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Abstract: Many vector-borne viruses possess the ability to manipulate vector behaviors to facilitate
their transmission. There is evidence that the mechanism of this phenomenon has been described
in part as direct manipulation through regulating vector chemosensation. Rice stripe virus (RSV) is
transmitted by the small brown planthopper, Laodelphax striatellus (Fallen), in a persistent, circulative–
propagative manner. The effect of RSV infection on the olfactory system of L. striatellus has not been
fully elucidated. Here, we employed transcriptomic sequencing to analyze gene expression profiles
in antennae, legs and heads (without antennae) from L. striatellus females and males with/without
RSV infection. Comparisons of the differentially expressed genes (DEGs) among antennae, legs
and heads indicated that tissue-specific changes in the gene expression profile were greater than
sex-specific changes. A total of 17 olfactory related genes were differentially expressed in vir-
uliferous antennae as compared to nonviruliferous antennae, including LstrOBP4/9, LstrCSP1/2/5,
LstrGR28a/43a/43a-1, LstrIR1/2/NMDA1, LstrOR67/85e/56a/94 and LstrSNMP2/2-2. There are 23 ol-
factory related DEGs between viruliferous and nonviruliferous legs, including LstrOBP2/3/4/12/13,
LstrCSP13/5/10, LstrIR1/2/Delta2/Delta2-1/kainate2/NMDA2, LstrOR12/21/31/68 and LstrORco. A low
number of olfactory related DEGs were found between viruliferous and nonviruliferous heads,
including LstrCSP1, LstrOBP2, LstrOR67 and LstrSNMP2-2. Among these DEGs, the expression
patterns of LstrOBP2, LstrOBP3 and LstrOBP9 in three tissues was validated by quantitative real-time
PCR. The demonstration of overall changes in the genes in L. striatellus’ chemoreception organs in
response to RSV infection would not only improve our understanding of the effect of RSV on the
olfactory related genes of insect vectors but also provide insights into developing approaches to
control the plant virus transmission and spread as well as pest management in the future.

Keywords: rice stripe virus; Laodelphax striatellus; chemoreception organs; olfactory related genes

1. Introduction

Vector-borne viruses contribute to a substantial portion of the global plant disease
burden, accounting for more than 70% of all known plant viruses [1,2]. The horizontal
transmission and spread of vector-borne viruses relies on the movement of insect vectors,
which could be manipulated by vector-borne viruses [3,4]. The mechanism by which
viruses manipulate vector behaviors has largely been described as indirect manipulation
through modifications of the quality, color, odor and associated plant traits. For instance,
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cucumber mosaic virus (CMV) accelerates the emigration of aphid vectors by reducing
host plant quality, and increased the attractiveness of infected plants to aphid vectors by
inducing elevated emissions of a volatile blend [3]. Potato leafroll virus (PLV) infection
changes the volatile blend of potato to attract vector aphids, thereby increasing the proba-
bility of virus acquisition [5]. Furthermore, some vector-borne viruses could manipulate
vector behavior via directly affecting the nervous and olfactory system. Tomato yellow
leaf curl virus (TYLCV) reduces whitefly preference to viruliferous plant by disabling the
nervous system of vectors [6]. Southern rice black streaked dwarf virus (SRBDV) and
tomato chlorosis virus (TCV) are able to regulate the gene expression of odorant-binding
protein (OBP) 2 and OBP3 in their vectors, Sogatella furcifera and Bemisia tabaci, respectively,
and to reverse the preferences of nonviruliferous/viruliferous vectors, finally affecting the
virus transmission [7,8]. Therefore, various vector-borne viruses have developed the ability
to utilize a direct or indirect manipulation mechanism to induce behavioral changes of
insect vectors, to benefit their spread. However, the effect of vector-borne virus infection
on the olfactory system of insect vectors has not been fully elucidated.

