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Abstract
Background: Radiotherapy treatment planning incorporating ventilation imag-
ing can reduce the incidence of radiation-induced lung injury.The gold-standard
of ventilation imaging, using nuclear medicine, has limitations with respect to
availability and cost.
Purpose: An alternative type of ventilation imaging to nuclear medicine uses
4DCT (or breath-hold CT [BHCT] pair) with deformable image registration (DIR)
and a ventilation metric to produce a CT ventilation image (CTVI). The purpose
of this study is to investigate the application of machine learning as an alterna-
tive to DIR-based methods when producing CTVIs.
Methods: A patient dataset of 15 inhale and exhale BHCTs and Galligas PET
ventilation images were used to train and test a 2D U-Net style convolutional
neural network. The neural network established relationships between axial
input BHCT image pairs and axial labeled Galligas PET images and was eval-
uated using eightfold cross-validation. Once trained, the neural network could
produce a CTVI from an input BHCT image pair.The CTVIs produced by the neu-
ral network were qualitatively assessed visually and quantitatively compared to
a Galligas PET ventilation image using a Spearman correlation and Dice simi-
larity coefficient (DSC). The DSC measured the spatial overlap between three
segmented equal lung volumes by ventilation (high,medium,and low functioning
lung [LFL]).
Results: The mean Spearman correlation between the CTVIs and the Galligas
PET ventilation images was 0.58± 0.14.The mean DSC over high,medium,and
LFL between the CTVIs and Galligas PET ventilation images was 0.55 ± 0.06.
Visually, a systematic overprediction of ventilation within the lung was observed
in the CTVIs with respect to the Galligas PET ventilation images, with jagged
regions of ventilation in the sagittal and coronal planes.
Conclusions: A convolutional neural network was developed that could pro-
duce a CTVI from a BHCT image pair,which was then compared with a Galligas
PET ventilation image. The performance of this machine learning method was
comparable to previous benchmark studies investigating a DIR-based CTVI,
warranting future development, and investigation of applying machine learning
to a CTVI.
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1 INTRODUCTION

Radiation-induced lung injury (RILI) is a side effect
of radiotherapy treatment to the thoracic region tak-
ing the form of radiation pneumonitis and radiation
fibrosis.1 Radiation pneumonitis has a symptomatic
and fatal incidence of 29.8% and 1.9%, respec-
tively, dependent on dosimetric factors and tumor
location.2

Ventilation imaging of the lungs, before radiother-
apy, can assist treatment planning in delineating dose
coverage of a patient.3 RILI shows higher correlation
with dose to functional lung (as can be defined by
ventilation imaging) than homogenous lung metrics.4,5

Accordingly,adapting radiotherapy treatment planning to
reduce dose to high functioning lung (HFL) could reduce
the incidence of RILI.

There are a variety of ventilation imaging modalities
described in the literature,including SPECT,CT,MRI,and
PET.6,7

SPECT ventilation imaging is generally performed
with the inhalation of a radioaerosol (in most cases
99mTc-Technegas), which is subsequently detected by
a SPECT-CT scanner.8 A retrospective study showed
that SPECT ventilation imaging is a feasible method
to reduce dose to ventilated lung through functionally
adapted IMRT treatment planning.9

MRI ventilation imaging generally refers to the inhala-
tion of hyperpolarized 3He gas followed by a thoracic
MR imaging sequence. In the literature, it has been
described as a single breath-hold of hyperpolarized
3He gas mixture.10 Hyperpolarized helium MR ventila-
tion imaging has been investigated in the literature for
functional lung avoidance in radiotherapy.11 MR ventila-
tion imaging has been used in conjunction with CT ven-
tilation imaging (CTVI) to quantify cross-modality corre-
lation and similarity.12,13

PET ventilation imaging follows a similar acquisition
protocol to SPECT ventilation imaging with the main
exception being the radioaerosol and nuclear medicine
detector. The radioaerosol typically used in PET ventila-
tion imaging is Galligas PET, which is used as a refer-
ence modality in this study. The differences of PET ven-
tilation imaging compared to SPECT ventilation imaging
have been described in the literature with PET offering
improved spatial resolution and sensitivity at the limi-
tation of availability.14 Galligas PET ventilation images
have been used a reference modality for a variety of
studies quantifying the cross-modality correlation and
accuracy of CTVIs.15–18

