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Abstract

HIV-1 particles assemble and bud from the plasma membrane of infected T lymphocytes.

Infected macrophages, in contrast, accumulate particles within an apparent intracellular

compartment known as the virus-containing compartment or VCC. Many aspects of the for-

mation and function of the VCC remain unclear. Here we demonstrate that VCC formation

does not actually require infection of the macrophage, but can be reproduced through the

exogenous addition of non-infectious virus-like particles or infectious virions to macrophage

cultures. Particles were captured by Siglec-1, a prominent cell surface lectin that attaches to

gangliosides on the lipid envelope of the virus. VCCs formed within infected macrophages

were readily targeted by the addition of ganglioside-containing virus-like particles to the

extracellular media. Depletion of Siglec-1 from the macrophage or depletion of gangliosides

from viral particles prevented particle uptake into the VCC and resulted in substantial reduc-

tions of VCC volume. Furthermore, Siglec-1-mediated virion capture and subsequent VCC

formation was required for efficient trans-infection of autologous T cells. Our results help to

define the nature of this intracellular compartment, arguing that it is a compartment formed

by particle uptake from the periphery, and that this compartment can readily transmit virus

to target T lymphocytes. Inhibiting or eliminating the VCC may be an important component

of strategies to reduce HIV transmission and to eradicate HIV reservoirs.

Author summary

T lymphocytes and macrophages are the two major cell types involved in HIV replication

and transmission events. When a T cell is infected, virus particles assemble and bud from

the plasma membrane of the cell. In contrast, infected macrophages develop an intracellu-

lar collection of viruses termed the virus-containing compartment or VCC. Many aspects

of the formation and function of the VCC remain unclear. Here we show that VCC for-

mation does not actually require infection of the macrophage, but can be reproduced
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through the addition of virus-like particles or infectious virions to macrophages. HIV-1

particles were captured by the cell surface carbohydrate-binding protein Siglec-1, followed

by co-migration of Siglec-1 and captured viral particles to the VCC. Depletion of Siglec-1

from the macrophage prevented VCC formation, and inhibited the ability of infected

macrophages to transmit HIV to T cells. Our results help to define the origin of this intra-

cellular compartment, arguing that it is a compartment formed by particle uptake from

the periphery. Inhibiting or eliminating the VCC may be an important component of

strategies to reduce HIV transmission and to eradicate HIV reservoirs.

Introduction

Macrophages are readily infected by HIV and make important contributions to AIDS patho-

genesis. Currently there is growing interest in this cell type as a potential reservoir for persis-

tent infection and as an important target in efforts to cure individuals of HIV [1–3].

Macrophages are present throughout every organ of the human body, and tissue-resident mac-

rophages may be extremely long-lived, having been derived from progenitor cells during

embryogenesis rather than being replaced at short intervals from circulating monocytes [4].

Efforts to understand in detail the interactions between HIV and macrophages are therefore of

considerable significance. One of the most enigmatic features of the HIV-infected macrophage

has been the presence of the VCC, variously characterized as a source of virus for trans-infec-

tion, an immune-protected reservoir, a site of virus assembly, or a site of virus storage follow-

ing assembly on the plasma membrane. The VCC demonstrates features of the late endosome

or MVB compartment, including enrichment of CD9, CD53, CD81, CD82 and MHC class II

[5–7]. Unlike late endosomes, however, the compartment is non-acidic and often demon-

strates tubular connections that can lead to the plasma membrane [5, 8–11]. The presence of

plasma membrane connections to this compartment has led some investigators to refer to the

VCC as the intracellular plasma membrane-connected compartment or IPMC [12]. The acces-

sibility of antibodies to this compartment is limited [13, 14] but protection from antibodies

may be incomplete [5]. Tetherin plays a role in the formation of the VCC, and tetherin limits

HIV transmission from infected macrophages to T cells [15, 16]. We proposed previously that

retention of HIV-1 virions by tetherin on the plasma membrane of macrophages contributed

to the formation of the VCC, allowing internalization of virions into this compartment [15].

Recently the Gummuluru and Martinez-Picado groups reported an important mechanism

utilized by dendritic cells (DCs) to capture, internalize and retain exogenous virus [17–20].

These investigators demonstrated that HIV-1 capture by DCs is dependent on the incorpo-

ration of the α-2,3-siaylated gangliosides on the viral membrane. Both GM1 and GM3 contain

α-2,3 linkages and were shown to be capable of mediating capture by DCs, while GM3 was

more efficient in mediating particle capture at limiting ganglioside concentrations [19, 21].

Virions were captured through an interaction of gangliosides with sialic acid-binding immu-

noglobulin-like lectin (Siglec-1, also known as CD169), an interferon-inducible member of the

I-type lectin receptor family that is present on the plasma membrane of myeloid cells. Deple-

tion of gangliosides from viral membranes or depletion of Siglec-1 in DCs potently inhibited

HIV-1 capture and internalization, and also inhibited trans-infection of T cells by mature

DCs. The accumulation of particles within intracellular compartments in DCs shares many

characteristics with the VCCs of HIV-infected monocyte-derived macrophages (MDMs). In

DCs these compartments appear to sequester virus away from the external environment,

potentially protecting them from neutralization or other immune defenses. Notably, MDMs

Siglec-1 and VCC formation
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have also been shown to express Siglec-1, and capture of virions by MDMs through interaction

with sialic acid on gp120 has been proposed as an important mechanism for macrophage

infection [22]. Recently it was shown that Siglec-1 on macrophages lining lymphoid sinuses

captures murine leukemia virus (MLV)[23] and HIV [24, 25]. In the case of MLV, Siglec-

1-mediated capture by macrophages is followed by migration to lymphoid follicles and trans-

infection of B cells. Therefore there is increasing evidence that Siglec-1 plays an important role

in retroviral particle capture and subsequent transmission events in vivo.

Here we examined Siglec-1-mediated virion capture in HIV-infected macrophages, and

asked if the Siglec-1-ganglioside interaction plays a role not only in capture of virions but also

in the formation of the VCC itself. Exogenous addition of virus-like particles (VLPs) led to

their rapid internalization into the VCC in a Siglec-1- and ganglioside-dependent manner,

and was not dependent on the presence of the viral envelope glycoprotein. Siglec-1 was highly

concentrated, along with tetherin, within VCCs of infected MDMs. Remarkably, VLPs added

exogenously became intermingled in the same VCC compartment with viral particles that had

originated from the infected macrophage. Furthermore, depletion of Siglec-1 in HIV-1

infected MDMs resulted in a drastic reduction in overall VCC volume and reduced transmis-

sion of virus to autologous T lymphocytes. These data demonstrate a prominent role for

Siglec-1 in the internalization of HIV-1 to the VCC in infected MDMs, supporting a model in

which particle retention on the plasma membrane by tetherin is followed by Siglec-1-driven

internalization of particles into the VCC. Furthermore, our results demonstrate that Siglec-

1-mediated particle capture and uptake of exogenous HIV-1 particles by uninfected macro-

phages creates a VCC that is phenotypically identical to that formed in infected macrophages.

Results

Interferon stimulation enhances Siglec-1 expression and ganglioside-

dependent HIV-1 VLP uptake in human MDMs

Siglec-1 on the surface of DCs is capable of capturing HIV-1 in a glycosphingolipid-dependent

manner [19, 20, 26]. We hypothesized that Siglec-1 may also be responsible for virion capture

and subsequent concentration within VCCs of HIV-1 infected monocyte-derived macro-

phages (MDMs). To address this, we first examined Siglec-1 cell surface levels in MDMs.

Siglec-1 was expressed constitutively in human MDMs, and its surface expression was

increased upon stimulation with IFN-alpha (Fig 1A, upper plot). The amount of cell surface

tetherin was examined in parallel, and was increased approximately 2-fold by IFN stimulation

(Fig 1A, lower plot). Total Siglec-1 expression and upregulation by IFN was also apparent by

Western blotting, with a 1.9-fold increase in Siglec-1 expression following treatment with 500

U/ml and a 2.7-fold increase with 1000 U/ml of IFN (Fig 1B). Next we asked whether IFN

stimulation would enhance the capture and uptake of HIV-1 Gag-EGFP VLPs lacking Env.

