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Abstract Encoded by the hepatitis B virus, hepatitis B virus
X protein (HBx) is a multifunctional, potentially oncogenic
protein that acts primarily during the progression from chronic
hepatitis B to cirrhosis and hepatocellular carcinoma (HCC).
In recent decades, it has been established that chronic inflam-
mation generates a tumor-supporting microenvironment.
HCC is a typical chronic inflammation-related cancer, and
inflammation is the main risk factor for HCC progression.
The viral transactivator HBx plays a pivotal role in the initia-
tion and maintenance of hepatic inflammatory processes
through interactions with components of the tumor microen-
vironment including tumor cells and the surrounding
peritumoral stroma. The complex interactions between HBx
and this microenvironment are thought to regulate tumor
growth, progression, invasion, metastasis, and angiogenesis.
In this review, we have summarized the current evidence eval-
uating the function of HBx and its contribution to the inflam-
matory liver tumor microenvironment.
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Introduction

Hepatocellular carcinoma (HCC) is one of the main causes of
cancer-related deaths worldwide; every year, nearly 750,000
people are diagnosed with HCC [1]. A growing body of evi-
dence has shown that chronic hepatitis B virus (HBV) infec-
tion is strongly associated with HCC development and that
more than 50 % of HCC cases may be caused by persistent
HBV infection [2]. In recent decades, extensive research has
been conducted to elucidate the molecular events underlying
HCC development and invasion; however, the carcinogenic
mechanisms involved in this process remain unclear. Several
mechanisms for HBV-induced hepatocarcinogenesis have
been proposed including integration of HBV DNA into the
host genome, long-term chronic liver inflammation, and car-
cinogenic effects of HBVantigens [3, 4]. Hepatitis B virus X
protein (HBx), a multifunctional viral protein encoded by
HBV, is considered to be one of the most important determi-
nants of the pathology of HBV-related HCC (HBV-HCC). An
accumulating body of evidence has suggested that HBx exerts
its carcinogenic effects by activating a variety of cellular sig-
naling pathways thereby controlling the cell cycle, prolifera-
tion, and apoptosis [5–7].

Tumor microenvironments generally comprise tumor cells,
inflammatory cells, inflammatory cytokines, and other cellular
and non-cellular components. Previous studies have sug-
gested that tumor microenvironments play a crucial role in
tumor initiation, invasion, and metastasis, via mechanisms
including the generation of hypoxia, an alteration of
microRNA (miRNA) expression profiles, and an increased
adoption of stem cell phenotypes [8–10]. Inflammatory cells
and signaling molecules constitute a large proportion of the
tumor microenvironment; hence, it is also termed the
Binflammatory tumor microenvironment^ [11, 12]. The rela-
tionship between inflammation and cancer was first proposed
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in the nineteenth century. Subsequent studies have revealed
that inflammatory diseases are associated with an increased
risk of tumor development [13]. The inflammatory mediators
are present in most tumor microenvironments, and an overex-
pression of inflammatory cytokines contributes to tumor de-
velopment. Moreover, inhibition of inflammatory cytokines
can reduce tumor invasion and progression [14]. As a result,

inflammation is now recognized as one of the six hallmarks of
tumor development and invasion [15]. HCC is a typical
inflammation-associated tumor. All patients with HBV-HCC
have an underlying chronic inflammatory liver disease caused
by chronic viral infection, and HBx is thought to play a vital
role in the regulation of chronic liver inflammation.
Understanding the function(s) of HBx is fundamental to

Table 1 Summary list of which HBx is involved in liver tumor microenvironment

Components Effects Study type REFERENCES

Tumor cells 1. Promoting tumor cell proliferation In vitro studies of transfected cell lines (HepG2) using JetPEI
reagent

Cho et al. [7]

2. Inhibiting apoptosis In vitro studies of transfected cell lines HepG2 and HepG2.2.15
cells

Liu et al. [6]

3. Inducing autophagy In vitro studies of transfected cell lines human conjunctival
epithelial Chang cells using Lipofectamine 2000 transfection
reagent

Zhang et al. [16]

4. Accelerating cell cycle progression. In vitro studies of transfected cell lines Hep3B, Huh7, and
HepG2 using CaPO4 precipitation method

