 | Effects of a high fructose dietary intake on major organs.

Organs Mediators Metabolic effects Clinical manifestation

Adipose tissue FFA UA ↑ROS ↑Inflammatory cytokines

↑FFA uptake ↑Lipid accumulation

↑Adiponectin secretion

↑Autophagy

↓Insulin sensitivity↓Glucose uptake

↓Leptin sensitivity

↓Oxygen availability

Inflammation Endothelial dysfunction

Brain FFA UA MG ↑ROS ↑Inflammation cytokine

↓Insulin sensitivity ↓Leptin sensitivity

↑Food intake

Increase of appetite Psychological stress

Heart/vessels FFA UA ↑ROS

↑ FFA uptake

↑Vascular tone ↓Vascular vasodilation

↑Blood pressure

↓Insulin sensitivity ↓Glucose consumption ↑Advanced

glycation end products

Plaque formation Hypertrophy Endothelial

dysfunction Vascular stiffness

Intestine UA ↑Endotoxins ↑Bacterial composition disturbance

↑Dysregulation of tight junction protein

↓Insulin sensitivity

Increased intestinal permeability

Kidney UA MG ↑ROS ↑Inflammatory cytokines

↑Dysregulation of renal organic ion transporters ↑Urine

sodium retention ↑NO production

↓Insulin sensitivity

↓UA clearance

CKD Endothelial dysfunction

Liver Lactate FFA Ceramide UA MG ↑Gluconeogenesis ↑Glucose export

↑De novo lipogenesis

↑ROS ↑Inflammatory cytokines

↑Lipid accumulation ↑VLDL-secretion ↑Mitochondrial

dysfunction

↓Insulin sensitivity ↓Glucose consumption ↓Glucose

uptake

↓Oxygen availability

Steatosis NAFLD Fibrogenesis Endothelial

dysfunction

Pancreatic islet Glucose FFA UA ↑Inflammatory cytokines↑Apoptosis ↑Endoplasmic

reticulum stress

↓Insulin sensitivity ↓Leptin sensitivity

Glucose intolerance Increased β-cell mass

Irregular insulin secretion

Skeletal muscle Lactate FFA Ceramide UA ↑ROS ↑Inflammatory cytokines

↑FFA uptake

↑Lipid accumulation

↑Autophagy

↓Insulin sensitivity ↓Glucose uptake

↓Oxygen availability

Inflammation response Endothelial

dysfunction

CKD, Chronic Kidney Disease; FFA, free fatty acid; MG, methylglyoxal; NAFLD, non-alcoholic fatty liver disease; ROS, reactive oxygen species; UA, uric acid; VLDL, Very Low-Density

Lipoprotein.

Modified from Zhang et al. (8).

have shown that, compared to control groups, high fructose
intake was associated with a number of metabolic changes
including: 1. insulin resistance, glucose intolerance, pregnancy
diabetes and fatty liver in mothers (53–55); 2. decreased weight
and vascularization of the placenta (56); 3. hyperglycemia,
hyperinsulinemia and hypertriglyceridemia in fetuses (55); and
4. reduced birth weight (57), increased body weight, fat mass and
lipid profile in offspring (26, 58, 59). In addition, a decreased
sensitivity to leptin has been demonstrated in both mothers and
fetuses (60). Regarding blood pressure, several studies show an
increase in blood pressure values in adult animals born from
mothers fed with high amounts of fructose during pregnancy
(61–63). Among these, the work of Seong et al. (64) is particularly

interesting, as it does not only report an increase in systolic blood
pressure and angiotensin II compared to controls in the first and
second generation of mice born frommothers fed a diet with 20%
fructose, but also an increase in renin and aldosterone found until
the third and fourth generation, respectively.

Data from animal models in which fructose was administered
only during lactation and not also during gestation are scarce.
Alzamendi et al. (59) reported an increase in weight, food intake
and decreased leptin sensitivity in male rats fed by mothers
on 10% fructose diets. Similar effects were found in rats fed
a fructose-rich formula milk (65). In a very interesting study
by Goran et al. (66) the presence of fructose in human milk
and in children fed exclusively with breast milk until the sixth
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month was analyzed. In breast milk the concentration of fructose
was very low, equal to about 7µg/mL, which is more than
30 times less than the concentration of glucose. Despite his
low quantity, fructose is the only sugar that is associated with
significant changes in the body composition of infants. Indeed,
it is significantly associated with body weight, lean mass, fat
mass, and bone mineral content assessed at the age of 6 months.
Although the authors point out that their data are not sufficient
to demonstrate a causal relationship, since it is not precisely
known how sensitive such young children are to fructose, it is
important to state that it would be appropriate to pay attention
to the consumption of free sugars not only during gestation, but
also during lactation.

