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Abstract: Previous studies have shown that COVID-19 leads to thrombotic complications, which
have been associated with high morbidity and mortality rates. Neutrophils are the largest population
of white blood cells and play a pivotal role in innate immunity. During an infection, neutrophils
migrate from circulation to the infection site, contributing to killing pathogens. This mechanism is
regulated by chemokines such as IL-8. Moreover, it was shown that neutrophils play an important
role in thromboinflammation. Through a diverse repertoire of mechanisms, neutrophils, apart from
directly killing pathogens, are able to activate the formation of thrombi. In COVID-19 patients,
neutrophil activation promotes neutrophil extracellular trap (NET) formation, platelet aggregation,
and cell damage. Furthermore, neutrophils participate in the pathogenesis of endothelitis. Overall,
this review summarizes recent progress in research on the pathogenesis of COVID-19, highlighting
the role of the prothrombotic action of neutrophils in NET formation.
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1. Introduction

The novel coronavirus disease 2019 (COVID-19) was first reported in Wuhan, China,
in December 2019 [1]. On 11 March 2020, the World Health Organization character-
ized the global health emergency of COVID-19 as a pandemic. As of 28 March 2021,
126,359,540 cases of COVID-19 have been confirmed, and 2,769,473 deaths have been re-
ported globally [2]. The etiology of the disease is severe acute respiratory syndrome coron-
avirus 2 (SARS CoV-2), an enveloped, positive-sense RNA belonging to β-coronaviruses [3].

It was previously reported that elevated levels of blood neutrophils are an early indi-
cator of SARS-CoV-2 severe infection [4]. Moreover, the elevation of different coagulation
parameters, such as D-dimers, prothrombin time (PT), fibrinogen, and fibrinogen degrada-
tion products (FDPs), has been observed in patients with COVID-19 [5–10]. The coagulation
mechanism includes specific proteins that act as natural anticoagulants, thereby avoiding
formation of clots. These proteins are antithrombin (AT), protein C (PC), and protein
S (PS). The results of previous studies, however, seem to be controversial. Zhang et al.
reported that the activities of protein C, protein S, and antithrombin were all below the
normal range [11]. Moreover, Gazzaruso et al. reported that COVID-19 patients have low
levels of AT. The authors further suggested that AT is strongly associated with mortality in
COVID-19 [12]. Antithrombin (AT) plays a significant role in COVID-19-induced coagu-
lopathy, where low AT levels might explain the ineffectiveness of anticoagulants in patients
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with COVID-19 [13]. The above research highlights the synergistic roles of immune and
coagulation systems in the development of thrombotic manifestations in COVID-19.

The mechanism of NETosis, its role in the pathogenesis of immunothrombosis and
COVID-19-related coagulopathy, and therapeutic interventions targeting neutrophils are
discussed in this review.

2. Neutrophils

Neutrophils are the “Cinderella” of innate immunity—except for their critical role in
the host’s defense against pathogens—and play a vital role in thrombosis. Neutrophils
are generated in the bone marrow and circulate in the blood as dominant white blood
cells. Neutrophil migration is critical for host defense and pathogen clearance during
infection [14]. The interactions between neutrophil adhesion receptors and adhesion
molecules of the beta2 integrin family (CD11/CD18) on endothelial cells is necessary for
neutrophil activation and migration to the site of infection [15].

Neutrophils’ antimicrobial arsenal is impressive and includes different effector mech-
anisms such as phagocytosis and degranulation. In 2004, Brinkmann et al. described a new
additional antimicrobial paradigm of neutrophil action known as neutrophil extracellular
traps (NETs) [16]. NETs are composed of chromatin and decorated with several proteins
that have antimicrobial properties, such as histones, elastase, and myeloperoxidase [17].
Currently, it is widely accepted that there are three antibacterial mechanisms of neutrophil
action: phagocytosis, degranulation, and NET formation. NETs exert their antimicrobial
effects through pathogen immobilization via entrapment. Moreover, the NETs components
of antimicrobial peptides, histones, and DNA produce direct antimicrobial effects [18–20].
Over the past decade, scientists have uncovered the vital role of neutrophils and neutrophil
extracellular traps (NETs) in thrombo-inflammation [21–24].

