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Abstract A novel method for the simultaneous determination of 3-nitrotyrosine (NT) and 3-chlorotyrosine
(CT) in human plasma has been developed based on direct analysis in real time–tandem mass spectrometry
(DART–MS/MS). Analysis was performed in the positive ionization mode using multiple reaction monitoring
(MRM) of the ion transitions at m/z 216.2/170.1 for CT, m/z 227.2/181.1 for NT and m/z 230.2/184.2 for the
internal standard, d3-NT. The assay was linear in the ranges 0.5–100 μg/mL for CT and 4–100 μg/mL for NT
with corresponding limits of detection of 0.2 and 2 μg/mL. Intra- and inter-day precisions and accuracies
were respectivelyo15% and715%. Matrix effects were also evaluated. The method is potentially useful for
high throughput analysis although sensitivity needs to be improved before it can be applied in clinical
research.
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1. Introduction

3-Nitrotyrosine (NT) and 3-chlorotyrosin (CT) are oxidation
products of reactive oxygen species and other radicals formed
under inflammatory conditions. CT is formed when neutrophil-
and monocyte-derived myeloperoxidase catalyzes the forma-
tion of hypochlorous acid which then chlorinates tyrosine
residues in proteins1–4. NT is formed when the superoxide
anion O�–

2

� �
reacts with nitric oxide (NO•) to produce the

powerful oxidant peroxynitrite (ONOO�), which nitrates
tyrosine residues3,5–7. Many researchers have reported that
NT and CT are associated with many disorders such as lung
and cardiovascular pathologies, atherosclerosis, autoimmune
diseases, type 2 diabetes mellitus, and other inflammatory
conditions7–16. Because of this, the determination of NT and/
or CT is of great importance in understanding the etiology of
these disorders.

To date, a number of analytical methods have been developed
to determine plasma NT and CT including ELISA17, surface
plasmon resonance immunoassay18, high performance liquid
chromatography (HPLC) after derivatization19, HPLC with
electrochemical20,21 and fluorescence22 detection, gas chromato-
graphy (GC) with electrochemical (GC–ECD) detection23, GC
with mass spectrometric (GC–MS) detection with24 and with-
out25 derivatization, GC tandem mass spectrometry (GC–MS/
MS)26, liquid chromatography mass spectrometry (LC–MS)27

and LC–MS/MS 25,28. The application of MS to the determina-
tion of NT has been recently reviewed29. However, since these
methods require sample preparation and, in the case of the
chromatographic methods, retention and separation, they are
limited for high throughput bioanalysis. Accordingly we have
investigated the application of direct analysis in real time-tandem
mass spectrometry (DART–MS/MS), a technique which requires
minimal or no sample preparation.

Direct analysis in real time (DART)30–32 is a novel ionization
technique which relies on the fundamental principles of atmo-
spheric pressure chemical ionization (APCI). The DART ion
source consists of a tube containing a chamber through which
helium or nitrogen flows at atmospheric pressure. A glow
discharge is initiated by applying a kilovolt potential between a
needle electrode and a grounded counter electrode. The gas exiting
the chamber then passes through a tube containing a perforated
intermediate electrode, an optional gas heater, and a grid electrode
positioned at the exit behind an insulating cap. Ionization occurs
when the gas makes contact with a sample in the open air gap
between the DART outlet and the mass spectrometer sampling
orifice30. The technique has been successfully employed for the
analysis of human tissues and body fluids without sample
preparation31–32. This paper reports the application of DART–
MS/MS to the determination of NT and CT in human plasma.
2. Materials and methods

2.1. Materials

CT and NT were purchased from Sigma-Aldrich. Deuterium-
labeled NT (d3-NT) for use as internal standard (IS) was purchased
from CDN Isotopes, Inc. Acetonitrile was HPLC grade. Ultrapure
water was obtained using a Milli-Q RG unit (Millipore, Bedford,
USA). Dip-it samplers were purchased from Aspec Technologies
Ltd. (Beijing). Plasma samples for analysis were prepared from
blood samples immediately after collection for diagnostic tests by
centrifugation at 3000 rpm for 10 min at 4 1C and kept frozen at
�20 1C until required. All procedures were performed in accor-
dance with the local Ethics Committee guidelines.

2.2. Instrumentation and experimental conditions

A DART 100 source (IonSense Inc, Saugus, USA) with Control
Software (Version 2.03) was coupled to a 5500 triple quadrupole
tandem mass spectrometer (Applied Biosystems, AB Sciex,
Toronto Canada) using Analyst 1.5 software (AB Sciex). The
DART orifice, the ceramic tube (4 mm i.d.� 7.3 cm length) and
the mass spectrometer orifice were aligned so that the stream of
helium from the DART source was introduced into the mass
spectrometer orifice. Introduction of samples into the DART gas
stream was controlled by an acquiring module with dip-it samplers
inserted into the DART source.