FRUCTOSE AND CARDIOMETABOLIC
RISK FACTORS IN PEDIATRIC AGE:
PATHOPHYSIOLOGICAL AND CLINICAL
ASPECTS

The analysis of the pathophysiological mechanisms that link
an excessive intake of fructose to the development of arterial
hypertension and other cardiometabolic risk factors is not
easy for a number of reasons. First, the amount of fructose
to be considered “excessive” is not well defined. Generally
speaking, the consumption of fructose in fruits and vegetables
should be encouraged because, thanks to the presence of other
micronutrients, it is believed not to have the same negative effects
as when it is taken as free sugar. The indication of the WHO
not to exceed an intake of free sugars equal to 10% of daily
calories is agreeable, but the specific quantity of fructose, the
form in which it is taken (solid foods or beverages) and the
time space in which it is taken should always be considered.
Second, available data from studies in children are indirect and
refer to fructose consumption in the form of SSBs or sweeteners
added to foods. However, it should be emphasized that in these
studies, fructose constitutes only one of the sweeteners used and
is often added in association with glucose. Third, it is impossible
to separate the direct effects of fructose from those of its
metabolites. In children, fructose consumption is the main cause
of increased uricemia. However, uric acid may also be generated
by other sources, either endogenous (purine catabolism and
some amino acids) or dietary (glutamate, purines, uric acid) and
uricemia is influenced by genetically determined factors such
as renal and intestinal excretion of uric acid. The metabolic
and cardiovascular effects of uric acid should be discussed
separately, however, and such an issue is not among the aims of
this review. Some adverse effects of fructose on various organs
and apparatuses have been reported, but a clear pathogenetic
explanation has not yet been described. Finally, the various
cardiometabolic risk factors influence and potentiate each other.
For example, hyperinsulinism promotes the development of
visceral obesity, which, in turn, promotes the establishment of
insulin resistance. In the following paragraphs, we will briefly
describe the relationship between fructose consumption and
different cardiometabolic risk factors. A larger space is reserved

for the relationship between fructose and the development of
arterial hypertension, particularly in pediatric age.

Obesity
Animal studies have provided information about the specific
role of fructose in the development of obesity (67, 68). In
addition to simply inducing calorie intake, fructose contributes
to the development of excess weight through several additional
mechanisms. Some of them have already been described, among
which the ex novo production of fatty acids and triglycerides and
the reduction of substrate oxidation at mitochondrial level. In
addition, several metabolites of fructose (lactate, FFA, ceramide)
contribute to the establishment of insulin resistance and the
increase of insulin, in turn, promotes the deposition of adipose
tissue. Fructose, through mechanisms not yet fully understood,
may also be able to induce a resistance to the action of leptin
on the satiety center in the brain, leading to an increase in food
intake and the development of a positive caloric balance (11, 69–
71). Fructose also has other actions that promote food intake,
such as the inhibitory effect on the expression of YY peptide,
Y neuropeptide, and propiomelanocortin, and the stimulation
of cannabinoid 1 production (72). Finally, through mechanisms
involving the development of reactive oxygen species (ROS) and
activation of the renin-angiotensin system, fructose promotes
the genesis of visceral white adipose tissue, while reducing
thermogenesis produced by brown adipose tissue (73). In
addition, uric acid per se promotes insulin resistance and induces
a state of chronic inflammation. Many epidemiological studies
have demonstrated an association between the consumption
of free sugars and the development of obesity, particularly in
children and adolescents. Ameta-analysis of cohort studies found
that a higher intake of SSBs among children was associated
with a 55% higher risk of being overweight or obese compared
to those with a lower intake (74). A study performed in a
population of preschool-aged children found that the prevalence
of obesity at 4.5 years of age was more than twice as high
in sugar-sweetened beverage drinkers as in those who did not
consume any (75). Children aged 3–6 years with overweight
mothers during pregnancy, consumed more SSBs (but less milk)
and had higher waist circumference than peers born to mothers
with normal body mass index (BMI) (76). It has been shown
that in developed countries, lower socioeconomic classes have
the highest prevalence of excess weight in pediatric age. In a
low-income African-American preschool population of children
aged 3–5 years, SSB consumption correlated positively with the
presence of overweight and obesity at baseline, and worsening of
weight class was more pronounced in more frequently SSB users
over a 2-year follow-up (77). A prospective Singaporean study
observed that the consumption of SSBs in infants (18 months)
was not associated with adiposity measures (BMI and skinfold
thickness) and excess weight at 6 years of age. In contrast, in
preschool children SSB intake was associated with higher body
weight, skinfold thickness and risk of overweight/obesity at age 6
years (78). A German study suggested that higher consumption
of free sugars during the first year of life does not lead to
an increase in BMI values at 7 years, whereas this happens in
subjects with higher free sugar intake in the second year of
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life (79). Regarding adolescents, an American study described a
relationship between consumption of SSBs and increased body
weight in a sample of more than 10,000 boys aged 9–14 years.
According to the authors, this would be mainly due to the
additional energy intake provided by these drinks. In fact, the
effect appears attenuated as calories are reduced (80). On the
other hand, in a large population-representative birth cohort of
Hong Kong Chinese children, frequency of SSB consumption at
11 or 13 years was not associated with subsequent BMI z-score
or overweight (including obesity) up to 18 years, nor with waist
circumference and waist to height ratio at 16–19 years. This may
be due to a much lower SSB intake of the participants of the
study (81).

