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ABSTRACT

Humans are infected with many viruses, and the immune system mostly removes viruses and the infected cells. However, cer-
tain viruses have entered the human genome. Of the human genome, »45% is composed of transposable elements (long
interspersed nuclear elements [LINEs], short interspersed nuclear elements [SINEs] and transposons) and 5-8% is derived
from viral sequences with similarity to infectious retroviruses. If integration of retrovirus occurs in a germline, the integrated viral
sequences are heritable. Accumulation of viral sequences has created the current human genome. This article summarizes
recent studies of retroviruses in humans and bridges clinical fields and evolutionary genetics. First, we report the repertories of
human-infective retroviruses. Second, we review endogenous retroviruses in the human genome and diseases associated
with endogenous retroviruses. Third, we discuss the biological functions of endogenous retroviruses and propose the concept
of accelerated human evolution via viruses. Finally, we present perspectives of virology in the field of evolutionary medicine.

Key Indexing Terms: Retrovirus; Human endogenous retrovirus; Disease; Human genome; Evolutionary medicine. [Am J
Med Sci 2019;358(6):384–388.]
INTRODUCTION
Currently there are 5,630 confirmed virus species
on the earth,1 and Anthony et al estimated that
at least 320,000 undiscovered viruses infect

mammalian hosts.2 RNA viruses are a major threat to
human health, and severe acute respiratory syndrome
(SARS) coronavirus, Ebola virus and Middle East respira-
tory syndrome (MERS) coronavirus are recently known to
cause pandemics.3 Of the discovered virus species, 214
viruses are known human-infective RNA viruses and 9
viruses are retroviruses (Table 1).3 The human-infective
retroviruses are human T-lymphotropic viruses (HTLV),
human immunodeficiency viruses (HIV) and simian foamy
viruses (SFV), and consist of 3 genuses (Deltaretrovirus,
Lentivirus and Spumavirus, respectively; Table 1). The
range of hosts of retroviruses is narrow, and HIV can be
acquired only from humans although HTLV and SFV are
from suspected zoonotic origin and intraspecies trans-
mission to humans after first infection in nonhuman pri-
mates.3,4 Of the human genome, 5-8% are endogenous
retroviruses derived from viral sequences with similarity
to the infectious retroviruses. Understanding the endog-
enous retroviruses is clinically important because the
accumulation of viral sequences has created the current
human genome, and it can cause diseases associated
with endogenous retroviruses.
HUMAN-INFECTIVE RETROVIRUSES
Retroviruses consist of a dimer of single-stranded

positive sense RNA enclosed in a capsid of a lipid bilayer
envelope and contain a reverse transcriptase (RT)
enzyme.5 The retrovirus genome is composed of 3 genes
(gag, pol and env) enclosed between 2 long terminal
repeats: pol (polymerase) has RT and integrase function,
gag (group antigens) is a polyprotein with processed
matrix and core proteins, and env encodes envelope pro-
teins (Figure 1A).5

Primate T-lymphotropic viruses (PTLVs) are composed
of 3 distinct groups (PTLV-1, -2 and -3) and are also called
HTLVs in the case of infections in humans. PTLVs are
known to cause adult T-cell lymphoma/leukemia, and
inflammation due to T lymphocytes in several tissues
presents as bronchitis, uveitis and demyelinating diseases
called HTLV-1 associated myelopathy/tropical spastic par-
aparesis. PTLV-1 is the first retrovirus discovered from T-
cell lymphoma, and PTLV-2 was found originally in a
patient with hairy cell leukemia.6,7 Lately, PTLV-3 was dis-
covered in Central Africa,8 and Wolfe et al suggested that
hunting and eating bushmeat is one of the transmission
routes of PTLV beyond species. PTLVs are transmittable
via sexual and maternal contact.9

HIV destroys lymphoid CD4 T cells by pyroptosis with
caspase-1 activation and causes acquired immunodefi-
ciency syndrome.10,11 HIV-1 and -2 are classified into 4
groups (M-P) and 8 groups (A-H), respectively, and are fur-
ther finely grouped into subtypes whose configuration
changes frequently.12 The origin of HIV-1 and -2 is believed
to be independent transmission from different primates,
since the HIV-1 and -2 sequences are similar to those of
chimpanzee simian immunodeficiency virus (SIV) and Old
World monkey SIV, respectively.13 HIVs are transmittable
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TABLE 1. Human-infective retroviruses (Retroviridae species).