3. Induction and Molecular Mechanisms of NET Formation

To date, a wide spectrum of stimuli has been recognized as inducers of NET formation
(Table 1). Direct exposure to microbial pathogens, both Gram-positive bacteria (Staphylococ-
cus aureus, Staphylococcus suis, Streptococcus pyogenes, Streptococcus pneumoniae) [8–10] and
Gram-negative bacteria (Escherichia coli, Salmonella enterica, Shigella flexneri, Pseudomonas
aeruginosa), exposure to hyphae or yeast (Candida albicans), and exposure to protozoan
parasites (Leishmania amazonensis or Trypanosoma cruzi) are able to induce NET genera-
tion [25–27]. Additionally, drugs such as statins and antibiotics can activate neutrophils to
create NETs [19,28]. Jhunjhunwala S et al. further showed that sterile implant materials
can induce NET formation [29].

As first shown by Zychlinsky et al., NET formation depends on the reactive oxygen
species (ROS) produced by NADPH oxidase [17]. This process was confirmed in a study on
patients suffering from chronic granulomatous disease (CGD) [30]. Fuchs et al. determined
that mutations in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase suspend
NET generation. Interestingly, the results in this study demonstrated that the addition
of exogenous ROS to CGD neutrophils promotes NET formation [30]. Similarly, Bianchi
et al. showed that gene therapy in a patient with CGD restored NET formation through
neutrophils, highlighting the role of functional NADPH oxidase in NET formation [31].

Papayannopoulos et al. further demonstrated the novel functions of granular proteins
such as Neutrophil Elastase (NE) in the regulation of chromatin density [32] The authors
demonstrated that activated NE escapes from azurophilic granules and translocates to
the nucleus where it promotes chromatin decondensation through the degradation of
specific histones. Consequently, myeloperoxidase synergizes with NE to drive chromatin
decondensation, which contributes to NET formation. The decondensation of chromatin,
an essential step of NET formation, is associated with the hypercitrullination of Histone
H3 through the conversion of histone arginine to citrulline by peptidylarginine deiminase 4
(PAD 4), an enzyme that is particularly rich in mature neutrophils [33]. Hyperctrullination
seems to play an essential role in NET formation. One study showed that mice deficient in
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PAD 4 were unable to form NETs and presented reduced NET-dependent bacterial trapping
and killing [34].

Table 1. NET inducers. tnterleukin 8 (IL-8), tumor necrosis factor -α (TNFα), interferon-γ (IFN-γ),
interferon-α (IFN-α), granulocyte-macrophage colony-stimulating factor (GM-CSF), lipopolysaccha-
rides (LPS), and complement component 5a (C5a).

Microorganisms Cytokines/Chemokines

Bacteria IL-8
Escherichia coli TNFα

Enterococcus faecalis IFN-γ
Haemophilus influenzae IFN-α

Shigella flexneri GM-CSF
Staphylococcus aureus GM-CSF + LPS
Streptococcus pyogenes C5a

Streptococcus pneumoniae Other inducers

Serratia marcescens Activated Platelets
Pseudomonas aeruginosa Drugs

Intracellular bacteria Statins
Listeria monocytogenes Antibiotics

Mycobacterium tuberculosis MSU monosodium urate
crystals

Fungi yeast PMA
Aspergillus fumigatus Sterile Implant Materials

Candida albicans
Cryptococcus neoformans

Parasites
Toxoplasma gondii

Leismania amazonensis
Trypanosoma cruzi

Viruses
HIV-1

RSV—(respiratory syncytial virus)
Influenza A
SARS-CoV-2

Another mechanism involved in NET release is autophagy. Several studies have
shown that autophagy modifies neutrophil functions [35,36]. Autophagy is a homeostatic
mechanism involved in programmed cell death. Autophagic machinery is induced by
PI3K hVPS34. It was demonstrated that the inhibition of PI3K with 3-methyladenine
(3-MA), wortmannin, and LY294002 inhibits autophagy. Moreover, autophagy is negatively
regulated by the protein kinase mammalian target of rapamycin (mTOR) [37].

Recently, Mazzoleni et al. reported that Panton–Valentine leukocidin (PVL) triggers
an alternative NETosis process [38]. This study showed that PVL-induced NETs differ from
NADPH oxidase-dependent NETosis and target the mitochondria.