Disorders of Glucose Metabolism and Type
2 Diabetes
Glucose and fructose, besides contributing to caloric excess, alter
the glycide metabolism through different mechanisms. Glucose
determines a high glycemic load and glucotoxicity can damage
pancreatic beta cells (82), while fructose has little effect on
glycemia, but promotes the development of insulin resistance.
In experimental animals, fructose has been shown to reduce
insulin receptor sensitivity (83). Moreover, fructose contributes
to the increase of FFA production by the liver (84). FFA
appear to decrease the sensitivity of skeletal muscle to insulin
(85). Moreover, FFA (saturated and long chain), through the
production of ceramide, have a lipotoxic effect on pancreatic
beta cells that in time may favor the development of diabetes
(86), especially in genetically predisposed subjects. High levels
of fructose have also been found to determine a reduction
in the production of adiponectin with a consequent increase
in insulin resistance (87). Finally, both glucose and fructose
promote the glycation of proteins and amino acids with the
resulting production of advanced glycation end products (AGEs)
that also contribute to the development of diabetes (88). The
progression of insulin resistance and the consequent worsening
of glycemic control have a negative effect on the residual function
of pancreatic beta cells and contribute to the production of
AGEs (89). Uric acid plays a role in glucose metabolism as well,
especially by contributing to insulin resistance (90). Between
2001 and 2017, there has been a considerable increase in the
prevalence of type 2 diabetes mellitus in children and adolescents
(from 0.34 in 2001 to 0.67 in 2017, per 1,000 subjects in this age
group) (91). It is very likely that changes in the eating habits of
children and particularly the increased consumption of SSBs are
largely responsible for this situation. Unfortunately, no studies
are available that correlate the consumption of fructose, free
sugars or SSBs during childhood with the development of type 2
diabetes or other alterations in glucose metabolism in adulthood.
However, results from studies in adults make this possible
correlation very likely. The UK Scientific Advisory Committee on
Nutrition concludes that, in adults, there is consistent evidence
that consumption of SSBs is associated with an increased risk of
developing type 2 diabetes (92). Similar conclusions are reached
by two meta-analyses performed on adult populations (93, 94).
Another meta-analysis in adults showed that an increase in

consumption of SSBs by one serving per day was associated
with a 13% greater incidence of type 2 diabetes, even after
correction for excess weight (95). On the contrary, it has been
shown that a correct diet that required the decrease/abolition of
SSB consumption reduced the relative risk of developing type
2 diabetes (96). Finally, in a population of young women, a
high glycemic index diet was shown to be correlated with the
development of type 2 diabetes (97).

Dyslipidemia
Fructose is the most important lipogenic sugar and, as described
before, a large proportion of dietary fructose intake is converted
to lipids through ex novo synthesis of fatty acids. This process
is increased in the presence of chronic fructose consumption,
which not only increases intestinal reabsorption of fructose,
thanks to the synthesis of GLUT5 transporters (98), but also
induces an increase in the expression of all hepatic enzymes
involved in lipid synthesis. In fact, fructose stimulates the
expression of the sterol regulatory element-binding protein 1c
(99) and of carbohydrate-responsive element-binding proteins
(100–102) that, together with other cofactors such as peroxisome
proliferator-activated receptor gamma coactivator 1-beta (103),
are the main regulators/stimulators of lipid synthesis (104).
Since insulin regulates the synthesis of these element-binding
proteins too, fructose can indirectly stimulate their expression
also by increasing insulin levels through its effect on insulin
resistance. Insulin excess also stimulates the secretion of ApoC-
III, a substance able to decrease the activity of lipoprotein
lipase and the hepatic clearance of lipoprotein remnants, with
a consequent further increase in plasma levels of triglycerides
and lipoprotein remnants, substances that are particularly
atherogenic (105). Overweight children and adolescents more
frequently have dyslipidemia than those of normal weight (106).
By contributing to the development of obesity, fructose indirectly
contributes to the establishment of various forms of dyslipidemia.
However, a meta-analysis (107) has shown that in adults the
increase in total cholesterol and LDL-cholesterol is determined
only by the intake of very high amounts of fructose (108)
and, according to some authors, only if associated with a
simultaneous consumption of glucose or excessive caloric intake
(109). The intake of high doses of fructose does not seem to
induce any reduction in HDL-cholesterol that, together with
the increase of triglycerides, is one of the characteristics of the
dyslipidemia observed in the metabolic syndrome (107). Not
many studies are available in children that associate cholesterol
levels with fructose consumption. It has been described that
obese children who consumed higher amounts of fructose had
higher triglyceride values and lower HDL-cholesterol values
than normal-weight peers, and fructose consumption correlated
directly with the presence of smaller and therefore more
atherogenic LDL particles (110). Interestingly, isocaloric fructose
restriction resulted in a 46% decrease in LDL-cholesterol in obese
children with metabolic syndrome (111). In contrast, an increase
in total cholesterol was observed in severely obese children and
adolescents who consumed higher amounts of fructose than
a control group (112). In three studies performed in children
and adolescents, it was observed that increased consumption
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of SSBs was associated with decreased HDL-cholesterol, but
also with increased BMI values (113–115). Therefore, a direct
relationship between fructose intake and plasma cholesterol
values in pediatric age has not yet been completely clarified.
On the other hand, in young adults an increase in triglycerides
and VLDL is associated with both acute and chronic fructose
consumption (28, 116, 117), even at relatively low doses (118).
Regarding the hypothesis of an association between consumption
of SSBs and triglycerides in pediatric age, data are conflicting:
some studies show an increase in triglyceridemia in children and
adolescents with higher consumption of SSBs (113, 115, 118),
whereas others studies do not show any significant differences
(119, 120).