Species Genus References

PTLV-1 Deltaretrovirus 45

PTLV-2 Deltaretrovirus 46

PTLV-3 Deltaretrovirus 47

HIV-1 Lentivirus 48

HIV-2 Lentivirus 49

SIV Lentivirus 50

SFVagm Spumavirus 51

SFVmac Spumavirus 52

SFV Spumavirus 53

The table shows human-infective retroviruses: Primate T-lymphotropic
virus (PTLV), human immunodeficiency virus (HIV), simian immunodefi-
ciency virus (SIV), African green monkey simian foamy virus (SFVagm),
macaque simian foamy virus (SFVmac) and simian foamy virus (SFV).
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via direct contact by sexual, iatrogenic, broken skin and
maternal routes, and SIV can be transmitted to humans
from simian blood cells through broken skin.13-15

The association of SFV with specific diseases has not
been clarified, although the prevalence of SFV in humans
has been well studied.16 After infection by SFV, it has
been observed that foamy degeneration and vacuolization
occurs in the infected cells, with formation of numerous
cytoplasmic vacuoles, and glycoproteins produced are
expressed at the cell surface and result in fusion of cells.16

SFVs are known to be transmittable among simians only
via direct contact with broken skin.17-19
ENDOGENOUS RETROVIRUSES IN HUMAN
GENOME

The reverse transcripted retroviral genome can inte-
grate into a host genome, and the integrated genome is
A

B

FIGURE 1. Structure of a retrovirus genome and HERV-K. A, The retrovirus
long terminal repeats. B, HERV-K env genes originate 2 proteins (np9 and re
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heritable if the retrovirus infects a germ line of the host.
The integrated retroviral sequence, which is 7-11 kb, is
called a provirus.5 Of the human genome, 5-8% is
believed to comprise proviruses with sequence similarity
to genes and fragments of retroviruses, and the provirus
sequences are also called human endogenous retrovi-
ruses (HERVs).20 Some HERVs still have open reading
frames with the possibility of protein expression. There
have been 3,173 HERV sequences identified from the
human genome, and 39 canonical types of HERVs are
categorized as classes I, II and III on the basis of sequen-
ces similar to different genera of infectious retroviruses
(Gammaretrovirus/Epsilonretrovirus, Betaretrovirus and
Spumaretrovirus, respectively).5,21-22

It is believed that HERVs are associated with physio-
logical functions and certain diseases based on model
animal studies, but the role of HERVs is still under
debate.5 Multiple sclerosis (MS) is caused by the
destruction of myelin and oligodendrocytes, leading to
axonal disruption in the brain and spinal cord. In MS
patients, it has been reported that expression or abnor-
mal representation of HERV-H, -K and -W and a poly-
morphism in HERV-Fc1 occurs.23 Secretion of env
proteins coded by HERV-W in oligodendroglial precursor
cells reduces oligodendroglial differentiation via activa-
tion of Toll-like receptor, and blocking their differentiation
results in demyelinated and degenerating axons.24 HERV
env proteins are related to complex pathological disor-
ders and can be one of the targets for therapeutic
approach.25 A monoclonal antibody against a HERV-W
env protein is under clinical trial as a therapeutic
approach for MS.26,27

Upregulation of HERV-W was also reported in blood
cells and peripheral nerve lesions of chronic inflamma-
tory demyelinating polyradiculoneuropathy patients, and
genome has at least 3 genes (gag, pol and env) enclosed between 2
c) with a different length, and np9 proteins present 292bp deletion.
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chronic inflammatory demyelinating polyradiculoneurop-
athy might be caused by Toll-like receptor-mediated
effects of env proteins on primary Schwann cells.28 In
sporadic amyotrophic lateral sclerosis patients, env pro-
teins of HERV-K are specifically expressed in cortical
and spinal neurons and can cause cellular degenera-
tion.29 RT proteins encoded by the pol gene of HERV-K
have been detected in brain and blood tissues, but trans-
mission of amyotrophic lateral sclerosis has not yet been
demonstrated.23,30