CT ventilation imaging generally refers to when a
treatment planning 4DCT is used to produce an esti-
mation of ventilation within the lungs, thus produc-
ing a CTVI. An alternative CT-based ventilation imag-
ing modality uses xenon-enhanced CT (XeCT), where
a patient inhales an Xe–O2 gas while undertaking a

breath-hold CT (BHCT).19 Conventional CTVIs rely on
deformable image registration (DIR) to the inhalation
and exhalation respiratory phases of a 4DCT then the
application of a ventilation metric to estimate ventilation
(in this paper, these will be referred to as “DIR-based”).
The benefit of a CTVI is that the CT images are typ-
ically available from treatment planning, reducing the
clinical time and monetary costs associated with nuclear
medicine ventilation imaging. As DIR-based CTVIs rely
on DIR and the selection of a ventilation metric, these
images are sensitive to choice of DIR technique, choice
of ventilation metric, and inter-patient variability. This
results in a large variability in CTVIs and their correlation
with SPECT,PET,and XeCT-based ventilation images.18

Replacing a regular 10-phase 4DCT with BHCT has
improved the cross-correlation of the produced CTVIs
with a Galligas PET reference modality.15 Substituting
DIR with a direct estimation of ventilation using the
4D CT Hounsfield unit (HU) values has improved the
cross-correlation of the produced CTVIs with a Galli-
gas PET reference modality.16 A large systematic review
found that further work is warranted in standardizing
CTVI methodologies and comparisons with reference
modalities.7

Machine learning has revolutionized the medical
physics world and is an emerging field of research. One
type of machine learning is deep learning and is charac-
terized by hidden layers and feature learning. A recent
systematic review has found that deep learning applied
to functional lung imaging is a relatively small field with
good opportunities for further research.20 4DCT per-
fusion images have been synthesized using a deep
learning approach with MAA-SPECT as the nuclear
medicine ground-truth.21 Deep learning has been imple-
mented to generate CTVIs from 4DCT with DIR-based
CTVIs as the reference ground-truth.22 Deep learning
has also been successfully used to produce CTVIs from
4DCT with Technegas SPECT as the nuclear medicine
ground-truth, which showed a higher degree of correla-
tion compared with DIR-based CTVIs.8

In this study, we generated CTVIs using deep learn-
ing with Galligas PET ventilation images as the nuclear
medicine ground-truth. The significance of using Galli-
gas PET as a reference imaging modality as opposed
to Technegas SPECT is based upon Galligas PET’s
increased resolution and sensitivity.14 In utilizing a
higher resolution label in a deep learning framework,
the synthesized CTVIs will learn from higher resolu-
tion labels and will attempt to predict higher resolution
ventilation images. In a systematic review of functional
lung imaging in radiotherapy, it was recommended ven-
tilation images with high spatial resolution be used for
functionally adapted radiotherapy treatment planning.6

These CTVIs were then compared to Galligas PET ven-
tilation images to assess the deep learning model’s per-
formance.
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F IGURE 1 Overview of the methodology. Starting at the top is the acquired BHCT image pairs and Galligas PET ventilation images. These
images were preprocessed and split into training and testing groups based on eightfold cross-validation. The neural network used input
preprocessed BHCT and labeled preprocessed Galligas PET images to train. Once trained, the testing preprocessed BHCT images were used
by the neural network to make CT ventilation images. These CTVIs were then qualitatively and quantitatively compared to the testing labeled
preprocessed Galligas PET images. BHCT, breath-hold CT; CTVIs, CT ventilation images

2 MATERIALS AND METHODS

An overview of the entire methodology of this study is
presented in Figure 1.

2.1 Patient data acquisition

The patient images used in this study were acquired
at Royal North Shore Hospital between 2013 and 2015
for a previous study investigating CTVI using 4DCT and
BHCT pairs, which had the Health District Ethics Com-
mittee’s approval (HREC/12/169) and was registered
to the Australian New Zealand Clinical Trials Registry
(ACTRN12612000775819).15 A total of 18 lung cancer
patients were enrolled with varying ages (54–73 years),
lung tumor staging (II–IV), and chronic pulmonary dis-
ease (mild to severe). A total of 16 BHCT pairs and cor-
responding Galligas PET image sets were successfully
acquired in one imaging session using a Siemens Bio-
graph mCT.S/64 PET/CT scanner (Siemens, Knoxville,

USA). Data from 15 of these patients were available for
this study due to a duplication error.