Non-alcoholic Fatty Liver Disease
The term NAFLD refers to a progressive combination of
intrahepatic lipid accumulation (steatosis), inflammatory
processes (steatohepatitis) and fibrosis (liver cirrhosis). In
addition to the ex novo production of fatty acids and the decrease
in their oxidation related to an excess intake of fructose, also
the influx of circulating FFA and chylomicrons contributes
to an increase in the intrahepatic lipid pool that accumulates
and results in the development of NAFLD (121). Fructose
consumption promotes inflammatory processes, either directly
or via uric acid, by stimulating the generation of ROS and
hepatotoxic glycation products. Inflammation, in turn, promotes
fibrosis (122, 123). It has been observed that subjects affected
by NAFLD have an increased expression of fructokinase and
fatty acid synthase and a greater tendency to ATP depletion and
therefore to the production of uric acid (124). Non-alcoholic
fatty liver disease, although often associated with excess weight,
can also occur in non-obese subjects, both adults and children,
who consume high amounts of fructose as free sugar (125). A
study performed on a population of children and adolescents
with weight excess and NAFLD, in which fructose consumption
and serum uric acid were assessed, showed a prevalence of
non-alcoholic steatohepatitis (NASH) of 37.6%. Both serum
uric acid concentration and fructose consumption were
independently associated with NASH and fructose consumption
was independently associated with hyperuricaemia. Subjects
with NASH had higher waist circumference, transaminase,
triglycerides, and TNF alpha levels. Thus, dietary fructose
consumption and serum uric acid levels are interrelated and
independently associated with the presence of early hepatic
organ damage (126). The North American Society for Pediatric
Gastroenterology, Hepatology and Nutrition guidelines highlight
the higher prevalence of NAFLD in obese children compared
with children with normal weight, but also report that not all
children with NAFLD are obese. Indeed, the at-risk population
suggested to be screened for NAFLD includes both obese and
overweight children with cardiometabolic risk factors (insulin
resistance, prediabetes, diabetes, dyslipidemia, and central
adiposity) (127). A pilot study performed in a numerically
small population of children with NAFLD, demonstrated that a
low-fructose diet was able to induce an improvement in oxidized
LDL levels, a marker of cardiovascular disease (128). Finally, 24
overweight Hispanic-American adolescent consumers of sweet

drinks with hepatic steatosis were enrolled and randomized
to drinking beverages that contained either fructose only or
glucose only. After 4 weeks, insulin sensitivity, inflammatory
status, plasma FFA, and LDL oxidation had improved in the
group of patients taking the glucose-sweetened drinks. Although
regression of hepatic steatosis was not observed, the study
showed that reducing dietary fructose leads to an overall
improvement in cardiovascular risk factors, suggesting that this
sugar plays a central role in increasing cardiovascular disease
risk in NAFLD patients (129).