Park et al. [5]

Immune cells 1. Promoting the apoptosis of CD8 + T lymphocytes In vitro studies of isolated primary hepatocytes using Lee et al. [17]
recombinant baculovirus infection

2. Decreasing the generation of IFN-γ
3. Upregulation of major histocompatibility complex,

ICAM-1,
In vitro studies of transfected cell lines HepG2 and UP74 cells Zhou et al. [18]

and Fas ligand In vitro studies of transfected cell lines HepG2 and Huh7 cells Kim et al. [19]
Hepatic
stellate
cells

1. Promoting hepatic stellate cell activation In vitro studies of transfected cell lines hepatocyte cell lines
Chang liver and HepG2 cells

Martin et al. [20]

2. Promoting extracellular matrix remodeling, fibrosis
angiogenesis, HCC invasion, and metastasis
3. Promoting the proliferation of hepatic stellate cells In vitro studies of transfected cell lines HepG2 and LX-2

using FuGENE HD transfection reagent
Bai et al. [21]

TGF-β 1. Upregulating TGF-β in a paracrine-dependent manner In vitro studies of transfected cell lines hepatocyte cell lines
Chang liver and HepG2 cells

Martin et al. [20]

2. Participation in hepatic stellate cells activation In vitro studies of transfected cell lines HL-7702 and L02 cells
using a lipid-mediated method

Chen et al. [22]

3. Transforming intrahepatic TGF-β signaling pathway from
tumor-suppressive pSmad3C to tumor-supportive
pSmad3L

In vivo studies of transgenic CD-1 mice and clinical specimens Murata et al.
[23]

4. Cooperating with stem cell pathways to induce EMT In vitro studies of transfected cell lines HMLE cell Scheel et al. [24]
Interleukin

family
1. Stimulating the production of IL-6 to mediate HCC

development
In vitro studies of transfected cell lines L02 and SMMC-7721 Xiang et al. [25]

2. Upregulating the expression of IL-8 to promote tumor
growth and the malignant transformation of hepatocytes

In vitro studies of transfected cell lines SMMC-7721 andHepG2
cells

Wang et al. [26]

3. Regulating other pro-inflammatory cytokines such as IL-
18, IL-23, and TNF-α to induce liver chronic
inflammation

In vivo studies of clinical specimens and in vitro studies of
transfected cell lines HepG2 and Huh-7 cells

Xia et al. [27]

TNF-α 1. Upregulating TNF-α levels at transcriptional level In vitro studies of transfected cell lines CCL13 and HepG2 cells Lara-Pezzi et al.
[28]

2. Promoting tumor development and angiogenesis Review [29]
COX-2 1. Upregulating the expression of MT1-MMP in a COX-2-

dependent manner
In vitro studies of transfected cell lines CCL13 and HepG2.2.15

cell
Lara-Pezzi et al.

[30]
2. Exerting its anti-apoptotic effects by activating the COX-

2/PGE(2) signaling pathway
In vitro studies of transfected cell lines Hep3B cell Cheng et al. [31]

3. Promoting tumor growth, invasion and metastasis In vivo studies of clinical specimens and in vitro studies of
transfected cell lines HepG2 cell

Liu et al. [32]

HIF-1α 1. Preventing HIF-1α degradation In vitro studies of transfected cell lines CCL 13, HepG2, etc. Yoo et al. [33,
34]

2. Upregulating the expression of HIF-1α In vitro studies of transfected cell lines Chang X-34 cells,
HepG2, etc.

Yoo et al. [35]

Exosome 1. Negatively regulating the expression of exosomal miR-
122

In vitro studies of transfected cell lines HepG2 and Huh-7 cell Song et al. [36]

2. Significantly altering the exosomal protein content In vitro studies of transfected cell lines Huh-7 cell Zhao et al. [37]
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elucidating the mechanisms that underlie the generation and
maintenance of the inflammatory tumor microenvironment
during the development and progression of HBV-HCC. In this
review, we focus on HBx and its contribution to the inflam-
matory liver tumor microenvironment in HBV-HCC.
Molecules interacting with HBx in the liver tumor microenvi-
ronment are summarized in Table 1.

