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Abstract: Lignin is the second largest naturally renewable resource and is primarily a by-product of
the pulp and paper industry; however, its inefficient use presents a challenge. In this work, Fe3O4

nanoparticles loaded on lignin nanoparticles (Fe3O4@LNPs) were prepared by the self-assembly
method and it possessed an enhanced peroxidase-like activity. Fe3O4@LNPs catalyzed the oxidation
of 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 to generate a blue color, was
observable by the naked eye. Under the optimal conditions, Fe3O4@LNPs showed the ability of
sensitive colorimetric detection of H2O2within a range of 5–100 µM and the limit of detection was
2 µM. The high catalytic activity of Fe3O4@LNPs allows its prospective use in a wide variety of
applications, including clinical diagnosis, food safety, and environmental monitoring.
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1. Introduction

Hydrogen peroxide (H2O2), as one of the most important reactive oxygen species (ROS), is widely
used in the food and chemical industries, clinical medicine, and environmental monitoring [1–3].
Studies have shown that long-term exposure to H2O2 can cause serious harm to a person’s health,
including poisoning, respiratory inflammation [4], cancer, Alzheimer’s disease, and Parkinson’s
disease [5]. Therefore, the substantial research efforts are devoted to develop methods for the
detection of H2O2,such ashigh-performance liquid chromatography (HPLC) [6], electrochemistry [1],
spectrometry [7], chemiluminescence [8], and colorimetric assays [9]. HPLC, electrochemistry,
and chemiluminescence methods are sensitive, but their processes are complex and time-consuming.
Spectrometry has the advantage of a simple and low-cost operation but exhibits the disadvantage of
poor sensitivity. At present, colorimetric assay methods have been garnering attention due to their
high sensitivity and simplicity. Furthermore, colorimetric assay results can be observed unaided and
without the use of any sophisticated instruments. Horseradish peroxidase (HRP) is commonly used as
a catalyst in conventional colorimetric assay methods to obtain the color signal. As a natural enzyme,
HRP is easily affected by acidity, temperature, and inhibitors. In addition, the high cost associated
with its preparation, purification and extreme storage conditions also inevitably limits its widespread
application [10].
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Since the first report of Fe3O4 nanoparticles (Fe3O4 NPs) possessing peroxidase-like activity [11],
many other nanomaterials, including CeO2 nanoparticles [12], NiO2 nanoparticles [13] and MnO2

nanosheets [14], have also demonstrated intrinsic peroxidase-like activity. These metal nanomaterials
are low-cost, sensitive, and maintain their activities in a relatively wide range of environmental
conditions, but they all present the problem of agglomeration [15]. To tackle this problem, researchers
use graphene or graphene oxide as a structural support to prevent these metal nanomaterials from
aggregating in solution [16,17]. However, the high cost of graphene and graphene oxide seriously
restricts the widespread application of metal nanozymes.

Lignin is the second most abundant organic macromolecular compound from biomass after
cellulose [18]. The primary structure of lignin is composed of three different phenylpropane monomer
units: guaiacyl (G), syringyl (S), and p–hydroxyphenol (H) units [19]. These monomer units are
mainly linked by ether bonds (β-O-4, 4-O-5, α-O-4, α-O-γ, etc.) and carbon-carbon bonds (β-β, β-1,
β-5, 5-5, β-6, etc.) [20,21]. A proposed structural diagram of lignin is shown in Figure 1. Similar to
graphene oxide, lignin molecules contain many functional groups, such as hydroxyl and carboxyl
groups, which offers the possibility of a stable dispersion of lignin-based materials in aqueous solutions.
Recent studies showed that lignin-based nanoparticles can disperse stably in aqueous solutions [18].
Therefore, metal nanozymes carried by lignin nanoparticles can be stably dispersed in solution.
Nevertheless, the literature contains few reports of lignin nanoparticles being used to enhance the
dispersity of metal nanozymes in the colorimetric detection of H2O2.
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Figure 1. The proposed structure of lignin. Inset: three primary units of lignin.