Hypertension
Several decades ago it was already described that high fructose
diets could induce experimental hypertension. Sprague Dawley
rats, fed a diet in which fructose constituted more than 60%
of the total caloric intake, developed systolic hypertension
after 2 weeks and the same outcome was observed in dogs
subjected to a similar diet (130, 131). In both studies, the
increase in blood pressure was associated with an increase in
insulinemia (insulin levels) and insulin resistance. The role
of insulin resistance in the development of fructose-related
hypertension was confirmed by the demonstration of a reduced
density of insulin receptors in skeletal muscle and liver of rats
with fructose-diet hypertension (132). Interesting data were also
obtained more recently in genetically hypertensive rats, in which
a high fructose diet induced a further increase in BP values
as the animal aged, associated with an increase in the levels
of reactive oxygen species and lipid peroxidation in the rostral
ventrolateral medulla. The study suggests the presence of an
interaction between predisposing genetic factors and dietary
habits in the establishment of hypertension (133). The autonomic
nervous system and the renin angiotensin aldosterone system
also appear to play a role in experimental fructose hypertension.
Involvement of the two systems in fructose hypertension was
demonstrated in experimental studies by showing that both
sympathectomy and drugs inhibiting the renin angiotensin
aldosterone system (RAAS) activity were able to reduce both
insulin resistance and high BP values due to high fructose diets
(134, 135). Furthermore, a study performed in high fructose-
fed rats showed that the establishment of hypertension was
associated with an increase not only in insulin resistance,
but also in urinary catecholamine excretion, alpha adrenergic
receptor density, and angiotensin II content in the left ventricle.
Administration of an AT1 receptor antagonist was able to
reduce both catecholamine excretion and adrenergic receptors,
without exerting any effect on insulin resistance (136). Moreover,
in fructose-fed rats, treatment with an alpha-blocker drug
prevented the increase in BP without affecting insulin levels and
insulin sensitivity (137). Further evidence was recently provided
by Chen et al. who demonstrated that in rats with fructose-
induced hypertension, excessive fructose intake led to an increase
in fructose concentration in the cerebrospinal fluid, a decrease
of nitric oxide (NO) levels in the nucleus tractus solitarii and
a reduction of baroreflex sensitivity. Taken together, these data
suggest that fructose leads to sympathetic hyperactivity, which
in turn results in the development of hypertension (138). A
small randomized trial performed in young healthy volunteers
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(21–33 years old) that evaluated cardiovascular system responses
to fructose ingestion confirmed the involvement of the NTS.
Fructose ingestion caused an increase in both systolic and
diastolic BP and in heart rate. Spectral analysis of heart rate
variability (HRV) showed that fructose ingestion also caused an
initial increase in the low frequency component (LF, broadly
taken as an expression of sympathetic activity) of HRV, and a
subsequent reduction in the high frequency component (HF,
expression of vagal activity), suggesting a significant reduction
in baroceptor sensitivity (139). More recently, in a large sample
of children aged 11/12 years, it was shown that high intake
of SSBs was associated with increased values of systolic and
diastolic blood pressure and with a shortening of the pre-
ejection period of the cardiac cycle, considered a marker of
sympathetic activity. The result was independent of the children’s
weight class (140). Some authors have suggested an association
between fructose consumption and endothelial dysfunction.
Endothelial dysfunction, which is characterized by a prevalence
of vasoconstrictors over vasodilators, may determine an increase
in BP values. It has been demonstrated that fructose-related
hypertension (68, 141) is associated with an inhibition of the
vasodilator effect of prostacyclin and acetylcholine (142, 143) and
with an enhancement of the action of vasoconstrictor substances
in experimental animals (144). A proper endothelial function
is the result of the balance between the factors that promote
vasodilation, NO and prostaglandins, and those that induce
vasoconstriction, such as endothelin-1 (145). Oxidative stress
and inflammation may play an important role as well (146).
Fructose, either directly or through the action of uric acid, may
interact with these processes. Nitric oxide is the most important
dilating factor at the vascular level and is produced by the
endothelium thanks to the catalyzing activity of the isoenzyme
nitric oxide synthase (eNOS); the chemical reaction involves
L-arginine and molecular oxygen and requires some cofactors,
one of which is tetrahydrobiopterin (BH4). Alterations in NO
production at the vascular level have been observed in several
cardiovascular diseases, including hypertension (147). Fructose
can interact with this system in several ways. Fructose-fed rats
have been shown to exhibit increased activity of the enzyme L-
argininase, which reduces the availability of L-arginine (148). In
addition, an excess of fructose also has the effect of decreasing the
availability of BH4 (149). In the absence of the substrate arginine
and/or the cofactor BH4, eNOS promotes the development of
superoxide anions from molecular oxygen that may interact
with the same enzymes that produce BH4 (150). In fructose-
fed rats, superoxide anions interact with other molecules and
produce potent oxidants, which, in turn, impair the function of
several proteins including eNOS, thus reducing the availability
of NO and its vasodilator action (151). Over time, the reduction
of eNOS activity may favor the proliferation of muscle tonic
cells resulting in a non-reversible increase in vascular stiffness
and BP values (152). Fructose-induced hyperinsulinism may
also play a role in the development of arterial hypertension,
either by directly reducing NOS production or by promoting the
release of endothelin-1 (153, 154). Experimental animals fed a
fructose-rich diet have a condition of oxidative stress, with higher
levels of oxidant agents and reduced availability of antioxidant