Liver tumor microenvironment

The liver tumor microenvironment is an important factor in
the development of tumor cells and in the regulation of tumor
angiogenesis, invasion, and metastasis. It is broadly divided
into its cellular and non-cellular components: the former in-
cludes liver cancer cells, hepatic stellate cells, fibroblasts, en-
dothelial cells, mesenchymal stem cells, and immune cells; the
latter includes inflammatory cytokines, growth factors, and
extracellular matrix.

Previous studies have shown that epithelial cells can se-
crete some cytokines and recruit inflammatory cells to the
tumor following oncogene activation or tumor suppressor
gene inactivation [38]. In addition, tumor cells can upregulate
the expression of proteases, cytokines, chemokines, and other
inflammatory mediators, creating an inflammatory microenvi-
ronment that favors tumor survival. In other words, tumor
cells can trigger an endogenous tumor-associated inflamma-
tory response. Interactions between tumor cells and the matrix
components of the inflammatory microenvironment regulate
tumor survival, proliferation, invasion, and metastasis.
Activated hepatic stellate cells reportedly participate in a wide
range of physiologic and pathologic processes during the pro-
gression from chronic liver inflammation to cirrhosis and liver
cancer [39, 40].

The roles of inflammatory cytokines, which are the main
signaling molecules in the tumor microenvironment, in HCC
development are unclear. A growing number of in vivo and
in vitro studies suggest that the levels of inflammatory factors
present in tumor tissues and serum, including interleukin (IL)-
6, tumor necrosis factor-α (TNF-α), IL-1β, IL-10, and
transforming growth factor-β (TGF-β), are often higher in
patients with HCC. These inflammatory mediators may facil-
itate tumor growth, inhibit apoptosis, induce epithelial–mes-
enchymal transition (EMT), and promote tumor invasion and
metastasis [41–44].

The immune status of the liver tumor microenvironment
may also influence tumor progression and invasion. The prog-
nosis of patients with an immunosuppressive signature in their
tumor microenvironment is often poor, whereas patients with
tumor-infiltrating lymphocytes have a reduced risk of recur-
rence after liver transplantation [45]. The HCC microenviron-
ment also promotes immune escape, immune suppression, or
both by accumulating immune-suppressive cells [46].

HBV-HCC is a common inflammation-related tumor. As a
result, in most cases, HCC arises on cirrhotic livers further
supporting the notion that chronic HBV infection plays a piv-
otal role in triggering and maintaining an inflammatory tumor
microenvironment. This is mainly caused by HBV-related
proteins, especially HBx, which drive chronic liver inflamma-
tion and stimulate the host immune response by triggering
both common and etiology-specific signaling pathways.

Properties of hepatitis B virus X protein

Structure and hepatocellular carcinoma-related function
of hepatitis B virus X protein

There are four identified open reading frames (ORFs) of HBV,
and the HBx-coding region has been described as the fourth
ORF. HBx consists of 154 amino acids (∼16.5 kDa) and has
six functional domains (A–F) that exhibit multiple functions
including gene transactivation, transrepression, and cell sig-
naling (Fig. 1). Nine conserved cysteine residues have been
identified that are crucial for HBx function. These conserved
cysteines have a distribution of two each in regions A and F,
three in region C, and one each in regions D and E [47]
(Fig. 1).

Over the past decade, efforts have centered on elucidating
the role of HBx in the pathologic process of chronic HBV
infection and HCC formation. Accumulated experimental ev-
idence indicates that HBx is a multifunctional regulatory pro-
tein that exerts a pleiotropic effect on common biochemical
pathways by communicating directly or indirectly with a
range of host targets. This leads to pathologic processes such
as viral propagation, gene transcription, signal transduction,
and protein degradation that are ultimately associated with the
development of HCC. The transactivation function of HBx
was first postulated in 1981, and HBx has been characterized
as a broad-spectrum activator of transcription with the ability
to regulate all three classes of promoter [51–53]. HBx is able
to induce growth factors, dysregulate the host’s immune re-
sponse, activate cell survival signaling, and increase tumor
cell invasion and metastasis.