MDMs were incubated for 1 hour with 100 ng HIV-1 VLP-associated p24/105 cells, vigorously

washed, and the amount of p24 internalization measured. Remarkably, IFN stimulation

resulted in a 4.3-fold increase in MDM-associated HIV-1 p24 (Fig 1C). This result confirmed

that in MDMs, an IFN-stimulated factor or factors was enhancing the capture of exogenously-

added HIV VLPs for MDMs, as had been previously shown for Siglec-1 in DCs.

In order to confirm that HIV-1 capture by MDMs requires particle-associated gangliosides

as shown for DCs [19, 26], we treated HIV-1 Gag-EGFP VLPs with an α2–3 NeuNAc-specific

neuraminidase (NA). We confirmed neuraminidase removal of NeuNAc residues from NA-

treated VLPs by staining treated and untreated VLPs with Alexa Fluor 647-conjugated wheat

germ agglutinin (WGA) (S1 Fig). Neuraminidase treatment of VLPs resulted in a 3.4-fold

reduction in NeuNAc detection as compared with untreated VLPs (S1 Fig). As an additional

Siglec-1 and VCC formation
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Fig 1. Siglec-1 expression by MDMs is enhanced via IFN exposure and leads to VLP internalization. (A) Representative Siglec-1 and

tetherin surface expression of GM-CSF matured MDMs together with 24 h IFN alpha stimulation (1000 U/ml). (B) Western blot of Siglec-1 and

actin upon incubation with increasing amounts of IFN alpha in GM-CSF derived MDMs. (C) Enhanced capture of HIV-1 Gag-EGFP VLPs by

MDMs stimulated with 1000 U/ml IFN alpha as measured by p24 ELISA. (D) MDMs were incubated with 400 ng of sucrose-purified HIV-1

Gag-EGFP VLPs either treated with 1.0 U/μl neuraminidase, untreated or from 293T cultured in the presence of 10 μM PDMP. Cell-

Siglec-1 and VCC formation
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means of depleting gangliosides on the virion envelope, VLP producer cells were grown in the

presence of 10 μM D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), a

glucosylceramide synthase competitive inhibitor, 2 days prior and during HIV-1 VLP produc-

tion. We then evaluated the effect of either neuraminidase treatment or PDMP-mediated

depletion of gangliosides on particle uptake by MDMs. Inhibition of glucosylceramide synthe-

sis by PDMP resulted in a 4.6-fold decrease in VLP capture by MDMs, while NA-treatment

resulted in a 3.9-fold reduction (Fig 1D). These results establish that GM3 (or potentially

GM1) on the VLP surface is critical for the capture and internalization of VLPs by Siglec-1 on

macrophages in a manner entirely consistent with published findings for DCs [20, 26]. In

order to further understand the differences in particle capture, we examined MDMs 6 hours

following exposure to wildtype VLPs or neuraminidase-treated VLPs by fluorescence micros-

copy. Only a few scattered neuraminidase-treated VLPs were detected on the cell surface of

MDMs (Fig 1E). Notably, Siglec-1 displayed a diffuse punctate appearance identical to that of

untreated MDMs when exposed to ganglioside-depleted VLPs (Fig 1E). In striking contrast,

wildtype VLPs were taken deep into the MDM, and Siglec-1 was found to strongly colocalize

with VLPs in this internal compartment (Fig 1F). The position of the VLPs suggested similari-

ties to the VCC of infected macrophages, and the redistribution of Siglec-1 to this compart-

ment suggested to us an active role in VLP internalization.

Siglec-1 colocalizes with VLPs and is internalized into VCCs of

uninfected MDMs

We next performed time course experiments to examine the capture and internalization of

VLPs by Siglec-1. HIV-1 VLPs captured by MDMs were internalized and concentrated cen-

trally through a series of sequential steps, including initial attachment (10 minutes, Fig 2A),

internalization into small colocalizing puncta (30 minutes, Fig 2B), organization into a ring-

like structure surrounding what is assumed to be the ER/TGN (2 hours, Fig 2C), and finally

concentration into a central perinuclear location (6 hours, Fig 2D). Siglec-1 colocalization

with captured HIV-1 Gag-EGFP VLPs was readily apparent throughout each stage of capture,

internalization, and concentration into a perinuclear compartment (Fig 2A–2D). In order to

examine the capture and internalization of Gag-EGFP VLPs by individual MDMs over time,

we performed live cell confocal microscopy. The rapid centripetal movement of exogenous

VLPs into the VCC of MDMs is dynamically illustrated in S1 and S2 movies. Together these

data indicate that Siglec-1 and VLPs move together from the plasma membrane to the VCC,

and show that the internalization of VLPs occurs over a period of minutes to a few hours,

resulting in the formation of a concentrated central compartment where both VLPs and

Siglec-1 are concentrated.

Capture and internalization of HIV-1 VLPs is attenuated by Siglec-1

knockdown in MDMs

In order to further demonstrate the functional significance of Siglec-1 in HIV-1 capture and

internalization, MDMs were transfected with Siglec-1-specific or control siRNAs. Siglec-1

expression was analyzed by Western blotting of harvested cell lysates over an 11 day time-

course following siRNA transfection. Siglec-1 levels were reduced by more than 75% by day 5

associated HIV-1 p24 was quantified by ELISA. (E) Sucrose purified, HIV-1 Gag-EGFP VLPs treated with neuraminidase (NA) or untreated

(F) were added to mature GM-CSF derived MDM cultures on day 8 for 6 hours. Cells were then washed, fixed, immunostained for Siglec-1

(red) and DAPI co-stained. Size bar = 21 μm for (E) and 15 μm for (F).

doi:10.1371/journal.ppat.1006181.g001

Siglec-1 and VCC formation
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Fig 2. Time course of HIV-1 Gag-EGFP internalization within MDMs and colocalization with Siglec-1. (A-D) 400 ng of

sucrose-purified HIV-1 Gag-EGFP VLPs were added to MDM cultures and allowed to attach and be internalized from 10’ to 6

hours. At the indicated times, MDMs were washed, fixed in 4% PFA and immunostained with Siglec-1 (red, mAb clone 7–239,

AbD Serotec) and DAPI co-stained. Shown are cells representative of the populations examined at each timepoint. Size

bars = 10 μm.

doi:10.1371/journal.ppat.1006181.g002

Siglec-1 and VCC formation
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post-transfection and by 91% at day 11 (Fig 3A). Siglec-1 expression in MDMs was largely

unaffected by transfection with control siRNA (Fig 3A, control panel). In some experiments,

MDMs were also treated with tetherin siRNA as described previously [15](S2 Fig). We then

performed VLP capture experiments in control and Siglec-1 siRNA-treated MDMs. Knock-

down of Siglec-1 reduced VLP capture efficiency to 38% of control, a 2.6-fold reduction (Fig

3B). To further demonstrate sialyllactose-dependent Siglec-1 capture of HIV-1 VLPs in

MDMs, competitive inhibition experiments were performed. MDMs were treated with either

lactose as a control or with the GM3 polar head group mimetic 3’-sialyllactose at

Fig 3. Siglec-1 RNAi interference and competitive inhibition by a GM3 glycan mimetic inhibits HIV-1

VLP internalization by MDMs. (A) MDMs were transfected with 60 nM control or Siglec-1 siRNA on day 8

after plating. Cell lysates were harvested and analyzed by Western blotting for Siglec-1 and actin expression.

(B) MDMs were transfected with either control or Siglec-1 siRNA and 5 days later incubated with 400 ng of

HIV-1 Gag-EGFP VLPs for 2 hr. Cells were washed and cell lysate p24 concentration determined by ELISA.