agents (155–157). Oxidative stress, in addition to decreasing NO
activity, may contribute to endothelial dysfunction by increasing
inflammation, tone, and by vascular remodeling (158). Whereas,
no studies are available in children that correlate fructose as
such taken per os with increased BP values, some evidence has
been reported in young adult healthy volunteers (139). In most
studies performed in populations of children and adolescents,
only the relationship between general intake of free sugars,
especially in liquid form as SSBs, and BP values was evaluated.
From the results of these studies, it is difficult to evaluate the
specific effect of fructose on BP, also because a high dietary intake
of fructose generally leads to a worsening of weight status, a
factor frequently associated with the presence of hypertension.
For what regards the relationship between consumption of
SSBs and BP, some meta-analyses, in adults (159, 160) and in
children (161) confirm the tendency of BP values to increase
with increasing consumption of SSBs. All studies, from different
countries around the world, show that the consumption of
drinks with added sugar is worryingly widespread among both
children and adolescents. Several observational studies that
involved a very large number of subjects aged between the
second decade of life and the end of adolescence, assessed the
intake of SSBs using food history questionnaires. Overall, the
studies showed higher systolic blood pressure (SBP) values in
subjects who consumed more of these products, but in most
cases the increase in BP was accompanied by higher values of
BMI or waist circumference (113, 114, 162). Only one study
describes a higher prevalence of hypertension in normal-weight
SSBs consumers than in overweight peers (163). Interesting are
the results of a Brazilian study that confirms the presence of
higher BP values in consumers of SSBs than in non-consumers;
furthermore, this study shows that subjects that are accustomed
to using low-calorie diet products show the highest BP values
(164). A study on a large sample of Chinese boys reported an
increase not only of SBP, but also of diastolic blood pressure
(DBP) in heavy SSB users (115), while in another study the
increase was observed only for SBP and in males (165). Not
all studies confirm the finding of a positive association between
hypertension and SSB consumption, however. In a Chinese study,
no relationship between SSBs, obesity, and hypertension could
be described (166), whereas in another study even an inverse
relationship between SSB consumption and SBP values was
observed (167). On the other hand, a prospective study evaluating
SSB consumption in a population of 424 children and adolescents
aged 6–18 years followed for 3.6 years described an incidence of
elevated BP values (>90th percentile) almost three times higher
in the quartile of subjects with the highest consumption of SSBs
compared with those with the lowest consumption (119). Of
particular interest is a recent intervention study that confirms
the close relationship between SSBs and BP. The research was
conducted in 30 overweight and obese adolescent boys, all heavy
users of SSBs. The sample was randomized to take SBBs or an
isocaloric amount of low-fat milk for 3 weeks. The study included
a cross-over phase between the two groups after a washout
period. The SBP z-score and uricemia were significantly lower
when milk was taken instead of SSBs (120). Only one study
evaluated the consumption of sugars taken via solid foods (sugary
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snacks) and confirmed that the subjects with the highest level
of consumption had an increased risk of being hypertensive. It
should be noted however, that these snacks also had a high salt
content (168). Several studies showed that high salt intake is
associated with increased BP values and hypertension prevalence
in the pediatric population. It is interesting to note that a
significant association between SSBs and salt intake was also
described in children and adolescents (169). Table 3 shows the
main available studies assessing the relationship between fructose
intake and BP in pediatric age.

INTERVENTION DIRECTED AT THE YOUTH
CONSUMPTION OF SUGAR SWEETENED
BEVERAGES

Consumption of sweetened beverages, such as non-diet soft
drinks, regular soda, iced tea, sports drinks, energy drinks,
fruit punches, sweetened waters, and sweetened tea and coffee,
is considered an important contributor to the widespread
diffusion of obesity and its complications. As noted above, when
considering studies related to the effects of excessive intake of
SSBs, however, it should be emphasized that we are not referring
to the intake of fructose alone, because glucose is also contained
in these beverages. The evidence of the association between
excessive SSBs and excess weight has raised the question of how
to reduce their consumption in children and adolescents. Many
scientific societies called for reducing the consumption of sugary
drinks in pediatric age by fixing, in different ways, the daily
quota not to be exceeded. However, it should be noted that
these indications are only mediations to mitigate the current
exaggerated hedonistic consumption of free sugars and do not
correspond to the real needs of the human body. In fact, the daily
consumption of free sugars could be equal to zero, as the need
of glucose can be entirely satisfied by complex carbohydrates
with low glycemic index, while a daily consumption of fruits and
vegetables is sufficient to meet the need of fructose. Interventions
aimed at reducing the consumption of SSBs in children include
both educational interventions, carried out with the aim of
improving eating habits, and environmental interventions to
reduce the availability of SSBs. A typical example of the latter is
the proposal of a “sugar tax.”

Since children spend most of their day time in school, this is
an ideal setting for programs targeting healthy dietary behaviors
(171). School-based intervention programs have been shown
to yield positive results in preventing and reducing obesity
(172). Many interventions have been performed in schools to
see if educational programs with the purpose of reducing SSB
consumption had an effect on body weight and the prevalence
of excess weight in groups of children and adolescents (173).
Considering only the randomized trials, altogether the results
were positive, albeit with some differences. The association
between consumption of SSBs and excess weight has been
unequivocally demonstrated by a study performed in normal-
weight children aged 5–12 years. Participants were randomized
to receive once a day 250mL of a beverage sweetened with non-
caloric substances (sugar-free group) or a beverage sweetened

with sucrose that provided 104 kcal (sugar group). At the end
of an 18-month follow-up, the sugar group had higher values
of body weight, BMI z-score, skinfold-thickness, waist-to-height
ratio, and fat mass than the sugar-free group (174). A trial
that randomized 644 children aged 7–14 years to receive an
educational intervention resulted only in a modest reduction in
SSB consumption in the intervention group compared with the
control group, that was, however, associated with a significant
reduction in the prevalence of excess weight (175).