4. Neutrophils, NETs, and Endothelial Damage

Endothelial cells (ECs) are a keystone player in the maintenance of normal hemostasis.
The integrity of the vessel wall, in tandem with the expression of various inhibitors such as
tissue factor pathway inhibitor (TFPI), thrombomodulin, protein C receptor, and heparin-
like proteoglycans, manifests anticoagulative action [39]. Endothelial cell damage has
also been detected in COVID-19 patients as a common feature of disease [40]. Recent
publications suggest that COVID-19 affects other organs beyond the lungs, such as the
heart and kidneys. Lindner et al. showed SARS-CoV-2 to be present in myocardial
tissue during an autopsy [41]. One of the possible mechanisms of multiorgan damage was
determined to be the endothelitis. COVID-19-related endothelitis induces systemic vascular
endothelial dysfunction, which was observed in the disease’s complications [42]. Sh et al.
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hypothesized that endothelial cells could be activated by antibodies, NETs, and different
circulating proteins, except under a direct viral effect [43]. Ackermann et al. performed
autopsies on seven patients who died from COVID-19-associated or influenza-associated
respiratory failure. The report showed that the incidence of thrombus formation in the
pulmonary microvasculature was approximately nine times higher than that related to
influenza (p < 0.001) [44]. In the same study, histological analysis of the lungs from patients
who suffered influenza-associated respiratory failure showed diffuse alveolar damage with
perivascular T-cell infiltration. Conversely, histological analysis of the pulmonary vessels
in patients with COVID-19 revealed widespread thrombosis with microangiopathy [44].
At the beginning of 2021, Evert et al. reported the same results in their own autopsy
findings. The autopsy revealed that patients with severe diffuse alveolar damage had
developed endothelitis and capillaritis [45]. To correlate endothelial dysfunction with
in-hospital mortality, Philippe et al. measured a panel of endothelial biomarkers and the
von Willebrand factor (VWF) in 208 COVID-19 patients. According to the authors’ data,
the best predictor for in-hospital mortality was VWF [46].

Skendros et al. investigated the role of the NET/platelet/thrombin axis in ECs and
demonstrated that complement inhibition has a therapeutic effect in SARS-CoV-2 infection,
which is reflected by a decline in C-reactive protein and IL-6 levels, marked improvements
in lung function, and the resolution of SARS-CoV-2-associated acute respiratory distress
syndrome (ARDS) [47].

5. Neutrophils, NETs, and Thromboinflammation

Apart from robust antimicrobial properties, through NETs, neutrophils also induce a
vigorous procoagulant response. Activation of the coagulation system is a fundamental host
defense mechanism that prevents the dissemination of infectious agents via fibrin deposi-
tion and thrombus formation. Although previous studies reported that neutrophils acquire
but do not produce TF, which would attenuate the significance of neutrophils in thrombosis,
it is generally accepted today that neutrophil-derived TF is involved in thrombosis [48].
Additionally, NET release has emerged as a major contributor to neutrophil-related throm-
boinflammation, providing the scaffold for platelet entrapment and subsequent activation.
The leading role of NETs in neutrophil-related thromboinflammation was proven using
both in vitro and ex vivo models, including in sepsis, deep venous thrombosis (DVT),
and malignancies (Table 2) [49,50]. The presence of NETs was recently identified in thrombi
in a murine model of deep vein thrombosis [49]. Brill et al. reported that NETs’ extracel-
lular chromatin, which likely originates from neutrophils, is a structural component of a
venous thrombus and that both the DNA scaffold and histones appear to contribute to
the pathogenesis of DVT in mice. NETs may provide new targets for DVT drug develop-
ment. Moreover, Kambas et al. demonstrated that the expression of bioactive TF in NETs
can induce a coagulation cascade [51]. These authors shed light on the involvement of
autophagic machinery in the expression of TF in NETs and the subsequent activation of
thrombi formation.

In particular, in SARS Cov-2 patients, Leppkes et al. showed that severe disease
induces NET formation inside the microvessels. The intravascular formation of NETs with
platelet aggregation leads to organ damage due to rapid vessel occlusion [52]. Moreover,
Nicolai et al. noted that inflammatory microvascular thrombi containing NETs and platelets
can be found in the kidney, lung, and heart in COVID-19 patients [53].

Platelet–neutrophil cooperation is a noteworthy mechanism of innate immunity that
contributes to the pathogenesis of thrombosis. After von Willebrand factor-dependent
priming, platelets can affect neutrophils both through direct interactions and through
the release of soluble mediators [54–56]. Platelets secrete a variety of different molecules.
Inorganic polyphosphate (PolyP) is a critical component of platelet-dense granules that
participates in coagulation and inflammation. The critical role of platelet-released PolyP
was shown in the work of Morrissey et al. [57].
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In addition, NET formation can also be induced by therapeutic manipulation. Extra-
corporeal membrane oxygenation (ECMO) therapy was used to improve the oxygenation
of patients suffering from COVID-19. Ultimately, the mortality rates declined among pa-
tients who underwent ECMO. Nevertheless, thrombotic complications remained frequent.
As foreign surfaces, the biomaterials of ECMO systems can induce NET formation in a
platelet-independent manner [58]. To test this phenomenon, Winnersbach et al. studied
the effect of ECMO on platelet functions and thrombotic complications. In this study,
platelet-poor (PLT-) and naive (PLT+) heparinized human blood was circulated for 6 h in
two identical in vitro test circuits used for ECMO devices. The authors reported that the
depletion of PLTs within the ECMO system was associated with limited PLT activation but
not sufficient to inhibit clot formation [59].