HERVs are believed to be pathogenic in autoimmune
rheumatic diseases and cancers, with evidence of
increased expression of HERVs at the protein and RNA
levels. Increased expression of HERVs was reported in
patients with rheumatoid arthritis, systemic lupus erythe-
matosus, juvenile idiopathic arthritis and Sjogren’s
syndrome.31 Nakkuntod et al reported hypomethylation
of HERV-E and -K in systemic lupus erythematosus
patients, and a lower methylation level can allow higher
expression of HERV genes.32 HERV activation has also
been reported in breast cancer, lymphoma, melanoma,
ovarian cancer and prostate cancer, and the expression
of env proteins can be involved in tumorigenesis via
inducing cell-cell fusion.33 In addition, it is known that
sequences derived from HERVs can be a trigger of can-
cers if partial sequences of HERVs or HERV itself translo-
cates to regulatory regions of oncogenes.33 Tomlins et al
reported that a translocation of HERV-K upstream of
ETS translocation variant 1 caused cancerogenesis via
enhanced expression of ETS translocation variant 1.34

HERV-K env genes originate 2 proteins (np9 and rec)
with a different length by alternative splicing, and np9
proteins present 292bp deletion but rec is not
(Figure 1B).25 It has been reported that rec and np9 con-
tribute to tumorigenesis.25 Viral infections induced
HERVs transactivation, and the HERVs transactivation
causes enhancement of several signal transductions
and transcription factors.35 HERV-K transactivated by
Kaposi’s sarcoma-associated herpes virus is suggested
the involvement of tumorigenesis in Kaposi’s sarcoma.36
EVOLUTIONARY MEDICINE OF ENDOGENOUS
RETROVIRUSES

The endogenous retroviruses remaining in the
genome should be neutral or advantageous. If all endog-
enous retroviruses were harmful, all of the retroviruses
would have been excluded from the genome during evo-
lution leading to humans. HERV-K is a case of beneficial
endogenous retroviruses and has been integrated step-
wise during primate evolution.37 It is known that HIV-1
infection stimulates a T cell response to HERV-K anti-
gens because of protein similarity.38 Monde et al showed
that gag proteins encoded by HERV-K changed the size
and morphology of HIV particles, and these changes
caused significant diminishing of the release efficiency
and infectivity of HIV viruses.39
386
Vargiu et al estimated that HERVs diverged in the
host genome from 6 to 100 million years ago, and this
means the integration of HERVs occurred from after the
divergence of Eutheria to the divergence between chim-
panzees and humans.22 Syncytin-1 and -2 belong to the
HERV-W and -FRD families, respectively, and both of
them express env proteins with fusogenic activity and
are involved in fusion of trophoblast cells.40 The syncy-
tin-1 and -2 sequences are believed to have integrated
12-80 million years ago, and at the same time these
sequences obtained mammalian-specific placental func-
tion.41 As in this case, HERVs acquired essential func-
tions that can be evolutionarily preserved.

Retroviral sequences can accelerate the evolution
of host genomes. In the host genome, the integrated
retroviral elements can be a promotor or enhancer
and provide alternative and aberrant sites for splicing of
transcripts.5 Endogenous retroviruses can enhance
recombination and rearrangement of the host genome
via long terminal repeats, while crossover between
HERV-I loci on the Y chromosome is a cause of male
infertility due to deletion of an azoospermia factor-a
region.42
CONCLUSIONS
In this review, we focused on known human-infective

retroviruses and endogenous retroviruses in the human
genome. It was previously believed that only retroviruses
can integrate into the host genome, but Horie et al
showed that sequences derived from nonretroviral RNA
exist in the human genome. Bornaviruses, negative
sense single stranded RNA viruses, encode 6 genes
(M, X, P, N, G and L), and 2 proteins with high similarity
to N genes, called endogenous borna-like N -1 and -2,
have been found.43 It is believed that N genes of bornavi-
ruses integrated by RT activation of long interspersed
nuclear element, and this mechanism can enhance the
integration of any viruses without dependence on retrovi-
ruses.43 The mechanism is the same as a system of mak-
ing a processed gene, which was the evolutionary force
to increase a member of a gene family in the human evo-
lution.44 If the activation of long interspersed nuclear ele-
ment enhances the integration of any viruses, there
should be many more known and unknown viruses in the
human genome. Whole genome sequencing of viruses
and infected hosts will help to discover new viral sequen-
ces in the human genome, and the number of viral
sequences in the genome could be higher than the cur-
rent estimation based on the sequence similarity of only
retroviruses (5-8%). Most viruses can infect specific tis-
sues or cells in the human body, and it is not clear how a
virus can recognize specific cells and invade cells. If
there is affinity between the virus and cells, the virus
might tend to get into the genome of specific cells with
high affinity. If there is a niche in the localization of the
virus, the niche might allow an entry route of the virus
and thereby determine integration.
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