The critical roles of the insect’s olfactory system in their locomotion, host seeking,
probing and feeding are mainly executed via detecting semiochemicals by sensilla on the
main periphery, such as the main chemoreception organ, the antennae [9,10]. A number
of protein families located in these peripheral sensory organs are responsible for the
recognition of semiochemicals, which include two classes of carrier proteins: OBPs and
chemosensory proteins (CSPs), and four classes of membrane proteins: ionotropic (IR),
gustatory (GRs), membrane-bound odorant receptors (ORs)/olfactory co-receptor receptor
(ORco) and sensory neuron membrane proteins (SNMPs) [11–16]. When environmental
chemicals penetrate the pores of sensilla, OBPs and CSPs as carriers bind these chemicals
in the sensilla lymph and transport the chemicals to ORs or IRs located on the olfactory
sensory neurons. Then, chemical signals are converted into electrical signals, and conveyed
to the insect’s brain to eventually modulate the insect’s behavior [14,17]. Thus far, the role
of olfactory-related proteins in virus transmission remains unclear.

Rice stripe virus (RSV), a typical member of the genus Tenuivirus, has inflicted serious
yield losses of rice by causing the notorious rice stripe disease in Eastern Asia [18,19]. It is
transmitted by the small brown planthopper, Laodelphax striatellus (Fallen), in a persistent,
circulative–propagative manner [20–22]. RSV particles enter L. striatellus via the alimentary
canal during feeding and initially establish infection in the midgut epithelium, propagating
in midgut visceral muscles. After transferring into the hemolymph, these virus invade
several key organs via lymph circulation and, ultimately, arrive at the salivary gland,
from which RSV particles are inoculated back to the plant hosts along with saliva. RSV
transmission in L. striatellus requires specialized interactions between components of the
virus and vector, evidenced by the transcriptome analyses of the expression changes of
overall mRNA genes and the regulation of RSV-derived siRNA in L. striatellus after RSV
infection [23–25]. In addition, the organ-specific transcriptomes of L. striatellus’ alimentary
canal and salivary gland characterize the responses of two organs in confronting RSV
infection [26]. However, the molecular mechanism underlying the interactions between
RSV and chemoreception organs remains unknown at the omic level.

Our preliminary antennae-specific transcriptome analysis identified 14 OBPs, 12 CSPs,
7 SNMPs and 95 ORs in L. striatellus [27]. Meanwhile, viruliferous L. striatellus might
have a stronger olfactory and seeking ability for rice than nonviruliferous insect [28].
Thus, the current study aims to further investigate the host preference mechanism of
viruliferous L. striatellus and the role of the olfactory system in RSV transmission. We
compared the response of the antennae, legs and heads (without antennae) from both
L. striatellus females and males to RSV infection using next-generation deep-sequencing
techniques. Furthermore, olfactory related genes from differentially expressed genes
(DEGs) of chemoreception organ transcriptomes were enriched between viruliferous and
nonviruliferous organs. Lastly, a qPCR was performed to confirm the expression changes
of three OBPs between viruliferous and nonviruliferous tissues. Our results would not only
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improve our understanding on the role of the olfactory chemoreception organs system in
RSV infection and transmission but also provide new insights into the symbiosis interaction
between virus, insect and plant. A deeper understanding of this interaction provides new
avenues for controlling plant viruses and their vectors.

2. Results
2.1. Illumina Sequencing and Assembly of the Chemoreception Organs of Female and Male
Laodelphax striatellus

Twelve cDNA libraries were obtained from dissected antennae, heads and legs of
male and female L. striatellus with or without RSV. The transcriptomes of twelve libraries
(Viruliferous female antennae, VFA; Viruliferous male antennae, VMA; Viruliferous fe-
male legs, VFL; Viruliferous male legs, VML; Viruliferous female heads, VFH; Viruliferous
male heads, VMH; Nonviruliferous female antennae, NFA; Nonviruliferous male antennae,
NMA; Nonviruliferous female legs, NFL; Nonviruliferous male legs, NML; Nonviruliferous
female heads, NFH; Nonviruliferous male heads, NMH) were sequenced using the Illu-
mina HiSeq™ 2000 platform, and generated 663,707,248 clean sequence reads, containing
99.55 G bp clean bases (Table S1). GC percentages (%) of sequence reads from the twelve
libraries were all approximately 40%, and Q20 (%) were more than 95.88%, which showed
that the accuracy and quality of the sequencing data met the standard for further analysis
(Table S1). Of the reads from each transcriptome, 58.06~68.94% paired-end clean reads
were mapped to the genome of L. striatellus (Table S1) and assembled into 20,409 genes
with function annotation. Additionally, the normalized read count with Fragments per
Kilobase of transcript per Million mapped reads (FPKM) of these genes were calculated.