Table 2. Studies of NETs in thromboinflammation. Myeloperoxidase, MPO; Neutrophil Elastase, NE; High Mobility
Group Box 1, HMGB-1; Deoxyribonucleic Acid, DNA; ST-segment elevation myocardial infarction, STEMI; Interleukin-1b,
IL-1b; Interleukin-17, IL-17; Western blot, WB; Immunohistochemistry staining, IHC; systemic lupus erythematosus, SLE;
Regulated in development and DNA damage responses 1, REDD-1; and Deep Vein Thrombosis, DVT.

Model
Target

Authors
Proteins NET Detection Method

DVT (Animal) MPO, TF Immunofluorescence ELISA Bril et al. [49]
STEMY (Human) MPO, NE, TF Immunofluorescence WB, ELISA Stakos et al. [60]
Sepsis (Human) MPO, NE, TF Immunofluorescence ELISA Kambas et al. [51]
Ischemic stroke
(Animal)

Cit H3
HMGB-1 Immunofluorescence WB Kim et al. [61]

COVID-19 (Human) Cit H3 IHC, Immunofluorescence, WB Leppkes et al. [52]
Ischemic stroke
(Human) Cit H3, MPO, NE, TF Immunofluorescence ELISA Zhou et al. [62]

SLE (Human) REDD-1, MPO, NE, TF Immunofluorescence ELISA Frangou et al. [63]

6. Neutrophils, NETs, and Lung Damage in COVID-19

The lung is the first organ that SARS-CoV-2 attacks. After arriving at the alveoli, SARS-
CoV-2 triggers innate immune responses via the activation of alveolar macrophages. Then,
viral particles activate a complement cascade via the lectin pathway. The complementary
peptides C3a and C5a, produced as part of the activation of the complement system, stimu-
late the migration of neutrophils to the site of infection. The complement membrane attack
complex (MAC) then exerts cell damage, thereby producing damage-associated molecular
patterns (DAMPs). In addition, the SARS-CoV-2 S protein stimulates lung epithelial cells
to release specific proteins such as epithelial membrane protein 2 (Emp2). The Emp2 of
alveolar epithelial type 1 cells upregulates neutrophil migration. As part of the first line of
innate immune response, the activated neutrophils perform protective roles in various in-
fections through phagocytosis, degranulation, and NET formation. Furthermore, activated
neutrophils, together with macrophages, are responsible for secreting proinflammatory
cytokines such as IL-1b, IL-2R, IL-6, IL-8, TNF-α, and others [64–66]. Studies on lung
histopathology in COVID-19 infection and severe respiratory failure have demonstrated
the presence of distinct alveolar damage and thrombi formation in the peripheral pul-
monary vessels. Interestingly, visualization of neutrophil-rich inflammation and neutrophil
extra-cellular traps at the site of infection confirmed the role of neutrophils in COVID-19-
related immune responses [67,68]. Veras et al. ascertained that SARS-CoV-2 can induce NET
formation through healthy neutrophils, which depends on angiotensin-converting enzyme
2 or hypercitrullination [69]. Zuo et al. confirmed this result in an ex vivo study. In studying
sera from COVID-19 patients, the authors detected higher NET markers (cell-free DNA,
myeloperoxidase (MPO) DNA complexes, and/or citrullinated histone H3) [4]. Similarly,
Ng et al. investigated NET markers in COVID-19 patients compared to healthy individuals,
and all markers were found to be elevated. The authors concluded that NETs play a pivotal
role in disease progression and thrombotic complications [70]. These results were also
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recently observed by Wang et al. in a whole-tissue transcriptomic analysis of lung tissue
and bronchoalveolar lavage fluid (BALF). In this study, the most significantly up-regulated
marker genes, both in the lung tissue and in BALF, were found in neutrophils (84 genes).
Of these 84 genes, 16 genes were NET-associated genes. Among the NET-associated genes,
gene promoters of proteinarginine deiminase type 4 (PAD4) activation and ROS-related
genes were observed [71].

