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[ABSTRACT] Huashi  Baidu  prescription  (HSBDF),  recommended  in  the  Guideline  for  the  Diagnosis  and  Treatment  of  Novel
Coronavirus (2019-nCoV) Pneumonia (On Trials, the Seventh Edition), was clinically used to treat severe corona virus disease 2019
(COVID-19) with cough, blood-stained sputum, inhibited defecation, red tongue etc. symptoms. This study was aimed to elucidate and
profile the knowledge on its chemical constituents and the potential anti-inflammatory effect in vitro. In the study, the chemical con-
stituents in extract of HSBDF were characterized by UPLC-Q-TOF/MS in both negative and positive modes, and the pro-inflammat-
ory cytokines  were  measured by enzyme-linked immunosorbent  assays  (ELISA) to  determine the  effects  of  HSBDF in  lipopolysac-
charide (LPS)-stimulated RAW264.7 cells.  The results  showed that  a total  of  217 chemical  constituents were tentativedly character-
ized in HSBDF. Moreover, HSBDF could alleviate the expression levels of IL-6 and TNF-α in the cell models, indicating that the anti-
viral  effects of HSBDF might be associated with regulation of the inflammatory cytokines production in RAW264.7 cells.  We hope
that the results could be served as the basic data for further study of HSBDF on anti-COVID-19 effect.
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Introduction

Corona Virus Disease 2019 (COVID-19), a highly patho-
genic Human coronaviruses (hCoVs), could cause viral pneu-
monia  and  pulmonary  infection.  COVID-19  possessed  long
latency,  strong  infectivity  and  difficult  to  cure  features  etc.,
which  threaten  the  people’s  health,  economic  development
and  social  harmony [1].  By  October  21,  2020,  more  than
40 000 000 people have been firmly diagnosed with COVID-
19  around  the  world  according  to  the  statistical  information
of  1point3acres  (https://coronavirus.1point3acres.com/),  and
there has been still no effective drugs to cure the devastating

disease.  According  to  the  ancient  Chinese  documents  and
clinical  experience,  traditional  Chinese medicine (TCM) had
a  good  curative  effect  on  viral  pneumonia.  National  health
and  health  commission  (PRC)  have  updated  and  released  in
the  Guideline  for  the  Diagnosis  and  Treatment  of  Novel
Coronavirus (2019-nCoV)  Pneumonia  (On  Trials,  the  Sev-
enth Edition), and the TCMs were recommended for preven-
tion  and  treatment  of  COVID-19.  In  the  Seventh  Edition,
Huashi Baidu Fang (HSBDF) consists of 14 hebal medicines
(Ephedrae  herba,  Armeniacae  semen  amarum,  Gypsum
fibrosum, Glycyrrhizae radix et rhizoma, Agastache rugosus,
Magnoliae  officinalis  cortex,  Atractylodis  rhizoma,  Tsaoko
fructus,  Pinelliae  rhizoma  praeparatum,  Poria,  Rhei  radix  et
rhizoma,  Astragali  radix,  Descurainiae  semen  lepidii  semen,
Paeoniae  radix  rubra)  were  recommended  and  used  to  treat
the  critical  patients  with  COVID-19 infection,  and exhibited
good  therapeutic  effect  in  clinical  practice [2].  HSBDF  was
developed  referred  to  multiple  classical  prescriptions  (Ma
Xing  Shi  Gan  Decoction,  Xuan  Bai  Cheng  Qi  Decoction,
Dayuanyin, Huoxiangzhengqqi  San,  Taoren Chengqi  Decoc-
tion,  Tingli  Dazao  Xiefei  Decoction)  for  treatment  of  fever,
cough,  nausea,  etc.  Ma  Xing  Shi  Gan  Decoction  and  Xuan
Bai Cheng Qi Decoction mainly used for facilitaing lung and
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clearing excretion, evacuating upper-jiao [3-4]. Dayuanyin and
Huoxiangzhengqqi San were used for dissipating hygrosis re-
store  stomach,  mediating  middle-jiao [5-6].  Taoren  Chengqi
Decoction,  Tingli  Dazao  Xiefei  Decoction  were  applied  for
treating  cardiac  failure  and  eliminating  toxicant,  reaching
lower-jiao [7-8]. Among them, Ma Xing Shi Gan Decoction has
been  clinically  applied  to  treat  Coronavirus  Disease  2019
with fever, weakness and cough [9-11].