(C) MDMs were pre-treated at RT with lactose or 3’-sialyllactose for 1 hour. Subsequently, MDMs were

incubated with 400 ng of HIV-1 Gag-EGFP VLPs in the presence of compound for an additional hour. MDMs

were then washed, cell lysates harvested and cell-associated p24 measured by ELISA. Error bars represent

standard deviation; asterisks depict significant differences as measured by unpaired t-test.

doi:10.1371/journal.ppat.1006181.g003

Siglec-1 and VCC formation
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concentrations ranging from 1 to 50 μM for 30 minutes prior to the addition of HIV-1 VLPs.

VLPs were then incubated in MDM culture for an additional 2 hours at 37˚C. Addition of lac-

tose to the culture medium had no effect on MDM VLP capture, whereas 3’sialyllactose inhib-

ited VLP capture by 60%, a 2.4-fold reduction (Fig 3C). Next, we performed imaging of

MDMs exposed to HIV Gag-EGFP VLPs to determine the effect of Siglec-1 knockdown on

particle uptake. Control (scrambled) siRNA treatment did not inhibit VLP uptake and coloca-

lization with Siglec-1 (S3A Fig), while only few scattered VLPs were visible following depletion

of Siglec-1 (S3B Fig). The volume of the VCC, measured as EGFP voxels, was dramatically

reduced following Siglec-1 depletion (S3C–S3E Fig, Siglec-1 siRNA). In control siRNA-treated

MDMs, the volume of the VCC increased over time (measured at 30 minutes, 2 hours, and 6

hours, S3C–S3E Fig). Together, these data indicate that like DCs, MDMs capture and internal-

ize HIV-1 VLPs predominantly in a Siglec-1 dependent manner.

Siglec-1 is concentrated in VCCs of infected macrophages

Because VLP capture created a compartment in uninfected MDMs that resembled the VCC,

we next asked if Siglec-1 is concentrated within the VCC of HIV-1-infected MDMs (in the

absence of any non-infectious VLP addition). MDMs were infected at an MOI of 0.5 with

either the macrophage-tropic BaL strain of HIV, or with VSV-G-pseudotyped NL4.3 or NLU-

del, and cultures maintained for 10 days prior to imaging. As expected, CD9 co-localized

extensively with p24 in large, multi-vesicular compartments when MDMs were infected with

the macrophage-tropic BaL strain of HIV. Downregulation of tetherin by BaL Vpu was appar-

ent, as tetherin signal was localized to a compartment consistent in terms of location with the

trans-Golgi network with relatively low-level presence in the VCC (Fig 4A). Remarkably,

Siglec-1 was found to be highly concentrated within the VCC (Fig 4B). Colocalization of

Siglec-1 and p24 was consistently observed in BaL-infected MDMs from multiple donors. We

expanded this analysis to include VSV-G-pseudotyped HIV-1 molecular clones NL4.3 and its

vpu-deficient partner, NLUdel, in order to allow comparison with prior work and to define

colocalization with tetherin. Siglec-1 colocalized significantly with HIV virions in NL4.3-in-

fected MDMs (Fig 4C). Tetherin was more prominent within the VCC in NL4.3-infected

MDMs as compared with BaL (Fig 4B and 4C). Within NLUdel-infected MDMs, a striking

colocalization between Siglec-1, p24 and tetherin was observed (Fig 4D). Measures of colocali-

zation applied to multiple images confirmed the results represented in Fig 4. For BaL-infected

MDMs, p24 colocalization with Siglec-1 was high at 86.0 ± 6.9%, while tetherin colocalization

was only 16.5 ± 13.7% (see Experimental Procedures for colocalization methods). For NL4.3

and NLUdel-infected MDMs, p24 colocalization with Siglec-1 was also high at 93.9 ± 8.2 and

86.1 ± 12.7%, respectively. In contrast to results observed with BaL infected MDMs, p24/

tetherin colocalization was markedly higher for NL4.3 and NLUdel infected MDMs at

64.6 ± 20.9 and 78.7 ± 20.9%, respectively. We attribute the differences observed in p24/

tetherin colocalization observed from BaL and NL4.3 infected MDMs to allelic differences in

the efficiency of counteraction of tetherin by BaL vs. NL4.3 vpu genes, as NL4.3 vpu has been

shown to be relatively weak compared to many naturally-occurring vpu genes [27]. These data

overall demonstrate that Siglec-1 is highly concentrated in the VCC of infected macrophages,

consistent with what had been observed upon addition of non-infectious VLPs, implying a

role for Siglec-1 in virion capture and VCC formation during infection of macrophages.

Siglec-1 is necessary for VCC formation in HIV-1-infected MDMs

Based on the strong colocalization data demonstrating concentration in the VCC of infected

MDMs, we examined the effect of Siglec-1 depletion on the formation of the VCC. We first

Siglec-1 and VCC formation
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employed NLUdel, as the effect of tetherin on VCC size is enhanced in the absence of Vpu.

MDMs were infected overnight with VSV-G-pseudotyped NLUdel at a TCID50 of 2.0/cell. On

the following day, MDMs were treated with 60 nM of either control, Siglec-1 or tetherin-spe-

cific siRNAs, and samples fixed on day 10 post-infection. VCC volume was quantified by mea-

suring the volume of intracellular HIV-1 p24 immunostained areas. Control siRNA-treated

MDMs were indistinguishable from untreated MDMs, containing large, intracellular

Fig 4. Siglec-1 colocalizes with p24 in VCCs of HIV-1-infected MDMs. (A) MDMs were infected with a biological stock of HIV-1 BaL at a

TCID50 of 0.5/cell. 10 days post-infection cells were fixed and immunolabeled for HIV-1 p24 (green), CD9 (red), tetherin (magenta) and

DAPI co-stained. (B) Same immunostaining profile as (A) with the exception of Siglec-1 (red) in place of CD9. Size bar = 10 μm. (C) MDMs

were infected with VSV-G pseudotyped NL4.3 and NLUdel (D) at a TCID50 of 2.0/cell. 10 days post-infection cells were fixed and

immunostained as described in (B). All size bars = 10 μm. Representative maximum intensity deconvolved images shown.

doi:10.1371/journal.ppat.1006181.g004

Siglec-1 and VCC formation
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accumulations of p24 that colocalized strongly with both Siglec-1 and tetherin (Fig 5A, top

row of images). Siglec-1 siRNA-treatment resulted in a substantial reduction in VCC volume

within HIV-1 infected MDMs, measured as 6.1 ± 4.3% of control (Fig 5A, middle row and

quantified in 5B and 5C). Previous work in our lab by Chu and coworkers identified tetherin’s

role in enhancing VCC formation in HIV-1 infected MDMs [15]. Therefore, we also quanti-

fied VCC volumes from tetherin siRNA-treated MDMs. Tetherin siRNA-treated MDMs

infected with NLUdel also exhibited a large decrease in VCC volumes, although somewhat less

than that observed with Siglec-1 siRNA-treated MDMs (6.3 v 16.4-fold reduction, respectively)

(Fig 5A, Tetherin knockdown row and 5B and 5C). Furthermore, the remaining p24 signal in

tetherin siRNA-treated, HIV-1-infected MDMs colocalized significantly with Siglec-1 (Fig 5A,

tetherin knockdown). The average VCC volume quantified from 30 control siRNA-treated

HIV-1 infected MDMs on day 10 post-infection was 1185 μm3, whereas the average VCC vol-

ume of Siglec-1-depleted MDMs was radically reduced to 72.3 μm3 (Fig 5B and 5C). Tetherin

knockdown in NLUdel-infected MDMs also resulted in a significant VCC reduction, averag-

ing 190.1 μm3. The VCC volume distribution of control siRNA-treated MDMs was large, rang-

ing from 286.4 to 3419 μm3. VCC volume ranges for Siglec-1 and tetherin siRNA-treated

MDMs were greatly reduced, ranging from 248.1 to 2.2 and 486.1 to 19.9 μm3, respectively

(Fig 5C). These data demonstrate that reduction in Siglec-1 is dramatically associated with a

reduction in the formation of the VCC in HIV-infected MDMs, similar to but to an even

higher level than depletion of tetherin.