Analysis was performed in the positive ionization mode with
multiple reaction monitoring (MRM) of the ion transitions at
m/z 227.2/181.1 for NT, m/z 216.2/170.1 for CT and m/z 230.2/
184.1 for the IS. Curtain gas was nitrogen (purityZ99.999%) set
at 20 psi, declustering potential (DP) þ80 V and collision energies
(CEs) þ16, þ18 V and þ16 V for NT, CT and IS, respectively.
DART parameters were as follows: ionizing gas helium (puri-
tyZ99.999%) at 2.8 L/min and 350 1C; grid voltage þ150 V;
discharge needle voltage þ350 V; distance between the DART
orifice and the ceramic tube 4.5 cm; and sliding speed of the
sample acquiring module 0.4 mm/s.

2.3. Sample preparation

Mixtures of 50 μL of plasma, 50 μL of the d3-NT solution, and
100 μL of the standard solutions were vortexed and injected
directly into the DART–MS system. Concentration of analytes
was calculated using calibration curves prepared using calibration
standards prepared freshly on each assay day.

2.4. Assay validation

2.4.1. Preparation of calibration standards and quality control
(QC) samples
Stock solutions (1 mg/mL) of CT, NT and IS were prepared with
5% acetonitrile. Standard solutions of analytes were prepared at
concentrations of 0.5, 5, 10, 20, 40, 80, 100 μg/mL for CT and 4,
8, 10, 20, 40, 80, 100 μg/mL for NT. Calibration standards were
prepared from plasma samples thawed at room temperature by
mixing 50 μL plasma with 50 μL IS solution (200 μg/mL) and
100 μL CT and NT standard solutions. Low, medium and high QC
samples were prepared in the same way at concentrations of 7.8,
25 and 78 μg/mL respectively.

2.4.2. Specificity
A number of blank plasma samples were vortexed and injected
directly into the DART–MS system.

2.4.3. Linearity and sensitivity
Linearity of calibration curves based on ratios of peak areas of
analyte to IS was assessed by linear regression. The limit of
detection (LOD) and lower limit of quantitation (LLOQ) were
calculated as 3.3� SD/slope and 10� SD/slope, respectively,
where SD is the standard deviation of the analyte response at a
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concentration close to its LLOQ and slope is the slope of the
corresponding calibration curve.
2.4.4. Accuracy, precision and matrix effects
Intra- and inter-day precision and accuracy were determined by
assay of 5 replicates of low, medium and high QC samples on the
same day and on three consecutive days. Precision was expressed
as relative standard deviation (RSD%) and accuracy as relative
error (RE%). Matrix effects (ME) were evaluated by assay of 5
replicates of QC samples and comparing the results with those
obtained by assay of the corresponding standard solutions (non-
matrix solutions). Matrix effects were calculated as percent of
nominal concentrations (100�AQC/Astd).
Figure 2 Effect of helium ionizing gas temperature on DART-MS/MS
sensitivity for detection of NT (1) and CT (2).

Figure 3 Effect of concentration of acetonitrile on sensitivity for
detection of NT (1) and CT (2).
3. Results and discussion

3.1. Optimizing DART–MS/MS parameters

The structural formulae and product ion (MS2) spectra of the
analytes and IS in the positive ionization mode are shown in
Fig. 1. The precursor-product ion transitions giving the highest
responses, namely m/z 227.2/181.1 for NT, m/z 216.2/170.1 for
CT, and 230.2/184.1 for CT, were selected as quantifiers in the
MRM mode and transitions giving the next highest response,
namely m/z 227.2/168.1 for NT, m/z 216.2/199.2 for CT, and
m/z 230.2/171.1 for IS, were selected as qualifiers. This assures the
specificity of analysis in the absence of chromatographic
separation.

Both MS parameters (DP and CE) and DART parameters
(choice of nitrogen or helium as ionizing gas, ionizing gas
temperature (250, 350, 450 or 550 1C), grid voltage (þ100,
þ150, þ250 or þ350 V), distance between the orifice of the
DART source and the ceramic tube (45, 75 or 95 mm), and sliding
speed of the sample acquiring module (0.2, 0.4, 0.6 or 0.8 mm/s)
were optimized. MRM transitions and optimal parameters are as
given in Section 2.2. Notably among the DART parameters,
helium gave greater ionization and ion transmission than nitrogen
but its temperature was a critical factor as shown in Fig. 2. CT
gave a greater response than NT at all temperatures and both
analytes gave the greatest response at 350 1C. The latter can be
seen as the result of a balance between a temperature high enough
to accelerate thermal desorption of analyte and allow more to enter
the mass spectrometer and increase response and a temperature
that is not too high as to cause too rapid thermal desorption or
Figure 1 Structural formulae and product ion (MS2) spectra of NT, CT a
using the collision energies given: (A) NT m/z 227.2/181.1, 227.1/168.1 an
230.2/184.1, 230.2/171.1, and þ16 V.
irreversible degradation resulting in loss of analyte and lower
sensitivity.