Principal component analysis (PCA) was used to compare the twelve transcriptomes
from viruliferous and nonviruliferous organs of females and males. Overall, the principal
component axis 1 and 2 (PC1 and PC2, accounting for 47.24% and 27.05% of the observed
gene expression variation, respectively), separated these libraries into three groups: An-
tennae libraries (VMA, VFA, NMA and NFA), Legs libraries (VML, VFL, NML and NFL)
and Heads libraries (VMH, VFH, NMH and NFH) (Figure 1A). The comparison between
the three tissues demonstrated the relative most number of DEGs between heads and legs
(especially in VMH versus (vs.) VML), modest in antennae vs. heads, and least in antennae
vs. legs. However, the comparison between female tissues and male tissues showed fewer
DEGs (Figure 1B). These results demonstrated that organ-specific and sex-specific DEGs
profile in L. striatellus might be involved in the host preference of viruliferous L. striatellus.

2.2. Gene Ontology Classification of Differentially Expressed Genes among the Chemoreception
Organs of Females and Males

The DEGs among the antennae, legs and heads were functionally annotated and
classified into different molecular function categories by gene ontology (GO) analysis
(Figure 2). Eight pairwise comparisons between antennae and other tissues revealed a
total of 1628, 1234, 1510, 1267, 1451, 1107, 1514 and 1409 DEGs with GO analysis. There
were approximately 37 significantly enriched GO categories concerning molecular function
seen in the DEGs of eight comparisons, of which the top three significant GO terms were
protein binding (16.42~21.77%), DNA/RNA/chromatin binding (6.63~9.77%) and odorant-
binding/olfactory receptor activity (6.94~10.12%) (Figures 2A,B,D,E and S1A,B,D,E). In
the DEGs’ molecular function of heads vs. legs, approximately 35 significantly enriched
GO categories were identified with the top three GO terms involved in protein binding,
DNA/RNA/chromatin binding and G-protein coupled receptor activity or peptidase
activity (Figures 2C,F and S1C,F).
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lated DEGs is denoted by black, and the number of up-regulated DEGs shown by gray. 
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When comparing the transcriptomes between females and males, only 152, 93, 286, 41,
115 and 121 genes were differentially expressed between VFA vs. VMA, VFL vs. VML, VFH
vs. VMH, NFA vs. NMA, NFL vs. NML, NFH vs. NMH, respectively (Figures 2G–I and
S1G–I). The enriched GO terms for these sex-specific DEGs among the three tissues include
protein binding, structural constituent of the ribosome, phosphatase activity, peptidase
activity, and so on.

Taken together, these results demonstrated that a large number of genes involved in
the regulation of cellular environment and peripheral chemosensory were more or less
expressed in chemoreception organs, antennae and legs, but a low number of DEGs were
found between females and males. It suggested that these organ- and sex-specific DEGs
might participate in the host preference of L. striatellus on rice, not considering whether the
samples are from viruliferous or nonviruliferous L. striatellus.
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Figure 2. Proportions of DEGs among (A–F) three organs or (G–I) between two sexes classified
by a level 1 molecular function gene ontology. The legend indicates the top three listed GO (Gene
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2.3. Differentially Expressed Genes Induced by RSV Infection

Thus, we next inspected the gene expression profile of viruliferous and nonvirulifer-
ous organs through a comparative heatmap. The gene expression patterns for the same
organ clustered together. Among these clustered samples, the viruliferous samples were
outgrouped from the nonviruliferous samples (Figure 3). According to the Venn diagram,
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the comparison between viruliferous and nonviruliferous female tissues revealed 439
(262 Up, 177 Down), 980 (521 Up, 459 Down) and 370 (274 Up, 96 Down) DEGs in antennae,
legs and heads, respectively. Among them, there were 62 DEGs shared to responses to RSV
infection (with 29 up-regulated and 20 down-regulated in all three tissues) (Figure 4A).
Similarly, comparisons between viruliferous and nonviruliferous male tissues identified
659, 579 and 255 DEGs, respectively. The three tissues of males shared 79 DEGs in response
to RSV infection (Figure 4B).
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2.4. Gene Ontology Classification of Differentially Expressed Genes Induced by RSV Infection