However,  the detailed analysis  involved in the chemical
components,  the  comprehensive  mechanisms  and  the  active
ingredients  responsible  for  antiviral  effectiveness  of  HSBD
remained  elusive.  TCM  prescription  was  a  complex  system,
and the efficient  detection and characterization of the poten-
tially  bioactive  compounds  in  TCM prescriptions  was  still  a
massive  challenge.  Recently,  ultra-high  performance  liquid
chromatography coupled  with  high  resolution  mass  spectro-
metry  (LC-HRMS)  has  proved  its  superiority  in  structural
profiling  of  complex  components [12].  On  the  one  hand,  LC-
HRMS was able to offer the potential chemical element com-
position  and  infer  the  detailed  structure  of  analytes  on  the
basis of the measurement of accurate mass and generation of
the MS/MS or MSn data [13]. On the other hand, due to the ad-
vantages  of  high-efficiency,  high-throughput  screening  and
low  solvent  consumption,  it  could  determine  hundreds  or
even  thousands  of  MS  features  using  a  single  injection  in  a
short time and with less consumption of organic solvents [14].
LC-HRMS has  been  used  for  comprehensive  characteriza-
tion of chemical constituent of anti-COVID-19 TCM formu-
las, such  as  qingfei  paidu  decoction,  maxing  shigan  decoc-
tion  and  lianhuaqingwen  capsule [15-17]. Enzyme-linked  im-
munosorbent  assay  (ELISA)  was  a  sensitive  immunoassay
that  used  an  enzyme  linked  to  an  antibody  or  antigen  as  a
marker for  the detection of a specific protein.  It  was usually
applied  for  the  quantification  of  diverse  pathological  factors
due to its convenient, fast and accurate advantages in the de-
termination  of  a  series  of  inflammatory  cytokines  in  many
suitable situations.

With the unraveling of the relationship between immune
responses  and  COVID-19,  immune  characteristics  are  now
being recognized as potential biomarkers for disease progres-
sion  as  well  as  potential  therapeutic  targets  for  COVID-
19 [18-21].  In  the  present  study,  a  UPLC-Q-TOF/MS  method
was developed  for  rapid  characterization  of  chemical  con-
stituents in  HSBDF.  Then,  lipopolysaccharide  was  sub-
sequently  used to  simulate  the  inflammatory  response  in  the
RAW64.7 cells to explore the potential anti-inflammation ef-
fect of HSBD. High concentrations of cytokines were also re-
corded  in  plasma  of  patients  infected  with  COVID-19  in
Wuhan,  such  as  GCSF  (granulocyte  macrophage-colony
stimulating  factor),  IL-6  (interlukin-6),  IL-1β (interleukin
1beta)and  TNF-α (tumor  necrosis  factor-alpha),  suggesting
that  the  cytokine  storm was  associated  with  disease  severity
in  COVID-19  infection.  To  determine  the  effect  of  HSBDF
on the regulations of the related pro-inflammatory cytokines,
the  expression  levels  of  IL-6  and  TNF-α in the  cell  super-

natant were measured by ELISA. The data suggested that the
anti-virus activity of HSBDF might be associated with an at-
tenuated proinflammatory cytokine response. 