3.2. Sample preparation

Although plasma samples were analyzed essentially without
sample preparation, we optimized the preparation method to
decrease the extent of the matrix effect and to obtain the
maximum signal intensity. Because the organic solvent-to-
water ratio (v/v) might affect the ionization efficiency of the
target analyte, the standard solution was diluted with four
different mixtures (water, 25%, 50%, and 75% acetonitrile).
The effect is shown in Fig. 3 where it is clear that 50%
acetonitrile gave a higher response for CT than for NT and the
highest response for both analytes. As regards the effect of the
nd IS, showing the ions selected for quantifier and qualifier transitions
d þ16 V; (B) CT m/z 216.2/170.1, 216.2/199.2 and þ18 V; (C) IS m/z
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plasma: solvent ratio, the results in Fig. 4 show that the
responses of the analytes were similar at ratios of 1:1 and 1:3,
although the concentrations of analytes in the latter case
(method B) were one-half of those in the former case (method
A). This indicates that decreasing the plasma volume in
samples increases the assay sensitivity. After systematic
consideration of the effects of acetonitrile concentration,
plasma volume, and solubility of analytes, sample preparation
involved addition of 50 μL IS solution (200 μg/mL containing
10% acetonitrile) and 100 μL 80% acetonitrile to 50 mL plasma
was used. This ensured complete dissolution of the analytes
while maintaining the final acetonitrile concentration as close
to 50% as possible.
3.3. Assay validation

In terms of specificity, the assay was found to be free of
interference from other components in plasma. Results of linearity
Figure 4 Effect of plasma:solvent ratio (v/v) on sensitivity. Method
(A): 100 μL plasmaþ100 μL 50% acetonitrile; plasma:solvent (v/v)
1:1 (analyte concentration 20 μg/mL); method (B): 50 μL plasmaþ50
μL 50% acetonitrileþ100 μL water, plasma:solvent (v/v) 1:3 (analyte
concentration 10 μg/mL).

Table 1 Linearity and sensitivity assessment for DART–MS/MS an

Analyte Linearity Correlati

CT Y¼0.0923Xþ1.7316 (0.5–100 μg/mL) 0.9958
NT Y¼0.1053Xþ0.0384 (4–100 μg/mL) 0.9994

Table 2 Intra-day and inter-day accuracy, precision and matrix effe

Analyte Spiked concentration (μg/mL) Precision (RSD%

Intra-day

NT 7.8 7.9
25 7.0
78 2.3

CT 7.8 8.4
25 6.9
78 4.0

Precision (RSD%)¼(Standard deviation/mean)� 100; Accuracy (RE%)¼
centration� 100; ME (%)¼AQC/Astd� 100.
and sensitivity assessment together with equations of calibration
curves are given in Table 1. Intra- and inter-day precisions (RSD)
were 2.3%–7.9% and 1.1%–5.5% for NT and 4.0%–8.4% and
2.5%–5.3% for CT with accuracies (RE) of �3.7% to 0.2% for
NT and �1.7% to 7.5% for CT (Table 2). Compared with
previous methods17–29, DART–MS/MS was found to be as
reproducible and more rapid (2–3 s), if somewhat less sensitive
than some techniques. Moreover, the method is economical and
not harmful to the environment as a result of no mobile phase
being used.
3.4. Matrix effects

Matrix effects are a potentially significant problem in tandem mass
spectrometric detection using direct injection with minimal sample
preparation. As shown in Fig. 4, the signal responses of both CT
and NT did not increase much as their concentration doubled
presumably due to ion suppression resulting from the relative
increase in plasma volume. As shown in Table 2, the matrix effect
in plasma was severe because analytes were introduced simulta-
neously into the mass spectrometer with sample matrix, without
LC separation being performed.
4. Conclusions

A method based on DART–MS/MS has been developed for the
simultaneous determination of CT and NT in human plasma. The
method required neither sample preparation nor chromatographic
separation and was therefore potentially useful for high-throughput
analysis. However, the levels of CT and NT in human plasma were
very low and only 0.5–17.5 nmol/L and 8.071.0 nmol/L for NT
and CT17,19,25, respectively, which are much lower than their
respective LODs, which indicates that the sensitivity is relatively
low and needs to be improved in order to facilitate application in
clinical research.
alysis of CT and NT in human plasma.

on coefficient (R2) LOD (μg/mL) LLOQ (μg/mL)

0.1 0.3
0.2 0.6

ct.

) Accuracy (RE%) Matrix effect (%)

Inter-day

5.5 0.2 3.3
5.1 –3.7 5.8
1.1 –1.9 5.5
5.3 7.5 5.5
2.9 0.1 2.7
2.5 –1.7 1.8

(Mean obtained concentration–nominal concentration)/nominal con-
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