Acquisition parameters for the BHCT image pairs are
described as follows. Patients were instructed, using
audiovisual biofeedback, to hold their breath at 80%
peak inhale and 80% peak exhale for 10 s each. Scan
parameters of the BHCT pairs were 120 kVp, 120 mA s,
and a pitch of 0.8 producing a field size of approximately
50 cm of the thoracic region of the patient.These recon-
structed BHCT image pairs had a voxel size of 0.96 mm
× 0.96 mm × 1.8 mm (x, y, z) and units of HUs. Each
patient had around 170 slices, each consisting of 512 ×
512 pixels.

Acquisition parameters for the Galligas PET images
are described as follows. Patients inhaled an estimated
activity of 20 MBq of Galligas radiotracer. The follow-
ing acquisitions were performed under free-breathing
with the patient imaged at two bed positions for 5 min
each. The attenuation correction low-dose CT had scan
parameters of 120 kVp, 50 mA s, and a pitch of 0.8. The
reconstructed Galligas PET images had a voxel size of
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2.04 mm × 2.04 mm × 2.2 mm (x, y, z) and units of
kBq/mL. Each patient had around 160 slices and each
contained 400 × 400 pixels.

2.2 Image preprocessing

The pipeline from acquired patient images to the neu-
ral network is illustrated in Figure 1. The BHCT image
pairs and Galligas PET images were both resampled,
using B-spline interpolation, into a voxel size of 1 mm
× 1 mm × 1 mm (x, y, z) using SimpleITK on Python.23

Resampling was performed to ensure a voxelwise cor-
respondence between the BHCT image pairs and Galli-
gas PET images.A 1-mm3 voxel size was selected not to
lose the relatively high spatial resolution afforded by the
BHCT pairs that increased the Galligas PET image res-
olution.As the Galligas PET images were acquired in the
same imaging session as the BHCT pairs, rigid shifting
using visual inspection was used to align the two modal-
ities,with the goal to align the Galligas PET image to the
exhalation phase of the BHCT image pair.

The BHCT image pairs were lung masked by a
−500-HU intensity threshold filter, followed by a patient-
dependent combination of erosion, dilation, and flood-
filling morphological operations using scikit-image on
Python.24 Lung masking was applied to the union of
exhalation and inhalation phases of the BHCT images.
Both the BHCT image pairs and Galligas PET images
were cropped into 250-axial slices, each containing
304 × 304 pixels. These dimensions were sufficient to
encompass the lung for each patient.

The BHCT image pairs were both min–max normal-
ized to 0 and 1. The Galligas PET images contained
a large range of radioactivity values caused by small
bright spots of radioaerosol clumping. Consequently,
when performing a min–max normalization in isolation,
most voxels were assigned a near-zero radioactivity
value. As a result, an additional method of standard-
ization was applied. This standardization calculates the
mean (μ) and standard deviation (σ) radioactivity of the
voxels contained within the patient’s lung.Any voxel with
a radioactivity value greater than μ + 4σ is set equal
to μ + 4σ. This method of standardization is consistent
with a clinical implementation of Galligas PET images
in radiotherapy treatment planning.25 After standardiza-
tion, the Galligas PET images were min–max normal-
ized to 0 and 1. The normalization and standardization
were performed globally across the entire patient lung
volume.

2.3 Machine learning development

A 2D U-Net style convolutional neural network was used
to train and produce the axial ventilation images which,
when assembled, provided a 3D ventilation map of the

patient’s lung. A 2D framework was developed due to
computational limitations with the axial plane being used
as the acquired images had the highest resolution in
the axial plane. The framework for developing the neu-
ral network was TensorFlow 2.6.0.26 The input images
were three channels consisting of the exhalation, inhala-
tion,and average images of exhalation/inhalation BHCT
images. A third channel was necessitated by the image
augmentation framework used. The addition of the third
average image channel was anticipated to assist in train-
ing lung boundaries and shared anatomy between exha-
lation and inhalation. Compared with using a blank (i.e.,
all zeros) third channel, this average image produced an
approximate 2% increase in the mean Spearman corre-
lation over the entire patient dataset.

Eightfold cross-validation was used to measure the
robustness and increase the validity of the results
attained by the neural network. In the case of 15
patients,a patient was used for testing twice thus ensur-
ing that each fold used 13 training patients and 2 test-
ing patients. Due to the relatively small patient cohort of
just 15 patients, augmentation was used to reduce over-
fitting in the neural network. The specific augmentation
used was up to 10-degree axial rotation and up to 20-
pixel translation of the images (in the anterior–posterior
and left–right direction).