Experimental
 

Materials and reagents
HPLC-grade  acetonitrile  and  methanol  were  purchased

from  Merck  KGaA  (Merck,  Darmstadt,  Gemany).  Formic
acid  (FA)  was  purchased  from  Sigma-Aldrich  (Sigma-Ald-
rich, StLouis, MO, USA), and deionized water (18.2 MΩ·cm
at 25 °C) was prepared by a Millipore Alpha-Q water purific-
ation system  (Millipore,  Bedford,  USA).  The  herbal  materi-
als  of  ephedrae  herba  (voucher  specimen  number:
EH20200601),  armeniacae  semen  amarum  (ASA20200601),
gypsum  fibrosum  (GF20200601),  glycyrrhizae  radix  et
rhizoma (GA20200601), agastache rugosus (ARU20200601),
magnoliae  officinalis  cortex  (MOC20200601),  atractylodis
rhizoma  (ARH20200601),  tsaoko  fructus  (TF20200601),
pinelliae  rhizoma  praeparatum  (PRP20200601),  poria
(P20200601), rhei  radix  et  rhizoma  (RRR20200601),  as-
tragali radix (ARA20200601), descurainiae semen lepidii se-
men (DSLS20200601), paeoniae radix rubra (PRR20200601)
were purchased from Shanghai  Dehua National  Pharmaceut-
ical  Products Co. Ltd.  (Shanghai,  China),  Shanghai Huaying
Pharmaceutical Co.  Ltd.  (Shanghai,  China),  Shanghai  Qing-
pu Traditional Chinese Medicine Yinpian Co. Ltd. (Shanghai,
China), Shanghai Yutiancheng Traditional Chinese Medicine
Yinpian Co. Ltd. (Shanghai, China). All the herbal materials
were  authenticated  by  Professor  GUO  De-An  following  the
method described in China Pharmacopeia (2015 edition), and
the  voucher  specimens  were  deposited  at  the  authors’ lab  in
Shanghai  Institute  of  Materia  Medica,  Chinese  Academy  of
Sciences  (Shanghai,  China).  Eight  reference  standards
(ephedrine,  pseudoephedrine,  liquiritin,  glycyrrhizic  acid,
aloe-emodin,  rhein,  physcion,  quercetin-3-O-β-D-glucose-7-
O-β-gentiobioside)  were  purchased  from  National  Institutes
for  Food  and  Drug  Control  (Beijing,  China),  Six  reference
standards (calycosin-7-O-β-D-glucoside, magnolol, honokiol,
amygdalin,  emodin,  astragaloside  IV)  were  purchased  from
Shanghai  Nature  Standard  Technical  Service  Co.,  Ltd.
(Shanghai, China), Paeoniflorin was purchased from Sichuan
Weikeqi  Biological  Technology  Co.,  Ltd.  (Sichuan,  China).
The Purity of all reference standards was more than 98%.

The  extracted  liquid  of  HSBDF  for  cell  treatment  was
obtained  as  described  above,  which  was  finally  adjusted  to
10  μg·μL−1 with  phosphate  buffered  saline  (PBS)  filtered
through  a  0.22  μm syringe  filter,  and  stored  at  −20  °C until
use.  Lipopolysaccharides  (LPS,  from Escherichia  coli sero-
type 055: B5) were purchased from Sigma-Aldrich (St. Louis,
MO,  USA).  3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltet-
razolium  bromide  (MTT),  dimethylsulfoxide  (DMSO)  were
obtained  from  Millipore  (Billerica,  MA,  USA).  Dulbecco’s
modified  Eagle’s  medium  (DMEM)  and  fetal  bovine  serum
(FBS) were purchased from Gibco (Grand Island, NY, USA).

WEI Wen-Long, et al. / Chin J Nat Med, 2021, 19(6): 473-480

– 474 –



The ELISA kits  for  IFN-β,  IL-6 and TNF-α were  purchased
from the Boster Bioengineering Institute (Shanghai, China). 

Sample preparation
Sample preparation for characterization of chemical con-

stituents in  HSBDF:  an  amount  of  herbal  materials  was  ac-
curately  weighed  according  to  the  prescription  dose.  The
herbal materials (ephedrae herba, armeniacae semen amarum,
gypsum  fibrosum,  glycyrrhizae  radix  et  rhizoma,  magnoliae
officinalis cortex, atractylodis rhizoma, tsaoko fructus, pinel-
liae rhizoma praeparatum, poria, astragali radix, descurainiae
semen  lepidii  semen,  paeoniae  radix  rubra)  were  added  into
gallipot, and soaked for 10 minutes with ten times the amount
of  water.  Then  the  herbal  materials  (agastache  rugosus  and
rhei  radix  et  rhizoma)  were  added  when  the  water  began  to
boil  slightly.  The  prescription  was  decocted  twice,  and  each
time for 30 min. The extract was merged and dried by freeze
drying.  The 0.1  g  HSBDF freeze dried sample  was weighed
and added 10 mL methanol−water (1 : 1, V/V) to prepare test
solution,  the  supernatant  was  centrifuged  at  14  000  r·min−1

before LC-MS analysis. 