Hundreds of DEGs between viruliferous and nonviruliferous tissues were function-
ally annotated by GO analysis and were classified into 28~33 significantly enriched cat-
egories between viruliferous and nonviruliferous organs (Figure 5A–F). The top ten GO
categories included protein binding, peptidase activity, structural constituent of cuticle,
DNA/RNA/nucleotide/chromatin binding, transferase activity, transmembrane trans-
porter activity, hydrolase activity, catalytic activity, ion binding and odorant-binding/
olfactory receptor activity (Figure 5A,B,D,E). There were only 18 and 24 significantly
enriched GO terms from nonviruliferous vs. viruliferous male and female heads, respec-
tively (Figure 5C,F). In particular, a large number of olfactory-related genes (7.14%, 4.51%,
2.14% and 4.17%) were found to be more or less enriched in viruliferous chemorecep-
tion organs (antennae and legs) as compared to nonviruliferous chemoreception organs
(Figure 5A,B,D,E). The data indicated a link of the olfactory related genes to the differ-
ence between the viruliferous and nonviruliferous chemoreception organs, however, deep
analysis of these genes may shed light on the interaction between RSV and the vector’s
chemoreception organs.
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2.5. Changes in the Expression of Olfactory-Related Genes in the Chemoreception Organs Infected
by RSV

In order to validate the effect of RSV infection on the olfactory system, a more in-depth
expression profiling the olfactory-related chemosensation and olfaction DEGs was per-
formed. A total of 17 olfactory-related genes were differentially expressed in viruliferous
antennae compared to nonviruliferous antennae (Figure 6 left). A cluster of olfactory
genes, including LstrOBP4, LstrCSP2/5, LstrGR28a, LstrIR1/NMDA1, LstrOR67/85e and
LstrSNMP2/2-2, showed higher abundance after infection in both male and female antennae
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(Figure 6 left). The expression level of six other olfactory genes (LstrOBP9, LstrGR43a/43a-1,
LstrIR2 and LstrOR56a/94) decreased in both male and female viruliferous antennae
(Figure 6 left). Between viruliferous and nonviruliferous legs, a total of 23 olfactory-
related genes were found to be differentially expressed (down-regulated: LstrCSP1, LstrIR
kainate2/NMDA2/Delta2-1, LstrOR21/31/68, LstrORco and LstrSNMP1-4/2/2-2; up-regulated:
LstrCSP3/5/10, LstrIR1/2/Delta2, LstrOBP3/4/12/13 and LstrOR12) (Figure 6 middle). Com-
parative gene expression profiling of viruliferous vs. nonviruliferous heads revealed only
four DEGs (LstrCSP1, LstrOBP2, LstrOR67 and LstrSNMP2-2) (Figure 6 right). Interest-
ingly, three olfactory genes of these DEGs (LstrCSP1, LstrOBP2, LstrSNMP2-2) appeared
to show opposite changes between female and male organs after RSV infection (Figure 6).
Consistently, the influence of RSV infection on the expression of olfactory-related genes in
antennae and legs was greater than that in heads (without antennae).
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2.6. Validation of the OBPs Expressions in RSV-Infected Chemoreception Organs by Quantitative
Real-Time PCR

To confirm the above transcriptome results, we selected a significant differentially
expression OBP from each organ transcriptome for qPCR examination. The expression of
selected LstrOBP9 gene in viruliferous female antennae was significantly down-regulated
by 33.1% compared to that in nonviruliferous female antennae, while it exhibited no
significant change in viruliferous vs. nonviruliferous male antennae (Figure 7A). On the
contrary, the expression level LstrOBP3 in viruliferous female legs was about 4-fold of that in
nonviruliferous female legs (Figure 7B). Similarly, the LstrOBP2 was also highly expressed
in the heads of viruliferous female, but no changes were found between viruliferous and
nonviruliferous male heads (Figure 7C). In general, the expression trends of the three
LstrOBPs were consistent with our transcriptome data, supporting the involvement of
these organ- and sex-specific olfactory-related LstrOBPs in mediating the host preference
of L. striatellus on rice plant behavior as well as RSV transmission.
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Figure 7. Relative expression pattern of three selected olfactory-related genes in viruliferous/nonviruliferous female
and male organs. (A) Expression changes of LstrOBP9 between viruliferous and nonviruliferous antennae. (B) Expres-
sion changes of LstrOBP3 between viruliferous and nonviruliferous legs. (C) Expression changes of LstrOBP2 between
viruliferous and nonviruliferous heads. ** indicated p < 0.01.