Subcellular localization of hepatitis B virus X protein

The various biological functions of HBx occur in different
intracellular locations, and this is critical for the pleiotropic
effects of HBx in the liver tumor microenvironment (Fig. 2).
HBx localized to the cytoplasm has been shown to participate
in various cellular signal-transduction pathways related to de-
velopment, invasion, migration, and recurrence of HCC, in-
cluding the Wnt/β-catenin, nuclear factor κ-light-chain en-
hancer of activated B cells (NF-κB), Janus kinase/signal trans-
ducer and activator of transcription (STAT), and Ras/Raf/
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mitogen-activated protein kinase (MAPK) pathways [54–57].
In the nucleus, HBx is likely associated with gene regulation
and HBV replication, which are both essential for chronic
HBV infection. HBx can bind directly to transcription factors
and activate gene transcription causing dysregulation of cell-
cycle checkpoint controls, proliferation, apoptosis, and DNA
repair [5, 6, 58]. In the mitochondria, HBx disrupts mitochon-
drial stability by downregulating mitochondrial enzymes and
promoting reactive oxygen species (ROS) production and lip-
id peroxidation [59, 60]. These changes may explain the ab-
normal energymetabolism of tumor cells, the increase of ROS
in the tumor microenvironment, the invasion and metastasis of
tumor cells, and the resistance to cell death evident in HBV-
HCC. Within the endoplasmic reticulum, HBx maintains

chronic liver inflammation and proliferation by inducing endo-
plasmic reticulum stress [7, 61]. Reportedly, HBx also colocal-
izes with the proteasome and interacts specifically with a novel
subunit of the proteasome complex (XAPC7) that is involved in
protein degradation; HBx is thought to exert its various functions
through the regulation of this process [62, 63].

Roles of hepatitis B virus X protein truncation mutants
in hepatocellular carcinoma

The HBx gene is easy to mutate and integrate into hepatocytes
[64, 65]. Of all mutations of HBx, including point, insertion,
and truncation mutations, deletion of the COOH terminal of
HBx has attracted the most attention. Previous studies have

Fig. 1 Domain structure of HBx with some possible functions.WTwild
type. The functional domains of 154-aa HBx protein shown include the
transpression domain (aa 1–20), the signal transduction domain (aa 58–
119), the transactivation domain (aa 58–140), and the nuclear
transactivation domain (aa120–140). Nine conserved cysteine residues

that have proven to be crucial for HBx’s various functions are indicated
by the arrows (aa 7, 17, 61, 69, 78, 115, 137, 143, and 148) [47]. HBx
domains for interaction with various transcription factors such as TFIIB
(aa 51–148), RPB5 (aa 51–136), TBP (aa 110–143), P53 (aa 102–136),
etc. are shown [48–50]

Fig. 2 Subcellular localization of
HBx and its various functions
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indicated that COOH-terminal truncations of HBx play a sig-
nificant role in the pathogenesis of HCC and that this mutation
is often found in samples of HCC [66]. This truncated version
of the HBx gene may encode a functional protein that is still
capable of promoting malignant transformation. Several stud-
ies have reported that a natural mutant of HBx may induce the
growth and proliferation of both healthy liver and human hep-
atoma cells [67, 68]. However, it is difficult to determine
whether these mutants are drivers of carcinogenesis and how
these structural mutations affect the functional behavior of
HBx.

Hepatitis B virus X protein and components
of the liver tumor microenvironment

Hepatitis B virus X protein and tumor cells

The multifunctional viral regulator HBx is often highly
expressed in the tumors of patients with HBV-HCC, and it is
considered to be a key determinant of the pathogenesis and
carcinogenesis of HBV-related liver diseases. HBx regulates
the biological behavior of tumor cells through its transcrip-
tional regulation and transactivation activities. Reportedly,
HBx promotes hepatoma cell proliferation via the activation
of cellular signaling pathways, dysregulation of cell-cycle
checkpoint controls, and regulation of non-coding RNAs
and transcription factors [5, 7, 69]. The impact of HBx expres-
sion on cellular apoptosis has also been analyzed. According
to previous studies, HBx regulates apoptosis by acting on
caspases, the mitochondria, and SIRT. Although HBx exerts
varying effects on apoptotic pathways in different model sys-
tems, the modulation of apoptotic pathways by HBx is con-
sidered to be closely related to the development of HBV-HCC
[6]. Recently, it was suggested that HBx is a major contributor
to the induction of autophagy during HBV infection. Zhang
et al. [16] demonstrated that HBx dephosphorylates and acti-
vates DAPK, thus inducing autophagy in a Beclin 1-
dependent manner. Moreover, HBx triggers malignant trans-
formation in the pathogenesis of HCC by promoting proper-
ties characteristic of cancer stem cells [70]. Through these
mechan i sms , HBx is be l i eved to con t r ibu te to
hepatocarcinogenesis.