It is logical to expect that if less virus is internalized by Siglec-1 and tetherin, there would be

greater amounts of virus released into the cellular supernatant. Indeed this was the case. We

measured p24 within NLUdel-infected MDMs and in the supernatant over time. Depletion of

either Siglec-1 or tetherin resulted in a significantly higher percentage of released/accumulat-

ing virions in the cell supernatant over time (Fig 5D). Results here are shown as % release, cal-

culated as total p24 in supernatants/p24 in supernatants + cells.

We repeated these siRNA knockdown experiments using the primary HIV-1 isolate BaL.

BaL-infected MDMs treated with control siRNA contained large, concentrated areas of HIV-1

p24 immunostaining on day 10 post-infection consistent with VCC morphology. Siglec-1

colocalization with HIV-1 p24 signal was nearly complete (S4 Fig, top row of images). Within

BaL-infected MDMs, tetherin signal was largely found in locations consistent with the TGN

rather than the VCC, consistent with the presence of active Vpu expression and tetherin down-

regulation from the plasma membrane and from virion assembly sites. Depletion of Siglec-1 in

HIV-1 infected MDMs via siRNA-treatment resulted in a substantial reduction in VCC vol-

ume (S4 Fig, middle row). Alterations to VCC morphology were noted to include loss of con-

centration and smaller, individual p24-positive compartments. Tetherin siRNA depletion also

resulted in smaller whole cell VCC volumes on average, though the change was less dramatic

than that seen with NLUdel (S4 Fig, lower row). Interestingly, and not unexpectedly, remain-

ing p24 signal within VCCs of tetherin siRNA-treated, BaL-infected MDMs significantly colo-

calized with Siglec-1. Taken together, these data demonstrate a critical role for Siglec-1 in the

formation of the VCC of infected MDMs.

Exogenously-added HIV-1 VLPs are transported into the VCCs of HIV-1-

infected MDMs

The VCC has been defined as a compartment arising only in HIV-infected macrophages,

rather than as a compartment that could be formed upon addition of viruses exogenously. We

next asked if exogenously added HIV-1 Gag-EGFP VLPs captured by BaL-infected MDMs

were destined to be transported into the same compartments occupied by particles arising

Siglec-1 and VCC formation

PLOS Pathogens | DOI:10.1371/journal.ppat.1006181 January 27, 2017 10 / 28



Fig 5. Siglec-1 RNAi reduces VCC volumes in HIV-1 NLUdel-infected MDMs. (A) MDMs were infected with VSV-G pseudotyped NLUdel.

On the following day, MDMs were transfected with 60 nM scrambled, Siglec-1 or tetherin siRNA. At day 10 post-infection, MDMs were washed,

fixed with 4% PFA and immunostained for p24 (green), Siglec-1 (red), tetherin (magenta) and DAPI co-stained. Size bars = 10 μm. (B) P24

VCC volume/cell from 30 NLUdel infected MDMs from each group were quantified using the Volocity 6.3 measurement module. Mean +/- SD

shown for each RNAi group. (C) Scatter plot displaying individual p24 VCC volume measurements and mean from (B). (D) p24 release from

Siglec-1, tetherin or control siRNA treated and NLUdel-infected MDMs was assessed over 12 days using a p24 ELISA. The efficiency of

particle release is plotted as percentage of extracellular p24/total p24 from 3 experiments, with standard deviations indicated. Arrows indicate

two timepoints when the media was changed, resulting in a transient drop in the ratio of extracellular p24/total p24.

doi:10.1371/journal.ppat.1006181.g005
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within the infected macrophage (the VCC). In order to perform this experiment, we designed

a method to distinguish exogenous VLPs from endogenous, infectious virions by fluorescence

microscopy. The murine anti-p24 mAb, KC57-RD1 (Beckman Coulter), fails to recognize

immature HIV-1 Gag-GFP VLPs under our immunostaining protocols, while mature HIV-1

virions are efficiently detected by this reagent (S5 Fig). Remarkably, HIV-1 Gag VLPs were

substantially concentrated together with endogenous virions in VCCs (Fig 6A and 6B). Both

exogenous VLPs and endogenous BaL virions colocalized significantly with Siglec-1 in VCCs.

The extent of colocalization between exogenous VLPs and BaL p24 was on average 73 ± 12.9%.

Remarkably, 75 ± 15.7% of exogenous VLPs and 70 ± 10.6% of endogenous BaL p24 coloca-

lized with Siglec-1 within BaL-infected MDMs. To further prove that this compartment is

identical to the VCC previously described, the compartment was shown to concentrate CD9

together with both infectious virions and VLPs (Fig 6C and 6D). Interestingly, while near-

complete colocalization was demonstrated in the VCC of the majority of cells examined, the

internalized VLPs sometimes seemed to surround existing VCC material (as in Fig 6D), sug-

gesting that the VLPs were being added to the outer layer of the pre-existing compartment

prior to any further mixing. These data indicate that MDMs capture exogenous HIV-1 and

internalize these particles into the VCC. In other words, the compartment where virions from

the infected macrophage reside, the VCC, is identical to the compartment to which exoge-

nously-added VLPs are delivered to through the Siglec-1-ganglioside interaction.

Electron microscopic evidence of delivery of exogenous VLPs into the

VCC of infected macrophages

In order to further confirm the delivery of VLPs into the VCC, we added Gag VLPs to infected

MDMs as before, followed by fixation and preparation for transmission electron microscopy.

HIV-1 Gag-EGFP VLPs added exogenously to mature uninfected MDMs were efficiently

internalized into compartments morphologically resembling VCCs (Fig 7A and 7B). These

particles can be clearly distinguished from mature virions by their immature and sometimes

irregular Gag core. In contrast, the majority of particles in the VCC of control infected MDMs

demonstrated dense conical cores indicative of mature virions as expected (Fig 7C and 7D).

To assess whether exogenous HIV-1 VLPs are delivered to the VCC alongside endogenous

HIV-1 in infected MDMs, HIV-1 VLPs were added to both NLUdel (Fig 7E and 7F) and BaL-

infected (Fig 7G–7L) MDMs. In order to further accentuate the difference between the VLPs

and the native mature particles, VLPs employed in the experiments shown in Fig 7G–7L were

produced at a ratio of wild-type to Gag-GFP of 1:1 (rather than 3:1), producing VLPs with a

very irregular core morphology. In both scenarios, exogenous VLPs were delivered into com-

partments containing mature HIV-1 virions (Fig 7E–7L). The compartments bearing mixed

virions and VLPs were often deep in the cell as shown in Fig 7I, and displayed complex shapes

as well as areas with a tubular appearance (Fig 7I and 7J). These experiments confirmed to us

that the addition of VLPs to infected MDM cultures led to internalization of the VLPs into the

pre-existing VCCs of infected MDMs.