Pathological findings from autopsies of COVID-19 patients highlighted the key role
of neutrophils in hyperinflammation [72–74]. Overall, neutrophil infiltration through
Neutrophilic plugs was detected in COVID-19 patients via Neutrophil Elastase (NE),
Myeloperoxidase (MPO), and Citrullinated Histone H3 (citH3) staining. Notably, these
findings featured NETs and platelets [74]. On the other hand, Sinha et al. analyzed
39 patients suffering from ARDS due to COVID-19 and reported that ARDS was not
associated with higher systemic inflammation [75]. Moreover, ARDS in this cohort was
associated with a lower prevalence of the hyperinflammatory phenotype in comparison to
matched patients recruited to the HARP-2 study (UK multicenter, randomized controlled
trial of simvastatin) [75].

Notably, Calfee et al. reported that direct lung injury was correlated with severe
lung epithelial injury, whereas an opposite pattern of predominantly endothelial injury
was observed in indirect lung injury [76]. Based on these findings, the authors suggested
different subtypes of ARDS due to COVID-19.

7. Neutrophils, NETs, and Kidney Damage in COVID-19 Thromboinflammation

Although the respiratory system is the first target of SARS-CoV-2, acute kidney injury
(AKI) has also been described in patients suffering from COVID-19 [77]. The kidneys
appear to be the second largest organ involved in COVID-19-related thromboinflammation.
Cytokine storm, endothelial injury, and neutrophil extracellular trap release are some of the
pathophysiological mechanisms that lead to renal capillary thrombosis during COVID-19 in-
fections [78]. Clinical signs of kidney involvement include increased serum creatinine with
or without new-onset proteinuria. Cheng et al. reported that kidney disease is associated
with a high mortality index in patients with COVID-19 [79]. A kidney histopathological
analysis of patients with COVID-19 confirmed the presence of virus-related lesions such as
vasculitis, inflammation, and platelets with erythrocyte aggregates obstructing the lumen of
the capillaries. In addition, an electron microscopic examination showed coronavirus-like
particles in the tubular epithelium and podocytes. An immunostaining analysis revealed
that ACE2 receptors were upregulated in patients with COVID-19 and colocalized with
the SARS-CoV-2 nucleoprotein. Factors such as systemic hypoxia, abnormal coagulation,
and possible drug or hyperventilation-relevant rhabdomyolysis contribute to acute kid-
ney injury [80]. Furthermore, activation of the complement system might be involved
in renal injury in COVID-19. Using immunohistochemistry for the complement factors
C1q, MASP-2, C3b, C3d, C4d, and C5b-9, Pfister et al. investigated the involvement of the
complement system in renal injury in six kidney biopsies from the autopsy materials of
patients with COVID-19 [81]. Both C3 cleavage products (C3b and C3d) were detected
in the renal arteries and glomerular capillaries of the COVID-19 biopsies. The membrane
attack complex C5b-9 (MAC) was predominantly deposited in the peritubular capillaries,
renal arterioles, and tubular basement membrane.

8. Neutrophils, NETs, and Kawasaki Disease

Kawasaki disease (KD) is an acute febrile systemic vasculitis in small and medium-
sized arteries that leads to coronary artery lesions (CALs) in young children, especially
in Japan [82,83]. Since Kawasaki disease exhibits seasonal and regional patterns, it was
suggested that other infections may be a trigger for KD. Indeed, coronavirus HCoV-229E
was identified as the etiological factor in the development of KD [84]. Since KD diagnosis
is only based on clinical criteria, commonly used biochemical markers such as CRP cannot
distinguish KD from infectious diseases. In this context, a better understanding of the
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pathophysiological mechanisms of KD could help discover new biomarkers for the early
detection of KD.

Histopathologic studies of KD vasculitis lesions have demonstrated that the predomi-
nant cells are CD163 monocytes/macrophages and CD3 T cells [85]. Other inflammatory
cells, such as neutrophils, and neutrophil-driven proinflammatory cytokine production
also contribute to EC damage. Armaroli et al. reported that EC damage with elevated
serum S100A12 levels in patients with KD was strictly dependent on interleukin-1β (IL-1β)
signaling (p < 0.001) [86]. Although it was previously shown that SARS-CoV-2 infection is a
type of NETopathy, Yamashita et al. reported for the first time that serum from KD patients
can stimulate NET formation in human neutrophils in vitro [87]. This study demonstrated
that NET formation is the principal pathophysiological mechanism in SARS-CoV-2 infec-
tion and Kawasaki-like syndrome [87]. This result agrees with a study by Pouletty et al.
that indicated Kawasaki-like syndrome to be associated with SARS-CoV-2 infection in chil-
dren [88]. Furthermore, Jing et al. analyzed the role of neutrophil extracellular traps (NETs)
in the pathogenesis of KD [89]. The authors found that the neutrophils of KD patients
induced NET formation and that those NETs significantly increased pro-inflammatory
cytokine production and NF-κB activation in peripheral blood mononuclear cells (PBMCs).
In addition, in vitro models in an endothelial cell culture showed the increased expres-
sion of vascular endothelial growth factor A (VEGF-A) and hypoxia-inducible factor-1α
(HIF-1α). These results demonstrate that NETs are key players in the pathogenesis of KD
and Kawasaki-like syndrome.