A pilot study, also aimed at examining the effect of decreasing
SSB consumption on body weight, did not lead to a significant
reduction in BMI in the intervention group, despite the fact
that in this group SSB consumption was almost completely
eliminated. However, a significant reduction in BMI was
observed among subjects with the highest body weight values at
baseline (176). Another randomized trial performed in 7–9 year
old students was targeted to reduce the availability of SSBs and
increase the availability of water. The trial did not impact the
SSB consumption of the entire study population, however and a
positive result was observed in girls only (177). Finally, in another
study, 224 obese adolescents who were regular consumers of SSBs
were randomly divided into two groups, one in which a 1-year
intervention was planned, designed to decrease consumption
of sugar-sweetened beverages and a control group that did
not include any intervention. In the first year of follow-up,
consumption of SSBs in the intervention group was significantly
lower than in the control group and remained so in the second
year of observation. BMI values were significantly lower in the
intervention group, but this difference disappeared at the end
of the second year of follow-up (178). In spite of these results,
which emphasize the need of additional intervention studies on
this issue, a systematic review by Frank Hu et al. concluded
that, overall, there is enough scientific evidence to support the
possibility to reduce the prevalence of excess weight in children
by decreasing consumption of SSBs (179). The need to reduce
consumption of SSBs by children and, especially, adolescents
led many countries to impose taxation on these beverages to
discourage their consumption (180). The purchase of SSBs should
not be discouraged only among adolescents, but also among
adults, who are role models for youth and buy most of the SSBs
consumed by children (181). In many countries of the world the
sugar tax, in different forms, has been introduced since several
years (182). One of the first pioneer countries to introduce a
sugar tax was Denmark in 1930. The United Kingdom (UK)
has introduced the SSB tax in 2018. In the US taxes have
been imposed mostly on sodas and were never >10% of the
price (183). Increasing taxation of SSBs and subsidizing healthy
drinks could impact the reduction of obesity in children and
adolescents (184). Current findings in the literature are not
very strong, but suggest potential benefits regarding dietary
behaviors from the implementation of such a tax (185). Several
studies examining the effect of taxes on young school children
or adolescents found limited effects on SSB consumption or BMI
(186–188). More recent studies have provided more encouraging
results. A US trial assessed if taxes could influence sweetened
beverage intake in 86 928 high school students and found that
the tax was associated with a statistically significant reduction
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TABLE 3 | Main available studies assessing the relationship between SSB intake and BP in pediatric age.

References

Country

Sample size

(number of

subjects)

Age

range

Study design Outcome Main results

Nguyen et al. (162)

US

4,867 12–18 Cross-sectional study SBP adjusted for age,

race/ethnicity, sex, total calories,

BMI z-score, sodium intake,

smoking, and alcohol

Higher SSB consumption associated with

higher serum uric acid (increased by 0.18

mg/dL) and SBP (increased by 0.17

z-score).

Bremer et al. (114)

US

6,967 12–19 Cross-sectional study SBP Higher SSB consumption associated with

higher HOMA-Index, waist circumference,

BMI and SBP (High intake vs. low intake:

111.1 vs. 107.9 mmHg, p = 0.03).

Ambrosini et al.

(113)

Australia

1,433 14–17 Cross-sectional study SBP and DBP adjusted for

adjusted for age, pubertal stage,

physical activity, dietary

misreporting, maternal

education, and family income.

Higher SSB consumption associated with

higher SBP (highest tertile vs. lowest tertile

+1.5 mmHg, p = 0.03) and

overweight/obesity risk (OR: 4.8, 95%CI:

2.1–11.4).

Lin et al. (165)

Taiwan

2,727 12–16 Cross-sectional study SBP adjusted for study area,

age, gender, physical activity,

total calories, intake of meat,

seafood, fruit, fried, food with

jelly/honey, alcohol drinking,

smoking.

Higher SSB consumption associated with

higher SBP (highest SBB intake vs. no

intake +3.47 mmHg, p = 0.004).

Mirmiran et al.

(119)

Iran

4,24 6–18 Prospective study Incident hypertension. Higher SSB consumption associated with

higher hypertension incidence (highest

quartile vs. lowest quartile: OR 2.79,

95%CI 1.02–7.64).

Asghari et al. (168)

Iran

4,24 6–18 Prospective study Incident hypertension adjusted

for age, sex, total energy intake,

physical activity, dietary fiber,

family history of diabetes, and

body mass index.

Higher energy-dense nutrient-poor solid

snack intake associated with higher

incidence of hypertension (OR: 2.99,

95%CI: 1.00–8.93).

Souza et al. (164)

Brazil

488 9–16 Cross-sectional study SBP and DBP adjusted for sex,

age, BMI, physical activity,

addition of salt to food, and

education of the head of the

family.

Higher soft drink consumption associated

with higher SBP/DBP (no soft drink vs.

SSB vs. diet soft drink: mean SBP 99.7

vs. 101.8 vs. 105.1 mmHg, p = 0.01 and

mean DBP 57.2 vs. 58.2 vs. 60.5 mmHg,

p = 0.04)

Gui et al. (166)

China

53,151 6–17 National

cross-sectional study

Prevalent hypertension adjusted

for age, sex, residence,

socioeconomic status, diet,

screen time, and physical activity.