Uptake of infectious HIV-1 particles into the VCC of uninfected

macrophages

Our results above showed that HIV-1-infected macrophages take up and deliver non-infec-

tious VLPs into a VCC containing infectious virions. We next asked if infectious HIV-1 parti-

cles will be taken up in a similar manner. We hypothesized that the low amount of CD4 on the

macrophage cell surface may not allow receptor binding and fusion of all virions, and that

Siglec-1-mediated capture may allow uptake of infectious virions from the surrounding media

Siglec-1 and VCC formation
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just as had been seen with VLPs. Macrophages were exposed to higher levels of viral particles

than used in typical infection experiments in order to visualize uptake and VCC formation

exactly as we had done for VLP uptake (i.e. 100 ng p24 of NLΔEnv virus pseudotyped with BaL

Env /1 x 105 cells). As a control, we added BMS-626529, a small molecule that binds gp120 and

prevents conformational changes in Env that are required for attachment and entry [28, 29], to

Fig 6. Exogenous HIV-1 VLPs colocalize with Siglec-1 and p24 in the VCC of HIV-1 BaL-infected MDMs. (A-B) MDMs were infected

with primary HIV-1 isolate BaL at a TCID50 of 0.5/cell. On day 9 post-infection 400 ng of exogenous HIV-1 Gag-EGFP VLPs were added to

the culture overnight. On day 10, MDMs were washed, fixed in 4% paraformaldehyde and immunostained for p24 (red), Siglec-1 (magenta)

and DAPI co-stained. (C-D) MDMs were infected and exogenous HIV-1 VLPs added as described in (A-B). MDMs were washed, fixed in 4%

PFA and immunostained for p24 (red), CD9 (magenta) and DAPI co-stained. Size bars = 10 μm.

doi:10.1371/journal.ppat.1006181.g006
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some wells. 10μM BMS-626529 was able to completely block infection of TZM-bl cells by

NLΔEnv/BaL virus (S6A Fig). Remarkably, infectious virions were taken into an intracellular

compartment with characteristics of the VCC as shown by CD9 staining (Fig 8A). Uptake into

this compartment occurred in both the absence (Fig 8A) or presence (Fig 8B) of blockade of

gp120-CD4 interactions. Staining for Siglec-1 revealed striking colocalization with p24 in this

compartment (Fig 8C and 8D). NLΔEnv/BaL p24 colocalized with Siglec-1 with a colocaliza-

tion coefficient (M1, green/red pixels) of 64% ± 3.1% in the absence of inhibitor vs. 69% ±
3.4% in the presence of inhibitor (S6B Fig). The extent of Siglec-1/p24 (M2, red/green pixel)

colocalization was slightly lower overall but similar between treatment groups (S6C Fig). We

conclude that the presence of a fusion-competent envelope on exogenous virions does not pre-

vent uptake of virions into the VCC, likely due to inefficient fusion in this cell type that

Fig 7. Electron microscopic evidence of colocalization of exogenous HIV-1 VLPs and endogenous mature virions within the VCC in

HIV-1-infected MDMs. (A) 400 ng of HIV-1 Gag-EGFP VLPs (ratio of WT:Gag-EGFP 1:1) were added to mature MDMs and allowed to

internalize overnight prior to harvest and subsequent processing for transmission EM. (B) Enlargement of white dotted boxed area from (A). (C)

NLUdel infected MDMs at day 10 post-infection displaying typical VCC morphology incorporating large amounts of mature HIV-1. (D)

Enlargement of white dotted boxed area from (C). (E) MDMs were infected with NLUdel at a TCID50 of 2.0/cell. On day 9 post-infection, 400 ng

of HIV-1 Gag-EGFP VLPs (ratio of WT:Gag-EGFP 3:1) were allowed to internalize overnight prior to harvest and processing. (F) Enlargement

of white dotted boxed area from (E). (G-L) Same procedure as (E), except HIV-1 Gag-EGFP VLPs produced at a WT:Gag-EGFP ratio of 1:1 in

order to simplify identification of exogenous VLPs. In each paired image, the enlarged section is indicated by a white broken line in the

preceding image. Images were acquired on a 120 kV Hitachi H-7500 transmission electron microscope. Size bars = 500 nm.

doi:10.1371/journal.ppat.1006181.g007
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Fig 8. Uptake of infectious virus into VCCs of human macrophages. NL delta Env virus was pseudotyped with macrophage-tropic BaL Env and added

to MDM supernatants at 120 TCID50 per MDM in the presence (B, D) or absence (A, C) of 10μM concentration of the entry inhibitor BMS-626529. Cells

were fixed and immunostained for p24 and CD9 (A, B) or p24 and Siglec-1 (C, D) 24 hours following addition of virus.

doi:10.1371/journal.ppat.1006181.g008
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exhibits low levels of surface CD4. The volume of the VCCs formed in presence of BMS-

626529 was 38.9 ± 3.1 μm3, as compared with 65.2 ± 7.3 μm3 in absence of inhibitor (S6D Fig).

Electron microscopic analysis of macrophages fixed 24 hours following addition of NLΔEnv/

BaL virus revealed intact, mature virions within convoluted intracellular membranous com-

partments consistent with a classical VCC (S7A and S7B Fig). We could not discern a morpho-

logic difference in this compartment conferred by the presence of the attachment/fusion

inhibitor (S7C and S7D Fig).

Siglec-mediated uptake of virions into the VCC enhances trans-infection

of T lymphocytes

The significance of Siglec-mediated virion uptake into the VCC was next investigated. Macro-

phages were infected with HIV-1BAL, followed by siRNA-mediated depletion of either Siglec-1

or tetherin on the following day. We added indinavir as a control at early timepoints (day 3) as

a means of preventing production and accumulation of infectious virus in the VCC. After 7

days of infection, autologous CD4+ T cells were added (3 cells/MDM), and transmission

allowed to proceed for an additional 12 hours. Indinavir was then added 2 hours prior to mac-

rophage-T cell co-culture to cells that had not received indinavir at day 3, in order to prevent

transmission occurring through new virion formation during the period of cell-cell contact. T

cells were then separated from macrophages and stained for CD3 and p24 and counted by

flow cytometry. A schematic of this experiment is presented in Fig 9A. Addition of early (day

3) indinavir prevented transmission events in each group (Fig 9B, d3 lanes). Remarkably,

Siglec-1 knockdown significantly reduced transmission (Fig 9B, compare (-) indinavir bar

with and without Siglec-1 depletion, and compare d7 indinavir with and without Siglec-1

depletion). Tetherin knockdown in this experiment did not have any significant effect on

transmission (due to the potent vpu allele of BaL as will be discussed below). In each group,

late indinavir addition reduced transmission, indicating that some new virus formation during

the contact period contributed to transmission events. However, the majority of the virus

transmitted in these experiments came from pre-formed virions within the macrophage. We

conclude that Siglec-mediated internalization of virions into the VCC plays a significant role

in VCC formation, and that virions retained in the VCC can subsequently contribute to trans-

mission to T cells.

Discussion

HIV-1- infected macrophages demonstrate prominent intracellular compartments filled with

virions (VCCs). These compartments have been postulated to be HIV-1 assembly sites and fea-

ture tubular connections with the plasma membrane. However, VCCs also share many fea-

tures of the viral storage compartment in uninfected monocytoid DCs (mDCs). It has become

increasingly clear in recent years that particle capture by mDCs is mediated by the cell surface

lectin Siglec-1/CD169 [19, 26]. Siglec-1 interacts with gangliosides on the virion lipid envelope,

to mediate particle capture and internalization in mDCs [19, 20, 26]. The major ganglioside

involved in HIV-1 particle capture events is GM3, although others such as GM1 may also play

a role [19, 21]. Siglec-1-mediated particle capture is also a prominent feature of macrophages,

where it similarly facilitates particle capture and trans-infection of T lymphocytes in the case

of HIV-1 or B lymphocytes in the case of MLV [23–25]. Here we confirm that Siglec-1-medi-

ated particle capture leads to internalization of exogenous virus-like particles or infectious viri-

ons into human macrophages, and show that the internalized particles and Siglec-1 colocalize

with known markers of the VCC. Depletion of Siglec-1 led to markedly diminished formation

of VCCs within infected macrophages, suggesting that the majority of virions within the VCC

Siglec-1 and VCC formation
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Fig 9. Role of Siglec-1 in macrophage-T cell transmission. (A) Schematic outline of transmission

experiment. HIV-1 BaL was employed to infect MDMs at an MOI of 3 (day 1). The next day the cells were

treated with inhibitory RNAs specific for Siglec-1 or tetherin. On day 3, indinavir was added to one set of cells

to inhibit viral production. On day 7 post-infection, indinavir or control media was added 2 hours prior to the

addition of autologous CD4+ T cells. The macrophage-T cell coculture was maintained for 12 hours prior to

separation of T cells and culture of these cells apart from MDMs for an additional 24 hours in the presence of

indinavir. The efficiency of virus transmission was assessed by staining for CD3 and p24 and counting via flow

cytometry. (B) Results of transmission in each experimental arm, indicating the % of total CD3+ cells staining

for p24. Error bars indicate standard deviations from three separate experiments. NS = not significant; * = P

<0.05. (C) Western blot indicating Siglec-1 knockdown (day 6 post-siRNA addition). (D) Western blot

indicating tetherin knockdown (day 6 post-siRNA addition).

doi:10.1371/journal.ppat.1006181.g009

Siglec-1 and VCC formation

PLOS Pathogens | DOI:10.1371/journal.ppat.1006181 January 27, 2017 17 / 28



of infected macrophages are formed peripherally and then are internalized together with

Siglec-1 to this compartment.