For each cross-validation fold, the 13 training patients’
axial images were contained within one stack com-
prising a 3-channel input BHCT (exhalation, inhalation,
and average image of exhalation/inhalation) and a 1-
channel-labeled Galligas PET image. A random 10% of
this training stack was used for validation during train-
ing, to track the loss and accuracy of the neural net-
work during training. The architecture of the neural net-
work was based on U-Net following a similar architecture
proposed by Liu et al.8,27 This architecture contains a
contracting downsampling path followed by an expand-
ing upsampling path with concatenations between each
path for feature preservation. The architecture of the
neural network is outlined in Figure 2.

Standard regression loss functions (such as mean
squared error and mean absolute error) for training the
neural network produced uniform blank images, hypoth-
esized to be caused by the large proportion of blank
voxels in the dataset (i.e., area outside the patient lung).
Accordingly, a loss function that penalized underpredic-
tions far more than overpredictions was used. The type
used in this neural network was focal loss, which is a
modified form of binary cross-entropy,with two tuneable
parameters α and γ.28 After performing a trial-and-error
method, the final values for the parameters of α and γ
were 1.5 and 5.0, respectively.The model was trained for
15 epochs for each cross-validation fold using an Adam
optimizer and a learning rate of 0.0003. Training time
was approximately 7.5 h per cross-validation fold using
an Intel Core i7-1065G7 CPU.The produced CTVIs were
normalized between 0 and 1 globally across the entire
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F IGURE 2 The neural network architecture. Starting at the top left and finishing at the top right is the path each augmented input image
takes as the machine learning algorithm learns. The total number of trainable parameters in this model is 1962 901 with 0 non-trainable
parameters. The input shape contains three channels corresponding to exhalation, inhalation, and alpha blend BHCT images. The output shape
contains only one channel corresponding to a predicted Galligas PET image. Convolutional layers used ReLU activation with He kernel
initialization and the “same” padding except for the final output layer, which used sigmoid activation. The pooling layers had a stride size of two.
BHCT, breath-hold CT

3D CT ventilation map. Each axial slice for each patient
was saved as an image stack that provided a full 3D
ventilation map of the patient’s lungs, which could be
viewed in axial, coronal, and sagittal planes. A full ven-
tilation map, consisting of 250 axial slices, took approx-
imately 10 s to produce using an Intel Core i7-1065G7
CPU.

2.4 Performance evaluation

Qualitative analysis was performed visually, by com-
paring the CTVIs to the Galligas PET images. Two
quantitative performance metrics were selected for
this study based on their prevalence in other research
concerning CTVI: the Spearman correlation and the
Dice similarity coefficient (DSC). To ensure that these
performance metrics were performed on the voxel
values contained only within the patient lung, a lung
mask of the exhalation phase of the BHCT images was
used.

The Spearman correlation is used to describe the
monotonicity of two datasets and takes a value between

−1 (perfect negative correlation) and +1 (perfect posi-
tive correlation).

The DSC is used to describe the spatial overlap
between structures and takes a value between 0 (no
spatial overlap) and 1 (full spatial overlap). DSC can be
expressed in terms of true positive (TP), false positive
(FP), and false negative (FN):

DSC =
2TP

2TP + FP + FN

Three functional volumes were defined in this study,
in-line with the previous work applying deep learning to
CTVI.8 The lung volume, as defined by the exhalation
lung mask, was split into three equal volumes based
on voxel values (i.e., ventilation). The process of deter-
mining these three equal volumes involves ordering
the voxel values by number and determining which
two values (first and second threshold values) split
this ordered set of voxel values into three equal parts.
These three functional sub-volumes corresponded to
HFL, medium functioning lung (MFL), and low func-
tioning lung (LFL) as defined by the ventilation. These
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F IGURE 3 Comparison between neural network produced CTVIs and Galligas PET ventilation images. Images (a)–(c) and the axial,
coronal, and sagittal views of a high correlated (Spearman correlation (rS) = 0.70) CTVI produced by the neural network. Images (d)–(f) are the
same axial, coronal, and sagittal views of this same high correlated patient’s Galligas PET ventilation image. Images (g)–(i) are the axial,
coronal, and sagittal views of a low correlated (Spearman correlation = 0.28) CTVI. Images (j)–(l) are the same axial, coronal, and sagittal views
of this same low correlated patient’s Galligas PET ventilation image. CTVIs, CT ventilation images

functional sub-volumes were computed for the CTVIs
and Galligas PET images,and a DSC was computed for
each sub-volume. An average value for the DSC over
HFL, MFL, and LFL was also calculated to describe the
overall spatial overlap between the CTVI and Galligas
PET ventilation images.