Hepatitis B virus X protein and immune cells

Once patients are infected with HBV, the development of liver
disease and the outcome of the disease are largely determined
by immune-mediated host–virus interactions and particularly
by the cellular immune response of the host. The immune
response can help to eliminate the virus; however, the immune
response may also cause liver damage. It has been established
that tumor formation is strongly associated with host immune

status, and tumors employ various mechanisms to evade im-
mune surveillance. This is mainly mediated by inducing im-
mune tolerance or immune-suppressive mechanisms. Among
all immune cells, HBV-specific cluster of differentiation (CD)
8+ T cells play a critical role in viral clearance and the patho-
genesis of HBVinfection [71]. HBx promotes the apoptosis of
CD8+ T lymphocytes and decreases the generation of
interferon-γ; these actions attenuate the host immune response
resulting in persistent HBV infection, which eventually con-
tributes to the malignant transformation of hepatocytes [17].
In addition, HBx is also implicated in inflammation and
immunomodulation during HBV infection through the upreg-
ulation of inflammatory cytokines and immune response-
related molecules such as the major histocompatibility com-
plex, ICAM-1, and Fas ligand [18, 19]. This suggests that
HBx may contribute to liver inflammation through the upreg-
ulation of immune response-related molecules and that the
consequent long-term chronic liver inflammation promotes
HCC development. Conversely, HBx may also inhibit the
HBV-specific immune response, modulate the host immune
response to the tumor, promote apoptosis in immune cells, and
induce immune tolerance. This eventually results in persistent
HBV infection and a favorable tumor microenvironment for
HCC initiation, progression, and invasion.

Hepatitis B virus X protein and hepatic stellate cells

Hepatic stellate cells, also termed liver fat-storing cells, are
mainly located between the hepatocytes and the sinusoidal
space. Under normal circumstances, the main function of he-
patic stellate cells is to store a small amount of vitamin A and
to synthesize components of the extracellular matrix. In pa-
tients with liver injury, inflammatory and Kupffer cells secrete
inflammatory cytokines that promote hepatic stellate cell ac-
tivation. The activated hepatic stellate cells are then further
transformed into myofibroblasts, which exhibit proliferation,
migration, contraction, and protein synthesis. Hepatic stellate
cells play an important role in the pathological processes of
liver damage and fibrosis, and recent studies have indicated
that they are associated with HCC invasion and metastasis
[72]. As a major regulatory protein in the life cycle of HBV,
HBx contributes to this pathological process by activating
hepatic stellate cells. Recent studies investigating the mecha-
nisms by which hepatic stellate cells are activated have fo-
cused on the TGF-β and platelet-derived growth factor
(PDGF) signaling pathways, in which TGF-β is considered
to play a key regulatory role. In vitro studies have shown that
HBx upregulates TGF-β at both the protein translation and
gene transcription levels. Furthermore, TGF-β activates
Smads, which are downstream signaling molecules that are
transported into the nucleus where they interact with DNA-
binding proteins to exert their functions. HBx, involved in the
TGF-β signaling pathway, contributes to the activation of

Tumor Biol. (2016) 37:15371–15381 15375



hepatic stellate cells, promoting their proliferation and migra-
tion. Consequently, the activated hepatic stellate cells increase
α-smooth muscle actin and matrix metalloproteinase (MMP)
levels, promoting disorganization of the liver architecture and
abnormal deposition of extracellular matrix collagen. This in-
duces a series of pathological processes such as extracellular
matrix remodeling, fibrosis, angiogenesis, HCC invasion, and
metastasis [20, 21].