3. Discussion

The small brown planthopper, as one of the most destructive rice pests, is notorious for
causing serious yield loss by feeding damage as well as transmitting RSV [29]. Before the
release of the L. striatellus genome sequence in 2017 [30], several previous pyrosequencing-
based transcriptome studies have characterized the whole body or organ transcriptomic
response [23,26]. In the current study, based on a high-quality genome assembly and
annotation of L. striatellus, we performed transcriptomic RNA sequencing to analyze gene
expression profiles in three tissues (antennae, legs and heads) from L. striatellus females
and males with/without RSV infection. The identification of these DEGs would provide
insights into the host preference of L. striatellus on rice plant behavior as well as RSV
transmission.

The GO analysis for these DEGs found that the top listed GO terms included protein
binding, DNA/RNA/chromatin binding, odorant-binding/olfactory receptor activity,
G-protein coupled receptor activity and peptidase activity, suggesting a tissue- or sex-
specific signaling reaction. Moreover, the comparison of DEGs between antennae vs.
legs/heads was more enriched in the regulation of the cell cycle, cellular environment
and peripheral chemosensory than those of heads vs. legs. Since most olfactory sensilla
of insects are distributed on the surface of primary chemoreception organs, the antennae,
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while insect legs and heads are secondary chemoreception organs and olfactory signal
processing organs, respectively [31], it is reasonable that olfactory-related genes were
higher expressed in the antennae than that in the legs and heads. Thus, the increase or
decrease in olfactory-related genes in antennae after virus infection has dire implications
for vectorial capacity.

To the best of our knowledge, there has been no systematic study on the effect of
virus infection on the olfactory genes expression of insect vector’s antennae. Our study
demonstrated overall changes in insect chemoreception organs in response to infection
with plant virus RSV. Transcriptomic comparisons of viruliferous vs. nonviruliferous
chemoreception organs indicated that a large number of olfactory related genes were
differentially expressed in viruliferous antennae and legs but not in the heads. A previous
report also found that dengue virus could infect the mosquito’s antennae and result in
changes in the transcript abundance of two AgOBPs [32]. The SRBDV infection led to a
decrease in SfOBP2 and SfOBP11 in S. furcifera [7]. However, the TCV infection increased
the expression of BtOBP3 in B. tabaci [8]. Li and his colleagues found that the LstrORco
was stimulated by RSV in the head (with antennae) [28]. However, our data showed
that RSV infection down-regulated the LstrORco expression in female L. striatellus legs
and did not affect the LstrORco expression in antennae and heads (without antennae).
These different results may be due to different sampling and detection methods. The
qPCR method was used to detect the LstrORco expression in mixed samples of heads and
antennae in Li and his colleagues’ study, while transcriptome sequencing was used to
detect the LstrORco expression in antennae and heads (without antennae) in our study. The
protein level expression and the location of LstrORco in chemoreception organs need to be
further verified by Western blot and in situ hybridization.