Siglec-1 moved together with VLPs toward the perinuclear region of macrophages, some-

times accompanied by the formation of narrow Siglec-1 and VLP+ tubules, eventually

becoming highly concentrated deep in the cell. The compartment to which VLPs were deliv-

ered was proven to be identical to the VCC, as added VLPs colocalized with mature virions

in the infected cells and with typical VCC markers. This argues for a common internalization

pathway that brings particles formed in an infected macrophage into the VCC and is accessi-

ble to exogenous particles. We suggest that this common pathway is formed through a

macropinocytosis-like process, and that the common element involved in determining the

location of both the endogenous particles from the infected cell and the exogenous VLPs is

Siglec-1. Macropinocytosis of HIV-1 virions into macrophages has been previously

described [30, 31]. This same process is likely to occur when particles bud from infected

macrophages, as Siglec-1 is found highly concentrated in VCCs without adding any VLPs

exogenously. Our data support a model in which Siglec-1 attaches to gangliosides, most

prominently GM3 [19], on the virion envelope during the budding process on the plasma

membrane, followed by internalization of the virion-Siglec-1 complex along a tubular assem-

bly and into the VCC. Thus we propose that the connections observed previously leading

from the VCC to the plasma membrane [5, 8, 9] are likely the conduits of virion internaliza-

tion, rather than exit, for HIV-1.

The site of assembly in macrophages has been debated. Immature and budding particles

can sometimes be seen within VCCs in electron micrographs, and this provides visual evi-

dence that budding can occur into the VCC [6, 7, 10]. Our data do not contradict these obser-

vations. However, the finding that exogenous VLPs concentrate Siglec-1 and move rapidly

from the plasma membrane to the VCC suggests that the plasma membrane is likely to be the

major site of assembly in macrophages. Because the internalization of virions occurs within

minutes, any static imaging analysis of infected macrophages in culture will visualize a pre-

dominance of virion particles in the VCC, rather than on the plasma membrane. Quantifica-

tion of the amount of assembly and budding from the macrophage plasma membrane versus

potential assembly on intracellular membranes of the VCC will require future dynamic imag-

ing studies in which internalization of captured virions is included in the analysis.

The significance of Siglec-1-mediated capture of virions by macrophages and of VCC for-

mation itself is most likely in providing a storage or transport compartment for infectious viri-

ons that mediate trans-infection of CD4+ T lymphocytes. Data presented here indicate that

formation of the VCC can be mediated by infection of the macrophage, or alternatively by

uptake of exogenous virions into an identical compartment in uninfected macrophages. The

fact that either route can lead to VCC formation and mediate infection of T cells raises inter-

esting questions relevant to HIV transmission and pathogenesis in humans. The majority of

transmitted HIV-1 isolates are not truly macrophage-tropic, as defined by the ability to infect

macrophage-like cells bearing low amounts of surface CD4. However, such isolates arise later

in infection in a number of tissues such as the central nervous system [32]. We postulate that

early in infection, Siglec-1-mediated capture of virions that are inefficient in infecting macro-

phages can lead to VCC formation and contribute to trans-infection of T cells, while macro-

phage populations that become infected as macrophage-tropic viruses evolve within an

individual form VCCs bearing their “own” viruses. In both scenarios, the captured virions

may be at least transiently protected from immune surveillance and from neutralization [13,

14]. Our results also raise the interesting possibility that some VCCs may bear a mixture of

particles, some arising from the infected macrophage and some captured from surrounding

cells and tissues, having originated from other infected cells.

Siglec-1 and VCC formation
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What is the role of tetherin in this process? Tetherin has been noted to inhibit transmission

from myeloid cells to T cells in some studies [15, 16, 33] while having more variable effects in

others [34]. We propose a model in which tetherin restricts release of virus at the plasma mem-

brane, and then Siglec-1 interaction with GM3 on the virion membrane in cis leads to internal-

ization of the retained virions (Fig 10). Tetherin and Siglec-1 subsequently both are

internalized together with the retained virions to the VCC, where they are readily seen to colo-

calize. This model provides an explanation for the finding that knockdown of either Siglec-1

or tetherin leads to diminished volumes of the VCC. We found that Siglec-1 knockdown was

somewhat more potent in reducing VCC volume than tetherin knockdown, suggesting a very

prominent role in this process. The relative role of tetherin may be affected by the activation

state of the macrophage, as well as by the activity of the particular Vpu protein expressed by

the infecting virus. Neil and colleagues have shown that there is a viral allele-specific variation

in the ability of Vpu to downregulate tetherin [27], and we found that Vpu from NL4.3 was

only partially effective at tetherin downregulation in MDMs [15]. Thus when a vpu allele is

potent, the role of tetherin in VCC formation and its negative effect in transmission can be

largely negated. This explains differences observed in viral transmission following tetherin

depletion in the present study (no apparent effect upon transmission of virus expressing a

potent vpu allele) in contrast with our prior findings using NL4.3 or NLUdel (enhanced trans-

mission of infection upon tetherin depletion)[15]. Siglec-1-mediated virion capture during

particle budding, on the other hand, is not altered by Vpu, and therefore Siglec-1-mediate

effects on VCC formation and transmission of virus is preserved regardless of the presence or

absence of a potent vpu allele. Siglec-1 may be a more important contributor to VCC forma-

tion than tetherin in the setting of primary HIV-1 isolates, as most of these isolates will encode

a vpu allele that is more active than that of NL4.3 [27]. Another difference is that Siglec-1 is

able to mediate capture of exogenous virions or of endogenous virions and subsequently gen-

erate VCCs, whereas tetherin can only contribute to the retention and capture of virions aris-

ing from the infected cell membrane.

Fig 10. Model for roles of Siglec-1 and tetherin in capture and internalization of HIV-1 virions to the

VCC. (A) Siglec-1 proteins are shown binding to GM3 gangliosides on virion envelope. Tetherin is indicated in

the chain on the left, not to scale, illustrating how retention by tetherin followed by capture/internalization by

Siglec-1 may occur. Free virions arising from the infected cell or from the surrounding environment are also

captured by Siglec-1 (right). (B) Following capture by Siglec-1, virions are internalized and co-transported with

Siglec to the VCC. Shown is a single channel leading to the VCC.

doi:10.1371/journal.ppat.1006181.g010
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We note that although both tetherin and Siglec-1 contribute to VCC formation, they play

opposing roles in cell-cell transmission. Tetherin plays a negative role in macrophage-to-T cell

transmission when it is not downregulated by Vpu or depleted by siRNA [15, 16]. Siglec-1, on

the other hand, captures virions and leads to their internalization into the VCC in a manner

that allows and perhaps facilitates subsequent transmission events. It will be interesting to dis-

sect more completely how Siglec-1-mediated capture allows transmission to occur at the viro-

logic synapse, while tetherin does not.

If the VCC serves as a reservoir in long-lived tissue-resident macrophages, then strategies

designed to eradicate HIV will need to target this compartment. Because the Siglec-1-GM3

interaction is common to both the intracellular compartment in DCs and in macrophages, a

common strategy could potentially target HIV captured by both cell types. Delivery of an

inhibitory agent to the VCC of macrophages or to the DC could serve the dual function of

eradicating a potential reservoir and preventing trans-infection of T cells. Pursuit of strategies

targeting this common pathway in HIV-infected individuals are warranted.