UPLC-Q-TOF/MS analysis conditions
Chromatographic  separation  of  HSBDF  was  performed

on a Waters ACQUITY I-Class UPLC® system (Waters Cor-
poration,  Milford,  MA,  USA)  equipped  with  an  ACQUITY
UPLC® HSS T3 column (1.8  μm, 2.1  mm × 100 mm).  The
HSBDF  was  eluted  by  a  binary  mobile  phase  composed  of
acetonitrile (B) and 0.1% formic acid (V/V; A) following the
gradient  elution  program:  0−20  min:  0−60% B;  20−22  min:
60%−90% B;  22−25  min:  90%−90% B.  The  flow  rate  was
0.3 mL·min−1,  the column temperature was set at 30 °C, and
5 μL of the test solution was injected for analysis.

High-resolution profile MS data were acquired on a Wa-
ters  Xevo®  G2-S  QTOF  mass  spectrometer  (Waters,
Manchester,  UK)  connected  to  the  UPLC  system via a
Zpray™  ESI  source.  The  mass  range  of m/z 150−1500  was
set  for  full-scan,  and  the  collision  energy  ramp  of  15−25  V
and 35−45 V were set  for low mass and high mass,  respect-
ively. Capillary voltages of 2 kV, cone voltage of 40 V, cone
gas  flow  of  30  L·h−1,  source  temperature  of  140  °C,  and
desolvation gas flow of 700 L·h−1 at 500 °C were utilized. A
solution of leucine-enkephalin (1 μg·mL−1) was used as lock
mass for data calibration. 

Cell culture
Murine macrophage  cell  line  (RAW264.7)  was  pur-

chased  from  the  Type  Culture  Collection  of  the  Chinese
Academy  of  Sciences,  Shanghai,  China.  RAW264.7  cells
were  cultured  in  DMEM  supplemented  with  10% FBS  and
antibiotics (100 U·mL−1 penicillin G and 100 μg·mL−1 strep-
tomycin) (Gibco).  Cells were cultured under standard condi-
tion (5 % CO2 in air in a humidified environment at 37 °C). 

Cytotoxicity assay
RAW264.7 cells were placed in 96-well plates at a dens-

ity of 4 × 104 cells/mL for 24 h and then treated with differ-
ent concentrations of HSBDF. Cell viability was measured by
the MTT assay method according to the instructions. The ab-

sorbance  was  measured  at  490  nm  with  a  microplate  reader
(Thermo  Scientific  Varioskan  LUX).  The  normal  control
(cells  with  no  treatment)  was  set  at  100%,  and  the  treated
samples  were  normalized  to  this  value.  The  50% cytotoxic
concentration  (CC50)  was  calculated  as  the  concentration  of
HSBDF causing the death of 50% of the cells. 

Determination  of  inflammatory  cytokines  by  enzyme-linked
immunosorbent assay (ELISA)

The  cells  were  seeded  in  12-well  plates  (3  ×  105

cells/well)  and  were  co-treated  with  HSBDF  (20  and  100
μg·mL−1)  in  the  presence of  LPS (1 μg·mL−1)(except  for  the
Blank group) for 4 or 12 h. After centrifugation, cell-free su-
pernatants  were  collected  for  assaying  TNF-α, IL-6  produc-
tion. The secretion amount of TNF-α, IL-6 in the media were
measured  through  ELISA  kits  (Boster,  Shanghai,  China)  by
following the standard protocol. The 450 nm absorbance was
tested through  a  microplate  reader  (Thermo  Scientific  Vari-
oskan LUX).cientific Varioskan LUX). 

Data processing
MassLynx  V4.1  software  (Waters,  Milford,  USA)  was

employed in  data  acquisition  and  processing.  One-way  ana-
lysis of variance (ANOVA) and Student’s t-test were used to
assess  differences  between  the  treatment  groups.  The P val-
ues less than 0.05 were considered as statistically significant.
The  CC50 values  were  calculated  by  nonlinear  regression  in
GraphPad Prism 5 (San Diego, CA, USA). 

Results and Discussion
 

Optimization of LC and MS conditions
In order to acquire good separation and peak shapes, the

mobile  phase  system  (methanol−water/acetonitrile−water),
type  of  column  (BEH  C18,  HSS  T3  and  BEH  HILIC),
column  temperature  (30,  35,  40  °C)  were  optimized.  The
0.1% formic acid water−acetonitrile were selected as mobile
phase  system to  obtain  good  distribution  for  the  majority  of
peaks,  HSS  T3  column  possessed  better  separation  capacity
among  three  different  columns,  and  the  column  temperature
was set 30 °C.