As a common mimetic enzyme of horseradish peroxidase, Fe3O4 NPs have high catalytic
activity and stability during reactions [22]. However, Fe3O4 NPs also present the urgent problem of
agglomeration in solution. In this work, we explored the influence of the preparation conditions on the
morphology of Fe3O4@LNPs. Then, Fe3O4 NPs loaded on lignin nanoparticles (Fe3O4@LNPs) were
prepared. The prepared Fe3O4@LNPs exhibited excellent dispersion stability in water and showed
higher catalytic activity than Fe3O4 NPs. The prepared Fe3O4@LNPs effectively catalyzed H2O2 to
generate hydroxyl radicals, followed by the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) [23].
The oxidized TMB had a characteristic absorbance at 652 nm [24]. Therefore, in the presence of
H2O2, TMB, and Fe3O4@LNPs as catalyst, the reaction system changed from colorless to blue that
was identified by the naked eye or quantified by UV-vis spectrophotometer. Because of its excellent
dispersion stability in aqueous solution and sensitive peroxidase-like catalytic activity, Fe3O4@LNPs
can be used in a diverse set of applications.
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2. Experimental

2.1. Materials and Reagents

Spruce chips were obtained from a Swedish farm. Tetrahydrofuran (THF), Fe3O4 NPs (average
diameters: 20–30 nm), and TMB were purchased from Aladdin Industrial Co., Ltd. (Shanghai, China).
The other analytical grade chemicals were purchased from Boyu Chemicals Company (Nanning,
Guangxi, China), and were used without further purification.

The chips were cooked in a pressure vessel under the following conditions: the total titratable
alkali value was 26%, the sulfidity was 20%, the solid-to-liquid ratio was 1:4, a residence time was
4.5 h, and the temperature was 165 ◦C. When the cooking was completed, the separated black liquor
was adjusted to pH = 2 with 2 M H2SO4 while stirring to precipitate lignin. After standing for 3 h,
the supernatant was removed. After centrifugation, washing, and freeze-drying, the crude Kraft lignin
was obtained. The crude Kraft lignin was dissolved in THF and stirred for 30 min; the undissolved
material was removed by filtering through a 0.45 µm organic filter membrane (Pall Scientific, New York,
NY, USA). The lignin/THF solution was stirred under the fume hood until the THF evaporated
completely. Then, the powder was dried at 40 ◦C under vacuum for 48 h to obtain the purified
Kraft lignin.

2.2. Statistical Analysis

All the experiments were performed in triplicate, and the averaged values were reported in
this study.

2.3. Preparation of Fe3O4@LNPs

The purified lignin was dissolved in THF to prepare solutions of 0.5, 1.0, and 5.0, mg/mL.
With vigorous mechanical stirring, 0.1 mg/mL Fe3O4 NPs suspension was added dropwise to the
lignin/THF solutions using a microsyringe until the suspension with 20% consistency was obtained.
The suspension was stirred for an additional 20 min to evaporate THF. Then, the suspension was
transferred into a dialysis bag (MWCO: 6000, Union Carbide, Connecticut, CT, USA) and immersed in
an excess of deionized water to remove the residual THF. Little trace of THF was detected after 24 h
dialysis. Then, the suspension was centrifuged to achieve the solid part which was freeze-dried to
obtain Fe3O4@LNPs. Fe3O4@LNPs prepared from the solution with 0.5, 1.0, and 5.0 mg/mL initial
lignin concentration was respectively denoted as L1, L2, and L3.

2.4. Peroxidase-Like Activity of Fe3O4@LNPs

The peroxidase-like activity of Fe3O4@LNPs was investigated by catalytically oxidizing TMB
in the presence of H2O2.The concentrations of TMB and H2O2were respectively 4 mM and 100 mM,
0.1 M Citric acid-disodium hydrogen phosphate solution (CPBS) (pH = 3.0) was applied as the buffer,
and the final volume of the mixture was 3 mL. The mixture was incubated at 50 ◦C for 30 min. As for
the blank experiments, Fe3O4@LNPs was replaced by LNPs (lignin nanoparticles) or Fe3O4 NPs to
complete the reaction under the same conditions. The oxidized TMB had a maximum absorbance at
652 nm [25]. Therefore, the peroxidase-like activity of Fe3O4@LNPs was evaluated through changes of
the solution color and the absorbance at 652 nm.