3 RESULTS

A high and low correlated CTVI (highest/lowest Spear-
man correlation) is presented in Figure 3 with corre-
sponding Galligas PET ventilation images that, for the
purposes of this study, were considered a ground-truth.

3.1 Qualitative performance

The CTVI produced by the neural network was first
compared to the Galligas PET images through visual
inspection. Even without using filtering as a post-

processing operation, each axial CTVI slice presented
a smoothness among regions of low, medium, and high
ventilation. This smoothness resulted in a difficulty in
predicting small pockets of high and low ventilation
within the patient lung. When displaying the ventilation
maps in the coronal or sagittal plane, the ventilation
showed distinct jagged edges in the superior–inferior
(SI) direction.

The CTVIs tended to show a systematic overpredic-
tion of ventilation within the patient lung when compared
to the Galligas PET ventilation images. Qualitatively, the
HFL was mainly localized around the center and ante-
rior of the patient’s lung for both the CTVI and Galligas
PET images. The HFL, MFL, and LFL for CTVIs with a
high-and-low spatial overlap of the HFL are presented in
Figure 4.The MFL had the least spatial overlap between
the CTVI and the Galligas PET images. Most of the
MFLs were defined in regions between the extremities
and center of the patient lung. The LFL was confined
to mainly the extremities of the lungs in both the CTVIs
and the Galligas PET images.
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F IGURE 4 Functional lung regions as defined by the neural network produced CTVI and Galligas PET ventilation image displayed in terms
of true/false negative/positive. Images (a)–(c) are the spatial overlap of HFL, MFL, and LFL, respectively, for a CTVI with high spatial overlap
(DSC HFL = 0.68). Images (d)–(f) are the spatial overlap of the HFL, MFL, and LFL, respectively, for a CTVI with low spatial overlap (DSC
HFL = 0.41). CTVI, CT ventilation images, DSC, Dice similarity coefficient; HFL, high functioning lung; LFL, low functioning lung; MFL, medium
functioning lung

TABLE 1 Performance measures of the machine learning
generated CT ventilation images

Performance measure

Mean value across 15
patients (mean ±

standard deviation)

Spearman correlation 0.58 ± 0.14

DSC high functioning lung 0.61 ± 0.09

DSC medium functioning lung 0.43 ± 0.05

DSC low functioning lung 0.62 ± 0.07

DSC average 0.55 ± 0.06

Abbreviation: DSC, Dice similarity coefficient.

3.2 Quantitative performance

Each testing patient across the cross-validation was
masked using an exhalation lung mask ensuring that
quantitative performance measures were only taken for
voxels contained within the lung. For each patient, the
Spearman correlation and the DSC for HFL, MFL, and
LFL was calculated between their CTVI and their Gal-
ligas PET ventilation image. The mean values across
the 15 patients are presented in Table 1. Several stud-
ies involving various methods of CTVI generation with a
reference to a nuclear medicine ground-truth were com-

pared to our quantitative results and are presented in
Figure 5.

4 DISCUSSION

Machine learning was successfully used to generate
CTVIs from BHCT image pairs without the need for
DIR or ventilation metrics. A neural network was trained
and developed on a CPU-only laptop that could pro-
duce a full ventilation map of an unseen patient within
10 s. The pre- and post-processing, training, inference,
and performance measures were able to be performed
on a CPU-only laptop, meaning that this methodology
is widely accessible especially where hardware limita-
tions are present.Comprehensive performance analysis
of the neural network was conducted showing promis-
ing results even when using a reasonably small patient
dataset with minimal pre- and post-processing.

The mean Spearman correlation between CTVIs
and a Galligas PET reference image for a variety of
previous studies is presented in Figure 5. The mean
Spearman correlation achieved in this study was 0.58
± 0.14 (standard deviation) ranging from 0.28 to 0.70
for a 15-patient dataset.
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F IGURE 5 Variation in the Spearman correlation of CT ventilation images to reference Galligas PET images for a variety of studies. The
number and diamond refer to the mean value across the testing CT ventilation images (for the best performing algorithm, where applicable). The
error bars refer to the standard deviation if provided by the study

A direct comparison with a conventional method of
producing CTVIs using DIR-based methodology is pro-
vided by Eslick et al.,as their study used the same BHCT
image pairs and Galligas PET images.15 The mean
Spearman correlation they achieved for 16 patients (15
of which were used in this study) was 0.67, which was
higher than the mean achieved in our study and is rep-
resented as Ref. [15] in Figure 5 (a standard devia-
tion was not provided in their study).15 A lower mean
Spearman correlation is observed and is speculated to
be caused by the relatively low patient dataset. DIR-
based methods are impervious to small patient datasets
and are well suited where there is a lack of patient
data.