9. Neutrophils, NETs, and Therapeutical Interventions in COVID-19

It is well-documented that neutrophils are key factors in the cytokine storm and
thrombotic complications experienced by COVID-19 patients and that therapeutic targeting
of neutrophils might ameliorate hyperinflammatory syndrome in COVID-19. Therefore,
several studies proposed that NETs could be a therapeutic target in COVID-19 patients
(Table 3) [90–93].

Table 3. Therapeutic targeting of Neutrophil Extracellular Traps. Peptidylarginine deiminases -4, PAD-4; Neutrophil
Elastase, NE; High Mobility Group Box 1, HMGB-1; Deoxyribonucleic Acid, DNA; Interleukin-1b, IL-1b, and Interleukin-
17, IL-17.

Mechanisms
Target

Drug
Proteins Action

Inhibition of NET formation

PAD-4 Inhibition of histone citrullination PAD-4 inhibitor

NE Inhibition of proteas activity Sivelestat

NF-κB NF-κB signaling pathway inhibition Aspirin

HMGB-1 HMGB-1-targeting HMGB-1 inhibitors

NETs dissolution
DNA NET degradation DNase Dornase alfa

DNA–Histone complex NET degradation Heparin

NETs protein blocking IL-1b

IL-1b receptor antagonist Anakinra

Anti-IL-1b Abs Canakinumab

Inhibition of IL-1b secretion Colchicine

IL-17 Anti-IL-17 Abs Secukinumab

9.1. Interleukin Targeting

The cytokines involved in the pathogenesis of lung inflammation in COVID-19 include
IL-1, IL-6, IL-8, and TNF-α [94]. During the early phases of the pandemic, off-label admin-
istration of an FDA-approved anti-interleukin drug was reported. However, the results of
related studies are conflicting.
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Several studies of COVID-19 patients reported positive effects of interleukin-1 an-
tagonists [95,96]. However, the targeting of IL-1 receptors by anakinra (an IL-1 receptor
antagonist (Ra)) in COVID-19 remains uncertain. To date, there are three FDA-approved
anti IL-1 agents: Anakinra is an IL-1 receptor inhibitor, while canakinumab and rilonacept
are IL-1β inhibitors. Anakinra was reported in the treatment of COVID-19. The administra-
tion of anakinra to COVID-19 patients was found to be safe and might be associated with
a reduction in both mortality and the need for mechanical ventilation [96]. On the other
hand, the CORIMUNO-ANA-1 study reported that Anakinra did not improve outcomes
in patients with mild-to-moderate COVID-19 pneumonia [97]. Similarly, a single-center
retrospective comparative study was performed by de la Calle et al., which reported
that treatment with anakinra was not able to improve the prognosis of patients with
tocilizumab-refractory severe COVID-19 [98].

Several ongoing clinical studies are using anti-IL-6 in therapeutical protocols for
COVID-19. Guaraldi et al. performed a study on adult patients to assess the role of anti-IL-
6 in reducing the risk of death in patients with severe COVID-19. This observational cohort
study included 544 severe COVID-19 patients; 365 of these patients received standard
protocols, while the remaining 179 patients were treated with tocilizumab (a monoclonal
antibody that binds to the IL-6 receptor). The results of this study showed that treatment
with tocilizumab reduced the risk of invasive mechanical ventilation or death in patients
with severe COVID-19 pneumonia [99]. The same results were reported by Huang et al.,
showing that tocilizumab treatment is associated with a reduction in death compared to
non-treatment in severe COVID-19 patients [100]. In contrast with previously reported
studies, Stone et al. recently reported that Tocilizumab was not effective in preventing
intubation or death for moderately ill patients hospitalized with COVID-19 [101].

Interleukin-17 was previously related to a hyperinflammatory state in COVID-19 pa-
tients. The role of anti-IL-17 was reported in a patient with ankylosing spondylitis treated
with secukinumab (a monoclonal antibody that binds to the IL-17 protein). According
to this study, IL-17 inhibitors were presented as promising targets for the prevention of
aberrant inflammation and acute respiratory distress in COVID-19. Positive results from
anti-IL-17 were also reported by Mareev et al. [102]. Mugheddu et al. further reported that
two COVID-19-positive patients who also suffered from psoriasis recovered rapidly from
their infections as a result of a long-term secukinumab treatment [103].