2.5. Steady Kinetic Analysis of Fe3O4@LNPs

The steady-state kinetic measurements were carried out to investigate the mechanism of the
peroxidase-like activity of Fe3O4@LNPs at room temperature. Approximately 600 µL of Fe3O4@LNPs
(264 µg/mL) was mixed with 1.8 mL CPBS (0.1 M, pH = 3.0). As for the first experiment, 300 µL
H2O2 (100 mM) was used, while the TMB concentration was varied (0.4, 0.6, 0.8, 1.0, 1.5, 2.0,
3.0, 4.0 and 6.0 mM). As for the second experiment, 300 µL TMB (4.0 mM) was used, while the



Nanomaterials 2019, 9, 210 4 of 14

concentration of H2O2 was varied (10, 15, 25, 30, 50, 100, 150, and 250 mM). TheMichaelis-Menten
constant was calculated from the Lineweaver-Burk double reciprocal plot by the following equation:
1/ν = Km/νm(1/[S] + 1/Km), where ν is the initial velocity, Km is the Michaelis constant, νm is the
maximum reaction rate, and [S] is the concentration of substrate [26].

2.6. Colorimetric Detection of H2O2

For the colorimetric analysis of H2O2, 600 µL Fe3O4@LNPs (264 µg/mL), 300 µL of TMB (4 mM)
and 300 µL H2O2 (different concentrations) were mixed with 1.8 mL CPBS (0.1 M, pH = 3.0). The mixed
solution was incubated at 50 ◦C for 30 min. The absorbance of the resulted sample measured by a
UV-visible spectrophotometer at 652 nm was used to generate the standard curve for the detection
of H2O2.

The limit of detection (LOD) of H2O2 was calculated based on previous literature [27] via the
following equation: LOD = 3S/M, where S is the standard deviation of blank samples and M is the
slope of the linear curve between the absorbance at 652 nm and H2O2 concentration. Eleven blank
experiments were carried out as follows: 600 µL Fe3O4@LNPs (264 µg/mL), 300 µL of TMB (4 mM)
and the corresponding volume (300 µL) of H2O replacing H2O2 were mixed with 1.8 mL CPBS (0.1 M,
pH = 3.0). The mixtures were incubated at 50 ◦C for 30 min. The absorbance of 11 blank experiments
at 652 nm was collected to calculate S value.

2.7. Characterization

The 31Pnuclear magnetic resonance (NMR) spectrum of lignin was acquired on an NMR
spectrometer (AVANCE III 500 MHz, Bruker, Germany). The morphologies and element analysis of
Fe3O4@LNPs were recorded by field emission transmission electron microscope (FE-TEM) (Tecnail
G2F20, FEI Company, Hillsboro, OR, USA) with an accelerating voltage of 200 KV. UV-vis spectra were
recorded with a UV-visible spectrophotometer (Agilent 8453, California, CA, USA). The size and zeta
potential of the samples were analyzed with a Nanoparticle Size analyzer (Nano-ZS90X, Malvern,
Malvern, UK).