For  the  MS  conditions,  both  the  positive  and  negative
mode were applied for characterization of chemical constitu-
ents  in  HSBDF  due  to  the  abundant  MS  information
(Fig.  1).  Meanwhile,  the  capillary  voltage,  cone  voltage  and
collision  energy  were  optimized,  and  2  kV  for  capillary
voltages, 40 V for cone voltage, 15–25 V and 35–45 V were
set for collision energy ramp of low mass and high mass. 

Characterization of chemical components in HSBDF extract
An UPLC-Q-TOF/MS  method  was  developed  for  com-

prehensive characterization  of  chemical  constituents  in  HS-
BDF  extract  in  both  negative  and  positive  mode.  A  total  of
217  chemical  constituents  including  (alkaloid,  flavone,
terpenoid,  lactones,  lignan,  phenylpropanoids,  phenolic  acid,
saponin,  anthraquinone,  others)  were  tentatively  identified
based on the MS information, fragmentation pattern of stand-
ards  and  published  references,  among  which  69  chemical
constituents were identified in positive mode, and 148 chem-
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ical  constituents  were  identified  in  negative  mode  (Fig.  2).
Among  them,  14  chemical  constituents  were  identified
through  comparing  the  retention  time  and  MS  spectra  of
standards.  The  numbers  of  flavone  and  saponin  compounds
were  higher  than  other  compounds,  and  accounted  for  36%
and 10% respectively (Fig. 3). 

Components from ephedrae herba
Alkaloids  were  the  main  bioactive  constituents  in

ephedrae  herba,  and  possessed  good  therapeutic  effect  with
asthma [22]. Alkaloids had better abundance in positive mode,
and the main adduct form was [M + H]+ peak. Take ephedrine
as  an  example,  ephedrine  showed  an  [M  +  H]+ ion  at m/z
166.12,  and  fragmented  into  three  products  at m/z 148.11,
133.08, 117.06 (Fig. 4). As shown in Fig. 4c, ephedrine gen-
erated bond fission of hydroxyl with loss a H2O (18 Da), then
dehydroxylated-ephedrine  was  further  fragmented  to  the
product ion at m/z 133 and 117 through losing a CH3 or NH2-
CH3 

[23]. Thus, four alkaloids from ephedrae herba were iden-
tified. Meanwhile, proline and diisobutyl phthalate were also
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Fig. 1     Characterization of chemical constituents in HSBDF. The chemical constituents in HSBDF extract were characterized in
both negative and positive mode by UPLC-Q-TOF/MS
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Fig. 2     Diversity of chemical constituents in HSBDF
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detected [24, 25]. 

Components from astragali radix
There were 13 flavone, 3 other compounds and 9 sapon-

in  were  supposedly  identified  in  both  positive  and  negative
ion  mode  from astragali  radix [26].  In  the  positive  ion  mode,
flavone compounds exhibited the [M + H]+ ion form, calycos-
in-7-O-β-D-glucoside  was  used  as  a  case  for  deduction  of
fragmentation pattern (Fig. S1). The precursor ion of calycos-
in-7-O-β-D-glucoside  (m/z 447.1277)  was  observed  at  8.32
min,  and  fragmented  into m/z 285  by  losing  a  glucose
(C6H10O5).  The  fragment  (m/z 285)  was  further  produced
three product ions (m/z 270, 253 and 137) with loss of CH3,
CH3O and C9H7O2 (Fig. S1d).  The saponin compounds pos-
sessed good response in  negative  ion mode,  and represented
[M  +  COOH]− ion  form.  The  fragmentation  pattern  was
showed  with  astragaloside  IV.  The  precursor  ion  (m/z
829.4582) was observed at 14.52 min in MS1 and translated
into [M − H]− ion form in MS2 (Fig. S2). Meanwhile, the C-3
and C-6 position C-O bonds of [M − H]− ion were broken and
generated  two  characteristic  fragments  (m/z 621  and m/z
489).  The  fragment  (glucose, m/z 179)  was  further  ruptured
and  produced m/z 161,  119  and  101  (Fig.  S2c)  d  101  (Fig.
S2c) [27]. According  to  the  fragmentation  pattern  and  pub-
lished references,  9  saponin  compounds  from astragali  radix
were tentatively identified in HSBDF [28-29]. 