Hepatitis B virus X protein and inflammatory cytokines

Hepatitis B virus X protein and transforming growth factor-β

Cytokines are a class of small molecule signaling proteins that
exert their function by recognizing cell-surface receptors and
facilitating communication between different cells. TGF-β, an
inflammation-related cytokine belonging to the TGF-β super-
family, is mainly secreted by tumor cells, tumor-associated
macrophages, and regulatory T cells in the tumor microenvi-
ronment. The dual role of TGF-β in cancer has long been
recognized. TGF-β, exploited by cancer cells, is implicated
in processes such as tumor invasion and tumor microenviron-
ment regulation. In contrast, TGF-β also exerts tumor-
suppressive effects. In other words, the output of the TGF-β
signaling pathway depends on the stage of tumor development
and type of tumor tissue [73]. Numerous studies have con-
firmed a close relationship between HBx and TGF-β. A pre-
vious study showed that HBx can switch the target of the
intrahepatic TGF-β signaling pathway from the tumor-
suppressive pSmad3C to the tumor-supportive pSmad3L dur-
ing the early stages of chronic hepatitis B (CHB). This mech-
an ism is cons idered to be d i rec t ly involved in
hepatocarcinogenesis [23]. HBx also functions by upregulat-
ing TGF-β in a paracrine-dependent manner. TGF-β is a mas-
ter regulator of the pro-invasive tumor microenvironment. In
addition to participating in hepatic stellate cell activation,
TGF-β can also associate with pathways related to stem cell
phenotypes such as Wnt and Ras signaling to induce EMT or
can switch the phenotypes of tumor-infiltrating immune cells
to create an EMT-permissive microenvironment. Accordingly,
tumor cells undergoing EMTacquire invasive, migratory, and
stem cell properties, which allows them to disseminate to dis-
tant sites [22, 24].

Hepatitis B virus X protein and the interleukin family

Interleukins, a type of cytokine with wide-ranging functions,
are produced by various cells and play an important role in
immune-cell maturation, activation, and regulation. During
chronic liver inflammation, inflammatory cytokines are re-
leased, the activation of which contributes to the pathological
process of chronic liver inflammation and injury. The balance
of inflammatory cytokines will determine the final outcome of

the immune response. Therefore, inflammatory cytokines are
potential therapeutic targets for the treatment of liver disease.
Reportedly, HBx regulates the expression of inflammatory
cytokines at the transcription level, thus playing a key role in
the regulation of chronic liver inflammation [74]. Previous
studies have indicated that HBx activates NF-κB and
MAPKs through the Toll-like receptor adaptor protein mye-
loid differentiation factor 88, thereby promoting the synthesis
and secretion of IL-6 [25]. IL-1 is also upregulated by HBx at
the transcription level. Levels of IL-6 and IL-1, the predomi-
nant pro-inflammatory cytokines involved in HCC develop-
ment, are often higher in patients with HCC. Moreover, they
have pleiotropic effects on various cell types in the tumor
microenvironment; particularly, they are able to regulate the
pro-oncogenic transcription factors NF-κB and STAT3. For
this reason, such cytokines may influence key parameters of
oncogenesis such as tumor invasion and metastasis, as well as
the ability of tumor cells to respond to anti-cancer therapy [75,
76]. Therefore, HCC patients with high IL-6 levels typically
have a poor prognosis [77]. In addition, HBx also selectively
regulates other pro-inflammatory cytokines, including IL-8,
IL-18, IL-23, and TNF-α [27]. These cytokines function in
the pathological processes underlying HCC development. For
instance, IL-8 regulates tumor growth and the malignant trans-
formation of hepatocytes; additionally, it has been associated
with HCC invasion and metastasis [26, 78]. Serum levels of
IL-18, a novel pro-inflammatory cytokine, are often elevated
in patients with HBV-HCC and may have an application as a
prognostic indicator in these patients [79]. This evidence sug-
gests that the cytokines upregulated by HBx are likely to be
tumor-promoting chemokines active in HCC development
and that the role of HBx in hepatocarcinogenesis may be ef-
fectuated by regulating inflammatory cytokine expression.