Neither general obesity nor hypertension

associated with SSB consumption.

de Boer et al. (140)

Netherlands

2,519 + 769 5–6/11–

12

Cross-sectional study SBP and DBP (adjusted for

ethnicity, BMI, physical activity,

screen time, gestational age,

birth weight, maternal and

paternal BMI, pubertal stage

Higher SSB consumption associated with

higher SBP at 11–12 age (highest tertile

vs. lowest tertile: SBP +2.3 mmHg, p =

0.006)

Qin et al. (163)

China

10,091 9–12 Cross-sectional study Prevalent hypertension adjusted

for school, parental education,

physical activity, diet intake.

Higher SSB consumption associated with

higher hypertension prevalence (overall:

OR1.40, 95%CI 1.15–1.70); normal

weight: OR 1.78, 95% CI 1.20–2.65;

overweight or obese: OR 1.28, 95% CI

1.01–1.61)

He et al. (115)

China

2,032 7–18 Cross-sectional study Prevalent hypertension. SSB consumption associated with the risk

of obesity (OR 2.08, 95% CI 1.21–3.54)

and hypertriglyceridemia (OR 1.70, 95%CI

1.02–3.06), but not with a significant

increase in the prevalence of hypertension.

Zhu et al. (167)

China

3,958 6–17 Cross-sectional study SBP (adjusted for age, sex, daily

energy intake, pubertal stage,

sedentary time, maternal

education, and household

income)

Higher SSB consumption inversely

associated with SBP values (p < 0.05)

(Continued)
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TABLE 3 | Continued

References

Country

Sample size

(number of

subjects)

Age

range

Study design Outcome Main results

Perng et al. (170)

Mexico

242 8–14 Cross-sectional study SBP and DBP (adjusted for age

and pubertal status)

Higher SSB intake associated with higher

BP values (highest quartile vs. lowest

quartile: SBP +4.65 mmHg and DBP

+3.08 mmHg in girls, p = 0.07 and SBP

+8.79 mmHg and DBP +7.1 mmHg in

boys, p < 0.001).

Chiu et al. (120)

US

30 13–18 Two-period randomized

study (SBBs vs. low fat

milk for 3 weeks with

crossover to the

alternate beverage after

a ≥ 2 weeks washout)

SBP SBP z-score (0.0 vs. 0.2, p = 0.04) and

serum uric acid (362 vs. 381 umol/L, p =

0.02) significantly lower after milk

compared to SSBs.

BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure; SSB, sugar-sweetened beverage.

in SSB consumption of 0.81 servings per week, 2 years after
the implementation (189). A Mexican study assessed whether
increasing the price of SSBs was associated with adolescent
weight-related outcomes after implementation of the SSB tax.
Increased prices were associated with decreased prevalence of
excess weight among girls only, mostly in those with higher BMI,
and where the price increment due to the tax was greater than
10% (190). The fact that a higher tax may be more effective has
also been suggested by a qualitative study performed in a Detroit
suburban middle school that gathered information on how a
20% tax on SSBs would affect adolescent SSB consumption. Most
students reported that they would decrease their consumption
of SSBs if a 20% tax were implemented (191). In conclusion, a
sugar tax combined with adequate information campaigns on
the health harms of SSBs and a reduction of sugar content in
recipes by companies could have a significant impact for healthy
eating habits in children and adolescents in the coming years.
Moreover, additional studies testing the efficacy of interventions
aimed at reducing fructose and free sugars intake in children and
adolescents are needed.

CONCLUSIONS

Despite the fact that in recent years the attention of parents
to the eating habits of their children has increased, there still
may be not enough concern about the intake of free sugars
and fructose, as these nutrients may be erroneously perceived
as “natural” and “necessary” and are therefore proposed even
to the youngest children. Free sugars, however, are not at all
indispensable in a correct diet. The consumption of free sugars
was introduced in our diet relatively recently, and this was
possible thanks to the industrial production of sugar, at first
extracted from sugar cane and subsequently from sugar beets.
Starting from the seventies of the last century, the introduction
of HFCS, associated to the increasing use of SSBs, has led
to a significant increase in the consumption of free sugars,

including fructose. Young people are the heaviest consumers of
free sugars and fructose. Fructose has specificmetabolic pathways
and, directly or through its metabolites, may promote the
development of arterial hypertension and metabolic syndrome.
No epidemiological or clinical studies are available in children
that specifically demonstrate the effects of fructose. In fact, first
of all, fructose is practically never consumed alone and secondly,
it is rapidly removed from the circulation, so it cannot be dosed
properly. On the other hand, there are numerous epidemiological
studies, even in children, on the association between fructose
and glucose consumption introduced by drinking SSBs and
the presence of cardio-metabolic risk factors. The mixture of
these two carbohydrates is particularly “explosive” as fructose
and glucose, each acting through different mechanisms, can
contribute synergistically to the development of cardiovascular
disease. Vascular alterations at the base of these pathologies
start in pediatric age and it would be therefore reasonable to
start in time to prevent them. Given the large increase in the
consumption of foods and beverages with added fructose in
recent decades by children and adolescents, it is reasonable
to think that increased fructose intake currently represents
a real problem for the health of the younger generations,
even if specific studies on this subject have not yet been
published. A limitation of the consumption of free sugars
and fructose should be among the first and most important
measures to be taken for an effective prevention of increased
cardiovascular risk.
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