Components from magnoliae officinalis cortex
There were 7 alkaloids, 2 flavones, 3 phenylpropanoids,

12 lignans and 6 other compounds identified from magnoliae
officinalis cortex in positive and negative ion mode [30-31]. For
the  identification  of  lignans,  magnolol  and  honokiol  were
used to deduce the fragmentation pattern (Fig. S3). In negat-
ive ion mode, magnolol and honokiol presented [M − H]− ion
form  (m/z 265 and  265),  and  the  main  characteristic  frag-
ments  were m/z 247 and 224 with  loss  of  OH and C3H5 

[32].
Furthermore,  7  alkaloids  were  supposedly  identified  on  the
basis of the published references [33-34]. 

Components from armeniacae semen amarum and glycyrrhiz-
ae radix et rhizoma

Two compounds  (amygdalin  and  prunasin)  were  identi-
fied from xingren. The MS1, MS2 and fragmentation pattern
of amygdalin were shown in Fig. S4. A total of 20 flavones,
13  saponins,  1  disaccharide  and  1  phenylpropanoids  were
found from gancao. One flavone (liquiritin) and saponin (gly-
cyrrhizic  acid)  were  applied  for  deduction  of  fragmentation
pattern.  For  the  liquiritin,  the  glycoside  was  lost  from [M −
H]− ion (m/z 417) and the m/z 255 was further fragmented in-
to m/z 135 and 119 (Fig. S5). For the saponin, the precursor
ion was [M − H]− ion at m/z 821, and the main fragment ions
(m/z 645  [M  −  H-(C6H8O6)]

−, m/z 351  [2C6H8O6 − H]−, m/z
193  [C6H9O7]

−)  that  were  generated via the MS/MS  frag-
mentation were observed in the negative ion spectrum [35]. 

Components from rhei radix et rhizoma
Forty compounds including 7 phenolic acids, 7 flavones,

14 anthraquinones,  3  phenylpropanoids  and  8  other  com-
pounds from rhei radix et rhizoma were tentatively identified
in  negative  ion  mode [36-37].  For  the  anthraquinones,  emodin
and rhein were used as examples to illustrate the characteriza-
tion process. The characteristic fragments (m/z 241 and 225)
were fractured from [M − H]− ion (emodin) at m/z 821 by los-
ing  CO  and  OH  (Fig.  S6).  The  [M  −  H]− ion  of  rhein  was
presented at m/z 283 in MS1, and the fragments (m/z 239, 211
and 183) were produced with loss of COOH, CO and CO in
MS2 (Fig.  S7).  The phenolic  acids,  flavones  and phenylpro-
panoids  were  supposedly  characterized  through  comparing
with elementary composition and characteristic fragments de-
rived from published references [38-39]. 

Components from descurainiae semen lepidii semen
There  were  6  flavones  from  descurainiae  semen  lepidii

semen were tentatively identified under negative ion mode in
HSBDF [40-41].  Quercetin-3-O-β-D-glucose-7-O-β-gentiobios-
ide  showed  [M  −  H]− form  at m/z 787,  and  three  fragments
(m/z 625 [M − H-glc]−, m/z 463 [M − H-2glc]−,  and m/z 301
[M  −  H-3glc]–) were  observed  in  MS2  (Fig.  S8).  The  frag-
mentation  pattern  of  quercetin-3-O-β-D-glucose-7-O-β-gen-
tiobioside was exhibited in Fig. S8c. 

Components from paeoniae radix rubra
A  total  of  14  components  (2  phenolic  acids,  2  flavones

and 11  terpenoids)  from  paeoniae  radix  rubra  were  tentat-
ively  identified  in  HSBDF [32-43].  Paeoniflorin  was  used  as  a
case  for  elucidation  of  proposed  fragmentation  pathways  of
terpenoids.  As  shown  in  Fig.  S9,  the  precursor  ion  was
[M + COOH]− form at m/z 525 in MS1, and three fragments
(m/z 449, 327 and 121) were produced in MS2. The m/z 449
was generated  by  losing  a  HCHO  (30Da),  and  further  frag-
mented  into  a  minor  fragment  ion  at m/z 327  and  a  benzoic
acid  ([M  −  H]−,  121  Da).  According  to  the  fragmentation
pattern, 11  terpenoids  were  tentatively  characterized  in  HS-
BDF [44-47]. 