Overall, a variety of terminated and ongoing studies focused on IL receptors. Despite
the promising results from some of these studies, other research has provided opposite
conclusions, leading to a debate surrounding the true value of these interventions. Better-
designed and multicenter studies could elucidate the true value of these drugs.

9.2. Neutrophil Elastase Inhibitors

Neutrophil Elastase (NE), a serine protease, is one of the proteolytic enzymes that
contribute greatly to the functions of neutrophils. NE participates in neutrophil activation
and NET formation. Specifically, NE facilitates the invasion of SARS-CoV-2 into host cells
and can also damage lung tissues directly. The role of NE in patients with ARDS, including
COVID-19, and sepsis have been reported in different studies [104–107]. Moreover, in an
experimental mice model, Ogura et al. reported that NE deficiency improves myocardial
injury in post-myocardial infarction [108]. Based on previous reports, NE inhibition could
potentially have positive effects on COVID-19 [109]. On the other hand, the results from a
STRIVE study on a total of 492 mechanically ventilated heterogeneous acute-lung-injury
patients showed intravenous administration of the NE inhibitor sivelestat to have no effect
on 28-day all-cause mortality or ventilator-free days [110].

9.3. DNase Inhibitors

Experimental studies showed that the application of DNase I in a therapeutic scheme
for acute lung injury due to severe bacterial pneumonia improved the survival rates of mice
via a reduction in NET formation [111,112]. Moreover, treatment with DNase increased
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survival in cystic fibrosis (CF) patients. CF is characterized by the presentation of abundant
extracellular DNA (eDNA) in the airways [113]. Recently, Weber et al. reported data on
the administration of Dornase alfa, recombinant human DNase-1, for the treatment of five
mechanically ventilated patients with COVID-19. The results suggested that Dornase alfa
was well-tolerated by the patients [114]. Based on this case study, there are now several
COVID-19 clinical trials using Dornase alfa. Desilles et al. published a structured summary
of a study protocol for a randomized controlled trial on the efficacy and safety of aerosolized
intra-tracheal Dornase alfa administration among patients with SARS-CoV-2-induced acute
respiratory distress syndrome (ARDS) [115].

9.4. Colchicine

Colchicine is an alkaloid extract from the Autumn crocus that has been used to treat
several inflammatory diseases, such as gout and familial Mediterranean fever (FMF),
for many years [116,117]. Colchicine is one of the most ancient herbal remedies used for
joint pain. To date, basic and clinical studies suggest that colchicine offers cardiovascu-
lar benefits [118]. The athero-protective potential of colchicine is based on its effects on
tubulin-colchicine-complex polymerization, as well as its ability to suppress proinflamma-
tory cytokine (IL-1β and IL-18) release by interacting with the Nod-like receptor protein
3 inflammasome protein complex [118,119]. Moreover, colchicine inhibits NET formation
in patients with Acute Coronary Syndrome (ACS) [120]. Based on its effects, colchicine
was proposed for the prophylaxis of venous thromboembolism in patients with COVID-
19 [121,122]. Recently, the effects of colchicine on cardiac and inflammatory biomarkers
were reported in the GRECCO-19 randomized clinical trial. The results showed that par-
ticipants who received colchicine had statistically significantly improved time to clinical
deterioration [123]. Scarsi et al. further supported the use of colchicine for the treatment
of COVID-19 [124]. Furthermore, in a randomized, double-blinded, placebo-controlled
clinical trial, Lope et al. reported that colchicine reduced the length of both supplemental
oxygen therapy and hospitalization [125]. This study confirmed the results of previous
research. The repurposing of colchicine or other drugs may, therefore, be helpful in the
battle against COVID-19. However, further research needs to be evaluated and tested in
upcoming clinical trials.