Hepatitis B virus X protein and tumor necrosis factor-α

As described above, long-term chronic liver inflammation
mediates HCC initiation and development. Once liver inflam-
mation is initiated, inflammatory cells are actively induced by
tumor cells to infiltrate the liver tumor microenvironment,
resulting in the release of inflammatory cytokines and corre-
sponding chemokines [80]. As a classic pro-inflammatory cy-
tokine, TNF-α is mainly secreted by inflammatory cells and
regulates cell survival, proliferation, differentiation, and im-
mune responses. Thus, it is recognized as one of the most
important cytokines involved in HCC pathogenesis.
Previous in vivo and in vitro studies have shown that
TNF-α functions during tumor initiation and development
[81]. The relationship between HBx and TNF-α was first
reported in 1998. An in vitro HBVexpression system showed
that HBx upregulates the expression of TNF-α transcription-
ally, after which it mediates liver inflammation and disease
progression [28]. TNF-α can also upregulate the expression
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of vascular endothelial growth factor and MMPs and activate
survival signaling pathways, thus promoting tumor develop-
ment and angiogenesis [29]. This suggests that HBx may me-
diate liver inflammation, disease progression, and tumor sur-
vival via regulation of the expression of certain inflammatory
cytokines. Further clarification of the mechanisms underlying
the regulation of intrahepatic inflammatory cytokines may
result in the discovery of promising future therapeutic targets.

Hepatitis B virus X protein and cyclooxygenase-2

Cyclooxygenase (COX) is the rate-limiting enzyme for ara-
chidonic acid metabolism. Two subtypes have been identified
to date, namely, COX-1 and COX-2. COX-2 has been char-
acterized as a highly inducible isoform that is rapidly upregu-
lated in response to proinflammatory triggers including cyto-
kines, tissue injury, and mitogens, particularly in cells in-
volved in inflammation, pain, and tumors. Previous studies
have shown that COX-2 levels are often elevated in patients
with CHB, cirrhosis, and HCC and that its expression is sig-
nificantly correlated with that of HBx in the tumors of HBV-
HCC patients. This suggests that COX-2 is a key factor in the
contribution of HBx to the pathology of HCC. HBx
upregulates the expression of MT1-MMP in a COX-2-
dependent manner and exerts its anti-apoptotic effects by ac-
tivating the COX-2/PGE(2) signaling pathway thus promot-
ing tumor growth, invasion, and metastasis [30–32].
Moreover, colocalization of HBx with COX-3 may lead to
the upregulation of COX-2, which promotes HepG2 cell
growth [82]. Collectively, COX-2 activity is maintained by

HBx in various ways, and HBx exerts its carcinogenic
effects via this mechanism.

Hepatitis B virus X protein and hypoxia-inducible
factor-1α

The cellular oxygen balance is often impaired during
cancer, and cells become hypoxic. Hypoxia is a com-
mon feature in many types of solid tumor such as liver
cancer, where tumor cells rapidly proliferate, eventually
forming large solid tumor masses. Consequently, aber-
rant blood vessels are generated around the tumor
masses. To survive in this hypoxic microenvironment,
tumor cells adapt to low oxygen conditions by activat-
ing a series of survival pathways, among which activa-
tion of hypoxia-inducible factor-1α (HIF-1α) is the
most recognized. Many studies have shown that HIF-
1α expression is increased in various tumors in humans
including bladder, breast, and liver tumors [83, 84], and
compelling evidence indicates a strong correlation be-
tween elevated HIF-1α levels and tumor invasion, an-
giogenesis, and poor patient prognosis [85, 86]. The
role of HBx in HIF-1α expression and function has
been investigated. Reportedly, HBx increases HIF-1α
levels in two ways. First, HBx directly binds to the
basic helix-loop-helix/PAS domain of HIF-1α to inhibit
the interaction between pVHL and HIF-1α, thus
preventing HIF-1α degradation [33, 34]. Second, HBx
stimulates metastasis-associated protein 1, histone
deacetylase, and the MAPK pathway [35] to upregulate
HIF-1α expression. Therefore, HBx may facilitate the

Fig. 3 Pleiotropic effects of HBx in liver tumor microenvironment
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adaptation of tumor cells to low oxygen conditions
through HIF-1α upregulation, allowing tumor cells to
survive in this harsh microenvironment.