Components  from  agastache  rugosus,  atractylodis  rhizoma,
tsaoko fructusand pinelliae rhizoma praeparatum

There were  17  compounds  (1  lignan,  4  phenylpro-
panoids  and  12  flavones)  fromagastache  rugosus [48-52],  26
compounds (4  terpenoids,  3  flavones,  5  lactones,  1  phenyl-
propanoid  and  13  other  compounds)  from  atractylodis
rhizoma [53],  8  compounds  (3  phenolic  acids  and 5  flavones)
from tsaoko fructus [54],  8 compounds (4 flavone and 4 other
compounds) from  pinelliae  rhizoma  praeparatum  were  sup-
posedly identified in HSBDF [55-56]. 

Cytotoxicity assay in RAW264.7 cells
We evaluated  cell  viability  of  RAW264.7  cells  cultured

with different  concentrations  of  HSBDF  using  the  MTT  as-
say to find a suitable concentration for application in the sub-
sequent  experiment.  These  results  indicated  that  the  HSBD
showed unapparent  cytotoxicity  to  RAW264.7  cells  at  con-
centrations up to 200 μg·mL−1.  The CC50 of  HSBDF toward
RAW264.7 cells was 417 μg·mL−1 (Fig. 5). 
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Inhibition  of  the  production  of  TNF-α and  IL-6  in  LPS-in-
duced RAW 264.7 macrophages

Severe  acute  respiratory  syndrome  CoV  (SARS-CoV)
and  Middle  East  respiratory  syndrome  CoV  (MERS-CoV)
were often associated with massive inflammatory cell infiltra-
tion and  elevated  proinflammatory  cytokine/chemokine  re-
sponses  resulting  in  severe  respiratory  illness.  To  determine
the  effect  of  HSBDF  on  the  expression  of  proinflammatory
cytokine,  an in  vitro LPS-stimulated  inflammatory  response
cell model was established. The expression levels of IL-6 and
TNF-α in the cell  supernatant were measured by ELISA. As
shown in Fig.  6,  the  elevated expressions  of  these  cytokines
induced by  LPS  in  RAW264.7  cells  were  inhibited  by  HS-
BDF  treatment  in  a  concentration-dependent  manner  (*P <
0.05). 

Conclusion

In this study, a rapid method was developed and applied
to characterize  and  profile  the  chemical  components  in  HS-
BDF using UPLC-Q-TOF/MS. A total of 217 constituents in-
cluding  alkaloids,  flavones,  terpenoids,  lactones,  lignans,
phenylpropanoids,  phenolic  acids,  saponins,  anthraquinones
and other compounds were identified or tentatively character-
ized.  It  was  known  that  COVID-19  infection  could  induce
immediate and late host immune responses in patients.  Most
severe COVID-19 cases exhibited an extreme increase in in-
flammatory  cytokines,  including  IL-1β,  IL-6,  IL-10,  IFN-γ,
and TNF-α, representing a “cytokine storm”. Though the pre-
cise mechanism of antigen presentation, cellular and humoral
immune responses, and cytokine storm during the COVID-19
infection were  not  yet  clearly  understood,  but  the  increasing
level of IL-6 in COVID-19 patients could induce the differen-
tiation  of  proinflammatory  Th17  cells,  upregulate  cytokine
storm,  lung  inflammation  and  dysfunction [57-58].  Thus  pro-
inflammatory  cytokine  expression  levels  (IL-6  and  TNF-α)
upon LPS administration in RAW264.7 cells were measured
and results  were  shown  that  HSBDF  could  alleviate  the  ex-

pression levels of IL-6 and TNF-α in the cell models, indicat-
ing that the antiviral effects of HSBDF might be attributed to
the regulation of the inflammatory cytokines production. It is
hoped that the results could provide the essential data for the
further study on pharmacodynamic material basis of HSBDF
in COVID-19. 

Supplementary Materials

Supplementary materials  are available as Supporting In-
formation, and can be requested by sending E-mail to the cor-
responding author. 
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