3. Results and Discussion

3.1. Quantification of Hydroxyl Groups of Lignin

The hydroxyl groups of lignin was quantified by 31P NMR according to the reported method [28].
Approximately 20 mg of lignin was placed in a 1 mL vial. Then, 500 µL of a prepared solution of
anhydrous pyridine and CDCl3 (1.6:1, v/v) was added and magnetically stirred. Subsequently, 100 µL
of chromium (III) acetylacetonate (5 mg/mL, dissolved in pyridine/CDCl3, 1.6:1, v/v) was added
as a relaxation agent and 100 µL of cyclohexanol (30 mg/mL) was added as an internal standard.
Finally, 85 µL of phosphitylation reagents was added. After stirring for 10 min, the resulting solution
was transferred to a 5 mm NMR tube and tested by NMR spectrometer. The 31P NMR spectrum of
lignin was shown in Figure 2. The result indicated that the hydroxyl group of guaiacylwas the most
abundant in the lignin that is 3.76 mmol/g based on lignin, followed by the aliphatic hydroxyl that
was 2.82 mmol/g, the condensed phenolic hydroxyl that was 1.90 mmol/g, and the carboxyl group
that was 0.63 mmol/g. More hydroxyl groups indicated the lignin nanoparticles dispersed more stably
in water [18].
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Figure 2. 31P NMR spectra of the purified lignin.

3.2. Optimization of Fe3O4@LNPs Formation

The lignin hardly solubilized in water but dissolved in some organic solvents (e.g., THF).
Therefore, Fe3O4NPs suspension used as the anti-solvent and THF used as the solvent were applied to
prepare Fe3O4@LNPs through the lignin self-assembly. The initial concentration of lignin played a vital
role in the morphology of lignin nanoparticles [29]. Figure 3 shows that Fe3O4@LNPs exhibited
spherical shape. However, the size of Fe3O4@LNPs and its distribution varied with the initial
concentration of lignin. Compared to L1 prepared from 0.5 mg/mL lignin solution, L2 and L3

respectively prepared from 1.0 mg/mL and 5.0 mg/mL were more homogenous. Furthermore,
L2 had the highest load of Fe3O4 NPs.
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5.0 mg/mL lignin.

The effect of lignin concentrations on the size and the size distribution of Fe3O4@LNPs were
analyzed bydynamic light scattering (DLS). Figure 4 shows L2 possessed a narrow size distribution with
an average size of 152.8 nm. Compared to L2, L1 possessed a wide size distribution with an average
size of 181.8 nm, and L3 possessed a wide size distribution with an average size of 764.0 nm. The result
indicated that 1.0 mg/mL was the optimum initial concentration of lignin for Fe3O4@LNPs preparation.
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In the process of adding water droplets to the lignin/THF solution, lignin as an amphiphilic
polymer, with its hydrophilic and hydrophobic properties, gradually aggregates and forms particles,
which comprises the “nucleation growth mechanism” [18]. Figure 3 demonstrates that the morphology
of the formed nanoparticle was impacted by the initial concentration of lignin. For example, 0.5 mg/mL
lignin was applied, the average diameter of L1 was only 181.8 nm but the size distribution was
wide. The amount of lignin hardly meets the demand for the nanoparticles growth, resulting in the
heterogeneous Fe3O4@LNPs (Figure 3A). However, when the high initial lignin concentration was
applied, the extra lignin continued to aggregate on the surface of the formed nanoparticles, eventually
leading to the large size Fe3O4@LNPs (e.g., L3) (Figure 3C). The homogeneous morphology of L2

indicated that 1.0 mg/mL was the optimum concentration for Fe3O4@LNPs preparation (Figure 3B).
The result was consistent with the previous report [30].

The surface charge of Fe3O4@LNPs was evaluated by the zeta potential. The results indicated that
L1, L2, and L3 possessed comparable negative zeta potentials of −29.2 mV, −32.4 mV and −32.4 mV,
respectively, indicating that the initial lignin concentration had little effects on the surface charge of
Fe3O4@LNPs. Therefore, L1, L2, and L3 dispersed stably in aqueous solutions for an extended time
without aggregation due to the electrical double layer repulsion induced from the protonation of
phenolic hydroxyl and carboxyl groups of lignin. The comparable result was reported that LNPs
dispersed stably in water for two months [18]. Based on the above results, L2 was applied as the
starting material for the further analysis in this study.