Previous reports have demonstrated that plant viruses could regulate olfactory genes
to affect the behavior of insect vectors and their associations with host plants. SRBDV
and TCV reversed the preferences of insect vectors by regulating OBPs [7,8]. Li and his
colleagues reported that silencing of the LstrORco expression inhibited the host seeking
behavior and increased the ‘no response’ percent and the response time of L. striatellus [28].
Our transcriptome analysis revealed 17 olfactory-related genes differentially expressed in
viruliferous antennae (including two LstrOBPs, three LstrCSPs, three LstrGRs, three LstrIRs,
four LstrORs and two LstrSNMPs) as well as five LstrOBPs, three LstrCSPs, six LstrIRs,
four LstrORs and LstrORco differentially expressed in viruliferous legs. Additionally, only
four olfactory genes were differentially abundant in viruliferous heads. During insect
chemical perception, OBPs and CSPs can selectively transport specific odorants to four
classes of membrane proteins for odorant recognition [14]. It is possible that the expression
changes in olfactory-related genes alter the plant’s volatile organic compound (VOC)
recognition and affect insect behavioral responses. Taken together, it was implied that
the RSV induction of olfactory related genes, including LstrORco, in antennae and legs
could alter the feeding behavior of L. striatellus on rice with the host preference and, thus,
at least theoretically, affect virus transmission. In the next step, the plant VOCs recognized
by differentially expressed olfactory genes can be screened using gas chromatography–
electroantennographic detection (GC–EAD). The two electrodes voltage clamp technique
and field trapping experiments can be conducted to validate the interaction between
differentially expressed olfactory genes and plant VOCs. Through these techniques, we
will further reveal the role of olfactory genes in RSV-induced behavior.

4. Materials and Methods
4.1. Nonviruliferous and Viruliferous L. striatellus Rearing

Nonviruliferous and viruliferous strains of L. striatellus were a gift from Prof. Yijun
Zhou’s laboratory of Jiangsu Academy of Agricultural Sciences, Jiangsu province, China,
and were reared independently on seedlings of rice cv. Wuyujing 3 in a growth incubator
at 25 ± 1 ◦C, with 80% ± 5% RH and a 12-h light–dark photoperiod.
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To ensure that insects were viruliferous, individual female insects were allowed to
feed independently. The presence of RSV in their offspring were collected and detected via
Dot-ELISA with the monoclonal anti-CP antibody [33]. Highly viruliferous colonies were
screened and prepared for subsequent studies.

4.2. Samples Preparation and Transcriptomic Sequencing

The antennae, legs and heads (without antennae) of more than 3000 L. striatellus adults
were dissected independently. Viruliferous female/male and nonviruliferous female/male
samples were collected and stored at −80 ◦C for each RNA library. TRIzol method was used
to extract total RNA from organ samples as recommended by the manufacturer (Ambion,
Austin, TX, USA). RNA purity and concentration were checked using the NanoPhotometer®

spectrophotometer (IMPLEN, Westlake Village, CA, USA) and RNA assay kit in Qubit® 2.0
Fluorometer (Life Technologies, Carlsbad, CA, USA). Twelve paired-end RNA-seq libraries
were established from the extracted RNA using the NEBNext® Ultra™ RNA Library Prep
Kit (New England BioLabs, Ipswich, MA, USA). First and second strand cDNA were
synthesized according to the methods described previously [27]. After the adapters had
been attached, PCR was performed with the adapter-ligated cDNA as templates, phusion
high-fidelity DNA polymerase, universal PCR primers and index (X) Primer to generate
cDNA libraries. These libraries were sequenced with Illumina HiSeq 2000 sequencer
(Illumina, San Diego, CA, USA) and 125–150 bp paired-end reads were generated.

4.3. Transcriptomic Assembly and GO Annotation

After sequencing, FastQC was employed to check the quality distribution of the raw data
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc, accessed on 20 December 2018).
The clean reads were obtained by removing reads containing adapter, reads containing
ploy-N and low quality reads from raw reads. The Q20, Q30 and GC content of the clean
data were calculated. All paired-end clean reads were aligned to a reference genome
of L. striatellus using HISAT2 v2.0.5 (http://www.ccb.jhu.edu/software/hisat, accessed
on 25 December 2018) and assembled by StringTie software [34] to generate mapped
unigenes. The reference genome of L. striatellus (GigaDB RRID: SCR004002) and gene
model annotation files were released by Zhu’s lab in the GigaScience repository [30]. All
mapped unigenes were annotated by Gene Ontology (GO) enrichment analysis. GO terms
with corrected p-value less than 0.05 were considered significantly enriched.