Materials and methods

Ethics statement

Human blood for the preparation of monocyte-derived macrophages and other experiments

in this work was obtained from volunteer donors and was de-identified prior to handling by

the investigators. Informed consent was obtained from participants. Blood was collected under

a protocol approved by the Emory Institutional Review Board.

Isolation and maturation of monocyte-derived macrophages

Human peripheral blood mononuclear cells (PBMCs) were isolated from fresh heparinized

blood by Ficoll-Hypaque gradient centrifugation. PBMCs from buffy coats were pooled and

extensively washed to remove platelets. Monocytes were enriched by magnetic-labeling using

Monocyte Isolation Kit II (Miltenyi Biotec Inc) according to manufacturer’s protocol. Enriched

monocytes were adhered to poly-D-lysine coated plates (Corning) and 35 mm MatTek dishes

(MatTek Corporation). Monocytes were maintained in RPMI-1640 supplemented with 10%

FBS, 100 ug/ml streptomycin, 100 U/ml penicillin, 2 mM glutamine and 5 ng/ml GM-CSF or 20

ng/ml M-CSF (R&D Systems). Monocytes cultures were maintained in cytokine supplemented

media for 7 days to facilitate maturation into monocyte-derived macrophages (MDMs). Media

was replaced every 2–3 days. Macrophage purity was assessed by CD14 staining on day 8.

p24 ELISA

P24 content of HIV-1 Gag-EGFP virus-like particles (VLPs) from stocks and MDM cell lysates

were measured using a p24 antigen capture ELISA. Accurate p24 measurement of immature

HIV-1 VLPs requires raising SDS level of lysis solution to 0.5% and heating for 10 min at

60˚C. Murine anti-p24 capture antibody 183-H12-5C (CA183) was obtained from Bruce Che-

sebro and Kathy Wehrly through the NIH AIDS Research and Reference Reagent Program.

CA183 was coated onto 96-well plates at a dilution of 1:2000 in PBS and incubated overnight

at 37˚C. Plates were blocked for 1 hour at 37˚C with 5% fetal calf serum in PBS. The detection

of bound p24 was determined using HIV-Ig, obtained from NABI through the NIH AIDS

Research and Reference Reagent Program, at a dilution of 1:20,000 for 1 hour at 37˚C. Colori-

metric analysis was performed using the Immunopure TMB Substrate Kit (Pierce, Rockford,

IL) and absorbance was read at 450 nm. Recombinant p24 was used for the standard curve and

sensitive to less than 20 pg of p24.
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Siglec-1 and tetherin RNAi

Siglec-1 (HSS110029), tetherin (HSS101115) and negative control Med GC Stealth siRNAs

were obtained from Life Technologies (Grand Island, NY). For knockdown experiments,

MDMs were transfected with 60 nM Stealth siRNAs using Lipofectamine RNAiMax (Life

Technologies) according to manufacturer’s protocols. On the following day, transfection com-

plex containing media was removed and cells washed once with complete media. Samples

were collected at various time points post-transfection and either stored at -80˚C until analysis

or further processed for immunofluorescence microscopy as described.

Flow cytometry

Both M-CSF and GM-CSF matured MDMs were assayed for Siglec-1 and tetherin cell surface

concentrations in the presence or absence of 1000 U/ml Universal Type I IFN Alpha (PBL

Assay Science). Mature MDMs were stimulated overnight with IFN, cells washed with PBS

and detached using Versene (Life Technologies) with gentle scraping. Surface CD14 (BD Phar-

mingen, Cat. No. 555399), sheep anti-Siglec-1 (R&D Systems, Cat. No. AF5197) and tetherin

staining procedures were performed as previously described [35]. FACS Canto II flow cytome-

ter (BD Biosciences) and FlowJo software (Treestar Inc) were used for analyses.

Viral stock generation and MDM infection

pNL4-3 proviral plasmid was obtained through the NIH AIDS Reagent Program, Division of

AIDS, NIAID, NIH; from Malcolm Martin. pNLUdel proviral plasmid [36] was obtained

from Klaus Strebel, NIAID, NIH. pHCMV-G [37] for VSV-G expression was obtained from

Jane Burns at UC San Diego. Vesicular stomatitis virus g glycoprotein (VSV-G)-pseudotyped

or wild type HIV-1 NL4.3 and NLUdel stocks were created by transfection of 293T cells

(CRL 3216 from American Type Culture Collection, ATCC) using jetPRIME (Polyplus)

transfection reagent according to manufacturer’s instructions. Virus was harvested from

transfected cell supernatants at 36 hours post-transfection, clarified, filtered through a 0.45-

μm filter and stored at -80˚C. Primary HIV-1 isolate BaL stocks were prepared as follows:

Human peripheral blood mononuclear cells (PBMCs) were isolated from fresh heparinized

blood by standard Ficoll-Hypaque gradient centrifugation methods. PBMCs were resus-

pended in RPMI 1640 supplemented with 20% heat-inactivated fetal bovine serum and

50 μg/ml gentamicin (RPMI 1640-GM). Primary HIV-1 isolates were propagated in PBMCs

stimulated with 5 μg/ml phytohemagglutinin (PHA) and 5% interleukin 2 (IL-2). The IL-2/

PHS-stimulated cells were infected using a high-titer seed stock of virus minimally passaged

in PBMCs, starting from a viral stock obtained through the NIH AIDS Reagent Program

(from Dr. Suzanne Gartner, Dr. Mikulas Popovic and Dr. Robert Gallo). One ml of virus was

transferred to the flask containing freshly stimulated PBMCs and incubated overnight at

37˚C in 5% CO2. The cells were washed extensively and resuspended in 30 ml of RPMI-GM

with IL-2. Typically, the virus was harvested two times; the first harvest was on day 4 post-

infection, with subsequent harvest on day 7. The virus-containing supernatants were col-

lected, clarified by centrifugation, and filtered through a 0.45-μm filter. The virus was then

aliquoted into 1-ml sterile screw-cap cryovials and stored at -80˚C. Infectivity of viral stocks

were assayed for infectivity using TZM-bl indicator cells (obtained through the NIH AIDS

Reagent Program, Division of AIDS, NIAID, NIH; from Dr. John C. Kappes, Dr. Xiaoyun

Wu and Tranzyme Inc.). TZM-bl were incubated for 48 hours, and 100 μl of supernatant was

removed from each well prior to the addition of 100 μl of Bright Glo substrate (Promega,

Madison, WI). Measurement of infectivity involved transfer of 150 μl of cell/substrate mix-

ture to black 96-well solid plates and measurement of luminescence using a Packard
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TopCount luminometer. MDMs were infected with VSV-G-pseudotyped HIV-1 at a

TCID50 of 1–2/cell and primary HIV-1 isolate BaL at 0.5 TCID50/cell. The exception to this

is the experiment in which a higher MOI of input virus was utilized to assess for uptake of

infectious virions by Siglec-1. In this experiment, MDMs were infected/exposed to 100ng/1 x

105 cells of NLΔEnv virus pseudotyped with BaL Env in the presence or absence of 10 μM

BMS-626529 (Aurum Pharmatech, Catalogue number W-5929). NLΔEnv/BaL stocks were

prepared by transfection of 293T cells as outlined above using pNLEnv-1 proviral plasmid

[38] from Klaus Strebel and BAL.26 Env pseudotyping construct [39] from David Monte-

fiori, Duke University.