3.3. Characterization of Fe3O4 @LNPs

Fe3O4@LNPs surface possessed the negative charge which was explained as follows.
The abundant hydroxyl and carboxyl groups of LNPs provide Fe3O4@LNPs surface a negative charge.
In addition, when the hydrophobic surface of LNPs contacts with water, the hydroxyl ions are absorbed
by the hydrophobic surface of LNPs, resulting the generation of strong negative zeta potential on
the surface of Fe3O4@LNPs [18]. Therefore, Fe3O4 NPs loaded on LNPs can stabilize Fe3O4 NPs and
prevent the aggregation of Fe3O4 NPs in solution.
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The high resolution transmission electron microscope (HRTEM) image of individual Fe3O4@LNPs
confirmed that Fe3O4NPs was loaded on the surface of LNPs (Figure 5A). The high-angle annular
dark field (HAADF) image demonstrated the morphology of individual Fe3O4@LNPs, where C and Fe
element respectively stands for LNPs and Fe3O4 NPs (Figure 5B,C). Thus, the HAADF and element
mapping analysis confirmed the formation of Fe3O4@LNPs. The correlation of the size distribution of
Fe3O4@LNPs and pH was investigated by DLS (Figure 6B). The result indicated that Fe3O4@LNPs had
a narrow size distribution within pH from 3.0 to 10.5, confirming that Fe3O4@LNPs can stably disperse
in aqueous solution with a wide pH range. This considerable dispersion ability of Fe3O4@LNPs was
correlated with its zeta potential (approximately −30 mV) in solution within pH 3.0–10.5 (Figure 6C).
When pH was below 3.0, the decrease of zeta potential induced the aggregation of Fe3O4@LNPs.
On the other hand, when pH was above 11, the surface charge decreased significantly which caused
the aggregation of Fe3O4@LNPs enlarging the average diameter of nanoparticles. The surface charge
of Fe3O4@LNPsdecreased with the increased concentration of Na+ counter ions associated with the
addition of NaOH for the pH adjustment. The result was consistent to the reported result on the
dispersion stability of polymer nanoparticles correlated with the pH change [18,31].
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3.4. Optimizing the Reaction Conditions of H2O2 and TMB Catalyzed by Fe3O4@LNPs

To improve the catalytic activity of Fe3O4@LNPs, the main parameters, e.g., time, pH,
and temperature, were optimized. The experiment was performed as following 600 µL Fe3O4@LNPs
(264 µg/mL), 300 µL TMB (4 mM) and 300 µL H2O2 (100 mM) were applied as reagents in 1.8 mL
CPBS buffer solution (0.1 M). The relative activity of Fe3O4@LNPs with different pH, time and
temperature were defined by follows: the maximum absorbance of the solution after reaction at 652 nm
was set as 100%, and the relative activities were calculated by the equation: R = (A/Amax) × 100%,
where R was the relative activity; A was the absorbance of the solution at 652 nm; and Amax was
the maximum absorbance at 652 nm. The impacts of reaction time, pH, and temperature on the
activity of Fe3O4@LNPs were demonstrated in Figure 7. The correlation between the reactivity of
Fe3O4@LNPs and time was demonstrated in Figure 7A. It was shown that the activity of Fe3O4@LNPs
increased to the maximum within 30 min. Thus, 30 min was set as the optimal reaction time for the
following investigations. Within pH = 2.0–4.5, the Fe3O4@LNPs possessed a high and stable activity
and achieved the maximum activity at pH = 3.0 (Figure 7B) that was contributed to solubilization
of TMB in the acidic medium [32]. The comparable peroxidase-like activity were reported from
HRP and other metal nanoenzymes [10,25]. The catalytic activity was significantly decreased when
Fe3O4@LNPs was applied without the optimal pH (Figure 7B) because of the inherent defect of Fenton
reaction [33]. It was reported that the catalytic activity of Fe3O4NPs loaded on multi-welled carbon
nanotubes retained from pH 1–10 [33]; however the high cost of multi-welled carbon nanotubes limited
its application. The catalytic activity of Fe3O4@LNPs was also impacted by temperature, and the
maximum activity was achieved at 50 ◦C (Figure 7C). Compared to natural enzymes and Fe3O4
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nanozymes [11], Fe3O4@LNPs retained the catalytic activity within a wide temperature range from
30 ◦C to 60 ◦C because of its considerable dispersion ability in the aqueous solution.Nanomaterials 2019, 9, 210 9 of 14 
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3.5. Peroxidase-liked Activity of Fe3O4@LNPs