Hepatitis B virus X protein and exosomes

Exosomes are small (50–150 nm) membrane vesicles with
diverse functions that are released by various cells, including
hepatocytes. Cancer cell-derived exosomes have a vast array
of contents comprising miRNAs, mRNAs, transcription fac-
tors, proteins, and lipids. The contents of exosomes are func-
tional and exert powerful effects on recipient cells. One of the
most distinguishing hallmarks of cancer cell-derived
exosomes is their high miRNA content. Exosomal miRNAs
can regulate various physiological cellular events. As the piv-
otal mediators of communication in the tumor microenviron-
ment, exosome-mediated cell–cell communication can alter
tumor growth, migration, and metastasis. In recent years, most
studies have focused on the role of HBx in exosomal miRNA
expression and function. Mounting evidence suggests that
HBx affects cancer cell proliferation, apoptosis, and migration
through the regulation of miRNA expression. miR-122 is a
liver-specific miRNA present in exosomes. According to pre-
vious studies, miR-122 represses HCC development by bind-
ing to the target genes involved in proliferation, migration,
differentiation, apoptosis, and angiogenesis in HCC.
Decreased miR-122 expression is frequently observed in pa-
tients with HCC [87, 88]. Reportedly, HBx exerts its carcino-
genic effects through the negative regulation of miR-122 ex-
pression [36]. Recently, Zhao et al. [37] found that HBx also
significantly alters exosomal protein content in vitro. This
suggests that HBx exerts powerful effects via the exosome
by regulating both exosomal miRNA and protein content.
Therefore, HBx-induced exosome content changes may help
to create an intracellular environment favorable for virus-
associated malignant transformation as well as tumor invasion
and metastasis. Further clarification of the role of HBx in
exosome regulation and function will contribute to our under-
standing of the molecular basis of HBV-HCC pathology.

Potential uses of hepatitis B virus X protein
in hepatocellular carcinoma treatment

HBx has become an important biological indicator for
HBV-HCC development. HBx activity and function in
the tumor microenvironment may become a new thera-
peutic target for the treatment of HCC. Knockdown of
HBx expression using short interfering or short hairpin
RNAs or inhibitions of the signaling pathways that are
activated by HBx reportedly abrogate the functions of
HBx [69, 89]. To date, most studies have utilized
in vitro experiments and in vivo experiments in animal

models, and research on humans has not been per-
formed; therefore, strategies targeting HBx in human
tumors require further investigation.

Conclusions and future perspectives

HBx is a multifunctional viral protein encoded by HBV.
In recent decades, much has been discovered about the
role of HBx in the initiation, progression, invasion, and
metastasis of HCC. HBx plays an important role in
HBV-associated liver diseases by activating a series of
intracellular signaling pathways that are involved in the
progression from chronic hepatitis to cirrhosis and even-
tually HCC. The various biological functions of HBx
are exerted at different intracellular locations. HBx acti-
vates hepatic stellate cells, accelerates tumor cell
growth, dysregulates the anti-tumor immune response,
promotes liver inflammation, and induces EMT in tumor
cells. The biological effects of HBx are mainly mediat-
ed by its interaction with constituents in the liver tumor
microenvironments such as liver cancer cells, hepatic
stellate cells, immune cells, inflammatory cytokines,
HIF-1α, and exosomes. Complex interactions between
HBx and components of the tumor microenvironment
ultimately promote tumor initiation, progression, inva-
sion, and metastasis (Fig. 3). Improving our understand-
ing of the relationship between HBx and the tumor mi-
croenvironment is critical for the identification of diag-
nostic biomarkers and to design novel therapeutic ap-
proaches. However, some questions remain to be an-
swered. First, which domains and host targets are re-
sponsible for the pleiotropic effects of HBx? Second,
how does HBx control the level of HBV replication
and exert its cofactor role in HCC? Third, how can
the biological effects of HBx be effectively abrogated?
Answers to these questions would help identify the
promising therapeutic targets and thus improve the out-
comes of HBV-HCC patients.
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