9.5. Corticosteroids

In the past, corticosteroids, as down-regulators of systemic inflammation, were admin-
istered to critically ill patients with conflicting results [126,127]. Recently, based on data
from the RECOVERY trial (a large, multicenter, randomized, open-label trial performed
in the United Kingdom), corticosteroids have been recommended for COVID-19 patients.
In this trial, a total of 2104 patients started dexamethasone, and 4321 continued the usual
therapy. This trial showed the mortality at 28 days to be lower among patients who were
randomized to receive dexamethasone [128]. Moreover, the CoDEX Randomized Clinical
Trial showed that Dexamethasone might attenuate lung injury in COVID-19 patients [129].
Among patients with moderate or severe COVID-19, the use of intravenous dexamethasone
increased the number of ventilator-free days. Despite the positive results from the largest
trials, RECOVERY and CoDEX, the benefitrisk factors for all COVID-19 patients must be
estimated before corticosteroid treatment is started. Corticosteroid therapy in combination
with cytokine storm is associated with significant insulin resistance and reduced insulin
production from the pancreatic β cells. This dual hit can lead to severe hyperglycaemia
and life-threatening complications. Future studies on the usefulness of corticosteroids in
COVID-19 could provide insights into their beneficial and harmful effects.
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9.6. Other Therapeutic Intervention That Affects Neutrophils

Prebiotics and probiotics could be considered potential preventive or therapeutic
interventions to extenuate COVID-19 [130]. It was previously reported that some microor-
ganisms, such as Lactobacillus rhamnosus, accept the activities of probiotics and reduce the
functional activity of neutrophils both by inhibiting NET formation and by downregulating
phagocytic activity [131]. Based on the well-documented role of NETs in the pathogene-
sis of COVID-19, the inhibition of NETs by Lactobacillus rhamnosus may exert a positive
effect on COVID-19 patients. Moreover, the microbiota disruption (dysbiosis) during the
COVID-19 pandemic has led to increasing incidences of C. difficile infection (CDI) [132].
Probiotics have been further reported to promote immunity to secondary infections such
as pseudomembranous colitis due to Clostridium difficile. Overall, nutraceuticals could be a
hidden weapon to target SARS-CoV-2.

10. Conclusions

Previous studies on the pathophysiological mechanisms of SARS-CoV-2 indicate
that the innate immune system is an essential mechanism for the induction of COVID-
19. Neutrophils, the “Cinderella” of innate immunity, participate in COVID-19 disease
(Figure 1). NETs were described for the first time in 2004 by Brinkmann et al. and have
often been studied under severe inflammatory conditions. The pathogenesis of COVID-
19 includes both septic and aseptic inflammation, and viral infection triggers immune
hyperactivation. Subsequently, this hyperactivation leads to cytokine storm and has
been associated with COVID-19 complications such as ARDS, multiorgan dysfunction,
and thromboembolic phenomena. Finally, therapeutic interventions targeting neutrophils
may represent a potential component in an integrated therapeutic strategy for COVID-
19 patients.
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Figure 1. Neutrophil and thromboinflammation in COVID-19. Host–virus interplay includes virus-related alveolar mac-
rophage activation, which leads to a cascade of inflammatory stimuli, cell activation, and migration. Signals from different 
chemokines induce neutrophil–endothelium interactions, allowing neutrophil to crawl and arrest along the endothelium. 
Neutrophils accomplish their extravasation predominantly via endothelial cell–cell junctions. At the site of infection, neu-
trophils activate phagocytosis, degranulation, and NET formation, which can protect the host during its virus response. 
On the other hand, neutrophils can exacerbate lung hyperinflammation and cytokine storm in COVID-19 patients. Ulti-
mately, NETs interact with the platelets and complements, thereby causing endothelial cell damage and triggering thrombi 
formation. Hyperinflammation and Inflammatory microvascular thrombi then lead to system inflammation, which affects 
kidney, gut, liver, and heart function. Abbreviations: SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; 
PAMP: pathogen-associated molecular pattern; DAMP: danger-associated molecular pattern; NETs: neutrophil extracel-
lular traps. 
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Figure 1. Neutrophil and thromboinflammation in COVID-19. Host–virus interplay includes virus-related alveolar
macrophage activation, which leads to a cascade of inflammatory stimuli, cell activation, and migration. Signals from
different chemokines induce neutrophil–endothelium interactions, allowing neutrophil to crawl and arrest along the
endothelium. Neutrophils accomplish their extravasation predominantly via endothelial cell–cell junctions. At the site
of infection, neutrophils activate phagocytosis, degranulation, and NET formation, which can protect the host during its
virus response. On the other hand, neutrophils can exacerbate lung hyperinflammation and cytokine storm in COVID-
19 patients. Ultimately, NETs interact with the platelets and complements, thereby causing endothelial cell damage
and triggering thrombi formation. Hyperinflammation and Inflammatory microvascular thrombi then lead to system
inflammation, which affects kidney, gut, liver, and heart function. Abbreviations: SARS-CoV-2: severe acute respiratory
syndrome coronavirus 2; PAMP: pathogen-associated molecular pattern; DAMP: danger-associated molecular pattern;
NETs: neutrophil extracellular traps.
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