The peroxidase-liked activity of Fe3O4@LNPs was confirmed and evaluated by the reaction
between TMB and H2O2 under optimal conditions. Little color changes and absorbance peaks
at 652 nm were observed from the reaction of LNPs + TMB and LNPs + TMB + H2O2 (Figure 8
curve a and b), which suggested that LNPs possessed little catalytic activity. Little color change
and absorbance peak at 652 nm were observed from the reaction of Fe3O4 NPs + TMB, confirming
that TMB could not be oxidized without the presence of H2O2. The color change and absorbance
peak at 652 nm were respectively observed from the reaction of Fe3O4 NPs + TMB + H2O2 and
Fe3O4@LNPs + TMB + H2O2, which indicated TMB was oxidized during the reaction. However,
the absorbance peak of Fe3O4@LNPs + TMB + H2O2 at 652 nm was significantly higher than that of
Fe3O4 + TMB + H2O2, indicating Fe3O4@LNPs possessed stronger peroxidase-liked catalytic activity
than Fe3O4 NPs due to its considerable dispersion ability. It was consistent with the reported result
that Fe3O4 NPs stabilized by chitosan exhibited strong catalytic activity than Fe3O4 NPs [34].
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the photograph of the corresponding solution.

3.6. Steady-State Kinetic Study of Fe3O4@LNPs

The steady-state kinetic mechanism of Fe3O4@LNPsNPs reacted with H2O2 and TMB was
investigated. The concentration of TMB-derived oxidation products was calculated by A = ε × b × C
(Beer-Lambert Law), where A is the absorbance value at 652 nm at room temperature and the molar
absorption coefficient (ε) is 39,000 M−1cm−1 [35]. The Michaelis-Menten curves were obtained
by following steps: the reaction rates of Fe3O4@LNPsNPs in different concentration of TMB or
H2O2 were obtained by calculated the slope of the reaction system at 652 nm in the initial 5 min.
Then, the reaction rates were plotted on the ordinate and the concentrations of TMB or H2O2 were
plotted on the abscissa. The Lineweaver-Burk plots were obtained by taking the reciprocal of the
reaction rate as the ordinate and the reciprocal of the concentration of TMB or H2O2. The reaction
rate correlated with TMB concentration and H2O2 concentration was respectively demonstrated in
Figure 9A,B. The Michaelis-Menten constant (Km) is considered to be a key criterion for evaluating
the enzyme’s affinity to a substrate [32]. The maximum velocity (Vm) and Km were obtained from
the Lineweaver-Burk plots (Figure 9C,D) and summarized in Table 1. The Km values of Fe3O4@LNPs
towards TMB and H2O2 was comparable to that of HRP which indicated the Fe3O4@LNPsNPs could
be used as an effective substitute for HRP. The Km value of Fe3O4@LNPsNPs with TMB as the substrate
was higher than that of Fe3O4 NPs with TMB, indicating that the Fe3O4 NPs have a higher affinity
to TMB. The Km value of the Fe3O4@LNPs with H2O2 was 29 times lower than that of the Fe3O4NPs
with H2O2, suggesting that the Fe3O4@LNPs possessed significantly stronger affinity to H2O2 than
the Fe3O4 NPs. However, the low Km value of Fe3O4@LNPswith H2O2is potentially due to the
continuous release of Fe3O4NPs from the Fe3O4@LNPs, thus avoiding the aggregation of Fe3O4