4.4. Analysis of Differentially Expressed Genes

Read counts mapped to each unigene were calculated by featureCounts v1.5.0-p3 [35].
FPKM of each unigene was obtained based on the length of the gene and reads count
mapped to this gene. Unigene expression profiles were performed by heatmapping and
Heml software [36]. DEGs between two treatments were identified using the edgeR R
package [37]. Corrected p-value of 0.05 and absolute fold change of 2 were set as the
threshold for significantly differential expression according to Benjamini and Hochberg
method [38].

4.5. Identification and Comparative Expression Profiles of Olfactory Related Genes

Based on GO term described as odorant-binding/olfactory receptor activity, all uni-
genes were manually retrieved by keywords (OBP, CSP, OR, IR. GR SNMP, chemosensory
protein, olfactory protein). Then, retrieved olfactory-related genes were matched with
128 olfactory genes in previous description [27] and identified using a BLASTx algorithm-
based search in NCBI website. Expression profiles of these olfactory-related genes were
displayed using Heml software according to FPKM of each gene [36].

4.6. Quantitative Real-Time PCR Analysis

Total RNA was isolated from 600 antennae, 100 legs and 50 heads of viruliferous and
nonviruliferous adults using the TRIzol Total RNA Isolation Kit (Takara, Dalian, China).

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.ccb.jhu.edu/software/hisat
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First-strand cDNA was synthesized using One Step SYBR PrimeScript RT-PCR kit (Takara,
Dalian, China). Primers for LstrOBPs and LstrActin (control) (Table S2) were designed as
previous description [27]. The qPCR was conducted with SYBR Premix Ex Taq (Takara)
and a CFX96™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) as follows:
denaturation for 3 min at 95 ◦C, followed by 40 cycles at 95 ◦C for 10 s, and 60 ◦C for
30 s. Relative expression levels for triplicate samples were calculated using the 2−∆∆Ct

method [39], and expression levels of target genes were normalized to the LstrActin gene.
Three technical repeats were performed for each of the three biological replicates. The
T-test method was used to analyze the significance of relative expression level from various
samples [40].

5. Conclusions

In summary, our transcriptomic analysis revealed the expression profiles of genes
in antennae, legs and heads of L. striatellus infected by RSV. RSV infection regulated the
expression of multiple olfactory-related genes in the a chemoreception organs. In particular,
qPCR confirmed the down-regulation of LstrOBP2, and increased LstrOBP3 and LstrOBP9
in the chemoreception organs of females L. striatellus post RSV infection. It is suggested
that RSV may alter host preference of the insect vector by changing these olfactory-related
genes, which are ultimately beneficial to its transmission. Therefore, it is promising to
develop approaches (such as RNAi based gene-silencing technology) to interrupt the
olfactory-related genes in chemoreception organs of L. striatellus to control the transmission
and spread of RSV in the future. In this regard, this work is a starting point for research,
which will eventually help the control of RSV and provide new strategies for the control of
other vector-borne viruses.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms221910299/s1, Figure S1: GO analysis of DEGs among male organs (or between female
and male viruliferous organs), Table S1: Summary statistics of Illumina sequence data, Table S2: The
primers used in this study.
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DEGs Differentially expressed genes
RSV Rice stripe virus
CMV Cucumber mosaic virus
PLV Potato leafroll virus
TYLCV Tomato yellow leaf curl virus
SRBDV Southern rice black streaked dwarf virus
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TCV Tomato chlorosis virus
OBPs Odorant-binding proteins
CSPs Chemosensory proteins
IRs Ionotropic receptors
GRs Gustatory receptors
ORs Odorant receptors
ORco Olfactory co-receptor receptor
SNMPs Sensory neuron membrane proteins
VFA Viruliferous female antennae
VMA Viruliferous male antennae
VFL Viruliferous female legs
VML Viruliferous male legs
VFH Viruliferous female heads
VMH Viruliferous male heads
NFA Nonviruliferous female antennae
NMA Nonviruliferous male antennae
NFL Nonviruliferous female legs
NML Nonviruliferous male legs
NFH Nonviruliferous female heads
NMH Nonviruliferous male heads
FPKM Fragments per Kilobase of transcript per Million mapped reads
PCA Principal component analysis
GO Gene ontology
qPCR Real-Time Quantitative PCR
VOC volatile organic compounds
GC–EAD gas chromatography–electroantennographic detection
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