The AAPM grand challenge VAMPIRE had partici-
pants to submit their own CTVIs, based on a provided
4DCT, which were compared for a variety of reference
imaging modalities, including Galligas PET.The best per-
forming DIR-based algorithm using Galligas PET as a
reference modality in this grand challenge had a mean
Spearman correlation of 0.53 ± 0.10 (standard devi-
ation), represented as Ref. [18] in Figure 5.18 A study
investigating the use of a non-DIR-based method of pro-
ducing CTVIs with a Galligas PET reference modality
observed a mean Spearman correlation of 0.50 ± 0.17,
represented as Ref. [16] in Figure 5.16 The mean Spear-
man correlation for a study correlating DIR-based CTVIs
with a Galligas PET reference image for 12 patients was
0.42 ± 0.16 (standard deviation), represented as Ref.
[17] in Figure 5.17 There are several fundamental differ-
ences in the different studies presented in Figure 5. An
example of this is the type of CT used to generate the

CTVI, in all cases but our study and Eslick et al., these
other studies used 4DCT, instead of BHCT, which can
reduce the correlation of the produced CTVIs.15 Con-
sequently, Figure 5 is presented in this study as an ini-
tial comparison of CTVI methodologies when a Galligas
PET reference modality is used.

Although Liu et al.did not use Galligas PET as the ref-
erence modality, rather Technegas SPECT, it is still use-
ful to compare another similar deep learning approach
to generating CTVIs. The mean Spearman correlation
(across a dataset of 50 patients) achieved by Liu et al.
who used a similar neural network was 0.73 ± 0.16
(standard deviation).8 The CT input images were 10-
and 2-phase 4DCT.

A comparison for the DSC between this study and
Liu et al. is possible due to the definition of the func-
tional lung being consistent between their study and
this study. The mean DSC across the HFL, MFL, and
LFL achieved by Liu et al. was 0.73 ± 0.09 (standard
deviation).8 They similarly observed a reduction in the
DSC for MFL in comparison with the HFL and LFL. The
mean DSC achieved in this study was 0.55 ± 0.06.

A multitude of factors underpin the varying successes
in replicating a nuclear ventilation image by use of CT.
A major factor influencing how a machine learning algo-
rithm generalizes in testing is the size of dataset used for
training. The patient dataset in our study was relatively
small, only containing 15 patients, compared to other
studies. The Spearman correlation and DSC would be
expected to increase with an increasing patient dataset.
A large variety of lung ventilation was observed in the
Galligas PET patient dataset,which is a result of patient
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characteristics (lung tumor staging, chronic obstructive
pulmonary disorder, and age) and can be observed
qualitatively (uniformity of ventilation) and quantitatively
(maximum/mean measured ventilation). Figure 3 shows
a particularly low correlated CTVI (Spearman correla-
tion = 0.28) with reference to the Galligas PET ventila-
tion image. Noticeably the sparse pockets of ventilation
were unable to be replicated in the neural network pro-
duced CTVI.

Due to computational limits, a 3D neural network was
not employed in our study. It is expected that a 3D neural
network would increase the Spearman correlation and
DSC as the model would be able to learn from a full
patient volume instead of individual slices as shown in
our study through the coronal and sagittal views of the
CTVIs, which could also help remove the distinct jagged
edges in the SI direction, as shown in Figure 3.

Our study warrants the future application and study
into using machine learning to generate CTVIs. With
larger patient datasets and more sophisticated machine
learning algorithms,CTVIs derived using machine learn-
ing can expect to see higher cross-modality correlation
with reference modalities. This can have the direct ben-
efit in radiotherapy treatment planning, improving out-
comes for patients and their families.

5 CONCLUSIONS

A machine learning algorithm was developed in the form
of a neural network that could produce a CTVI without
the use of DIR or ventilation metrics within 10 s on a lap-
top. Using a small patient dataset with a large variance
in lung ventilation, the mean Spearman correlation was
0.58 ± 0.14, and the mean DSC over low, medium, and
HFL was 0.55 ± 0.06.These performance measures are
comparable with conventional DIR-based methods war-
ranting the further investigation into applying machine
learning to CT ventilation imaging.
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