NPs and providing more reactive sites which enhanced the peroxidase-like activity of Fe3O4@LNPs
during the reaction. The higher Km value of Fe3O4NPs with H2O2 was consistent with the reported
result that Fe3O4NPs needs a higher H2O2 concentration than Fe3O4@LNPs to obtain the comparable
Vm [11]. Table 1 shows Fe3O4@LNPs possessed a comparable or stronger affinity to TMB or H2O2,
compared to Fe3O4 NPs prepared by other methods [36–39]. Conclusively, the metal nanoparticles
loaded on lignin nanoparticles improved its dispersion stability in solution and eventually increased
its catalytic capacity.
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Figure 9. The steady-state dynamic analysis and catalytic mechanism of Fe3O4@LNPs: the
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Table 1. Comparisons of Km and Vm among Fe3O4@LNPs, Fe3O4 NPs, and HRP.

Catalyst Substrate Km/mM Vm/10−8 Ms−1 Reference

Fe3O4@LNPs TMB 0.51 1.03 This work
Fe3O4@LNPs H2O2 5.30 0.96 This work

Fe3O4 NPs TMB 0.01 3.44 [11]
Fe3O4 NPs H2O2 154 9.78 [11]

HRP TMB 0.43 10.00 [11]
HRP H2O2 3.70 8.71 [11]

His-Fe3O4 H2O2 37.99 - [37]
Ala-Fe3O4 H2O2 226.60 - [37]
P-Fe3O4 TMB 0.44 - [36]

CDs-Fe3O4 H2O2 56.97 - [38]
GO-Fe3O4 H2O2 305.00 1.01 [40]

Note: His-Fe3O4: Histidine modified Fe3O4; Ala-Fe3O4: Alanine modified Fe3O4: Not given; P-Fe3O4: Porphyrin
modified Fe3O4; CDs-Fe3O4: Carbon dots modified Fe3O4; GO-Fe3O4: Graphene oxide-based Fe2O3 hybrid.

3.7. The Colorimetric Detection of H2O2

Because the inherent peroxidase-like activity of Fe3O4@LNPs was H2O2 concentration dependent,
a colorimetric method was designed to detect H2O2. Under the optimal conditions, in a total reaction
volume of 3 mL, 264 µg/mL Fe3O4@LNPs and 4 mM TMB mixed with various concentrations of H2O2

in a CPBS buffer (pH = 3.0), the reaction was completed at 50 ◦C for 30 min. It was demonstrated
in Figure 10A the solution color and the absorbance were correlated with H2O2 concentration.
For example, the solution color became darker and the absorbance increased, as the concentration of
H2O2 increased. The LOD of H2O2 concentration corresponding to the color variation was as low as
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2 µM (Figure 10A, inset). When the concentration of H2O2 was less than 100 µM, there was a linear
relationship between the absorbance at 652 nm and the H2O2 concentration. Conclusively, there was
the possibility of the rapid detection of H2O2 by the naked eye or a UV-visible spectrophotometer
when the Fe3O4@LNPs was applied.
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The linear relationship between the absorbance at 652 nm and the H2O2 concentration was
identified when the concentration of H2O2 ranged from 5 to 100 µM (Figure 10B). The linear regression
equation was A652nm = 0.09993 + 0.00186C (where C is the concentration of H2O2), and the correlation
coefficient (R2) is 0.99077 (n = 3). The LODwas 2 × 10−6M, which is lower than the counterpart of
Fe3O4 NPs (3 × 10−6 M) [39].

4. Conclusion

Fe3O4@LNPs were prepared from the purified Spruce lignin using the self-assembly method.
TEM and DLS analysis indicated that when the initial concentration of lignin solution was 1.0 mg/mL,
the homogenous Fe3O4@LNPs was obtained, and the average size was 152.8 nm. The catalytic ability
of Fe3O4@LNPs was optimized with the reaction time, pH, and temperature. Fe3O4@LNPs exhibited
better peroxidase mimic activity than Fe3O4 NPs due to its more stable dispersion in the reaction
system. The catalytic activity of Fe3O4@LNPs allows its colorimetric detection of H2O2 at 2 µM
limitation of concentration.
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