Immunofluorescence microscopy

5.0 x 105 MDMs were seeded on Collagen-I coated 35 mm MatTek dishes (MatTek) and

allowed to mature for a minimum of 7 days as described. At the appropriate time, MDMs were

fixed with 4% paraformaldehyde (PFA) in sodium phosphate buffer (PBS) for 10 min, permea-

bilized with 0.2% Triton X-100, and blocked with Dako blocking buffer (Dako) supplemented

with 6 μg/ml human IgG. Cells were incubated with combinations of rabbit anti-tetherin anti-

sera [35], murine anti-siglec-1 (AbD Serotec, clone 7–239), murine anti-p24 (Beckman Coul-

ter, KC57-FITC or RD1), or murine anti-CD9 (BD Pharmingen, Cat. No. 555370) in DAKO

Background-Reducing Antibody Diluent, washed thoroughly, and incubated with the appro-

priate secondary antibodies. Immunostaining requiring a murine primary and the directly

conjugated murine anti-p24 KC57 FITC were performed as follows. Primary murine anti-

CD9 or anti-Siglec-1 labeling was performed as previously described. MDMs were then

blocked with 6 μg/ml murine IgG in DAKO Background-Reducing Antibody Diluent for 1

hour, washed and then immunostained with anti-p24 KC57-FITC in DAKO Background-

Reducing Antibody Diluent supplemented with 6 μg/ml murine IgG. In order to visualize the

nucleus, cells were subsequently stained with DAPI (40,60-diamidino-2-phenylindole) at 300

nM in PBS for 15 minutes at room temperature, washed several times with PBS, and imaged.

Immunofluorescence images were acquired using a DeltaVision RT deconvolution micro-

scope (Applied Precision/GE Life Sciences), and data analyses were performed with Volocity

6.3 software (Perkin-Elmer). Immunofluorescence colocalization was calculated using strin-

gent image thresholding and confirmed by visual object identification methods [40]. For most

colocalization analyses reported here, five representative images were quantified. For the vol-

ume measurements of the VCC, 30 images were quantified for each experimental arm.

Time-lapse imaging of virus containing compartment formation in MDMs

3D time-lapse live cell imaging was carried out with a Zeiss LSM780 confocal microscope

using a C-Apo 40x/1.2NA water-immersion objective. A suitable field of view was selected,

and full cell volume was imaged by acquiring 8–12 Z-stacks spaced by 1 μm every 2.5 minutes,

using a minimal power of 405 and 488 nm lasers for Hoechst-33342, Gag-EGFP VLPs respec-

tively. The DefiniteFocus module (Carl Zeiss) was utilized to correct for axial drift. Imaging

was done at 37˚C using the Zeiss environmental chamber maintained at 5% CO2. A single Z-

plane of the cells showing VCC formation was converted into each of the movies shown.

Transmission electron microscopy

MDMs were cultured on poly-D-lysine (PDL) coated ACLAR embedded film (Ted Pella;

Redding, CA) as described. MDMs were harvested 10 days post-infection unless indicated oth-

erwise, fixed in 2.5% PFA and 2.5% glutaraldehyde for 2 hours followed by embedding in
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Epon. Serial 100 nm sections were stained with heavy metals and images were obtained using a

Hitachi H-7500 transmission electron microscope at 120 kV.

VLP production and MDM capture assay

HIV-1 Gag-EGFP VLPs were generated by transient transfection of HEK 293T cells with

pVRC-3900 and pVRC/GAGOPT-GFP at a ratio of 3:1 respectively. For experiments where

morphologically aberrant VLPs were desired a ratio of 1:1 was used. The HIV-1 Pr55Gag con-

struct, pVRC-3900, is an expression plasmid encoding a codon-optimized HIV-1 Pr55Gag

polyprotein and was kindly provided by Gary Nabel (VRC, NIH)[41]. A c-terminal EGFP

fusion Pr55Gag construct, pVRC/GAGOPT-GFP, was generated by PCR amplification of the

Pr55Gag region from pVRC-3900 and subsequent subcloning into the HindIII/BamHI sites of

pEGFP-N3. VLPs were harvested 48 hours post-transfection, supernatants clarified, filtered

through a 0.45 μm filter and concentrated through a 20% sucrose cushion. VLP pellets were

resuspended in ice cold PBS and stored at -80˚C. Additionally, HIV-1 Gag-EGFP VLP stocks

were produced in HEK 293T cells pre-treated for 2 days and throughout VLP production with

10 μM PDMP (Calbiochem). PDMP (1-phenyl-2-decanoylamino-3-morpholino-1-propanol)

inhibits the activity of glucosylceramide synthase (UDP-glucose:ceramide glucosyltransferase)

which initiates the biosynthesis of animal gangliosides (GSLs).

HIV-1 Gag-EGFP VLP capture and internalization assays were performed on GM-CSF

matured MDMs from between day 7 to 10 post-plating in 35 mm Collagen-I coated MatTek

dishes. MDMs were incubated with 100 ng of HIV-1 Gag-EGFP VLPs/1.0x105 cells in plain

RPMI media in a 37˚C/5% CO2 for times indicated. MDMs were washed extensively with PBS

prior to either cell lysis for p24 quantification by ELISA or fixation and immunofluorescent

staining.

Sialic acid removal from HIV-1 Gag-EGFP VLP membrane associated glycosphingolipids

was performed by incubating sucrose-purified VLPs with 1.0 U/μl of a neuraminidase (NA)

(NEB; P0728S). This enzyme is a specific exoglycosidase that hydrolyzes α2–3 N-acetyl-neura-

minic acid residues, and exhibits a 260-fold preference for α2–3 sialyl linkages versus α2–6 sia-

lyl linkages while exhibiting only trace hydrolysis of α2–8 sialyl linkages. VLPs were treated

with neuraminidase in PBS for 6 hours at 37˚C. In order to assess efficiency of sialic acid

removal, 100 ng of both mock and NA-treated VLPs were incubated on poly-D-lysine coated

35 mm MatTek dishes for 1 hour at room temperature. The solution was then aspirated and

washed several times prior to fixation with 4% paraformaldehyde. VLPs were then stained

with wheat germ agglutinin conjugated with Alexa Fluor 647 (Life Technologies, W32466).

VLPs from analyzed preparations were also used for MDM uptake experiments.

Macrophage-T cell trans-infection assay

MDMs were GM-CSF matured for seven days on Poly-D-Lysine coated 12-well plates (Corn-

ing) prior to overnight infection at 3 TCID50/cell with a biological stock of HIV-1 BaL. Fol-

lowing day knockdown of Siglec-1 and tetherin were performed as previously described. Co-

cultures in some instances were treated with 1 μM Indinavir Sulfate (reagent obtained through

the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH) at either 3 days post-infec-

tion or 2 hours prior to CD4+ T cell addition on day 7. On day 7 post-infection, autologous

CD4+ T cells were added at 3 cells/MDM in complete medium. Co-cultures were incubated

for 12 h at 37˚C and 5% CO2. CD4+ T cells were isolated from MDMs using Versene solution

(Thermo Fisher Scientific), washed in serum-free RPMI-1640 and cultured for 24 h in com-

plete medium supplemented with 5 ng/ml rhIL-2 (R&D Systems) and 1 μM indinavir sulfate.

CD4+ T cells were then fixed and permeabilized using Fixation/Permeabilization Solution Kit
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(BD Biosciences, San Jose, CA) prior to staining with anti-human CD3-APC (Cat. No. 555342,

BD Biosciences) and anti-HIV-1 p24 KC57-FITC (Cat. No. 6604665; Beckman Coulter). Cells

were analyzed using a FACSCanto II flow cytometer (BD Biosciences).

Statistical analyses

All graphical data are presented as means +/- SD. Statistical significance between groups was

determined by unpaired t test using GraphPad Prism 4.02. Significant P values<0.05 are

noted within figures.

Supporting information

S1 Fig. Quantitation of depletion of GM3 on VLPs following neuraminidase treatment.

(A) Representative images are shown of sucrose purified HIV-1 Gag-EGFP VLPs treated with

or without neuraminidase. VLPs were added to PDL coated MatTek dishes at RT in PBS for 1

hr, followed by washing and 4% PFA fixation. Samples were then labeled with Alexa Fluor 647

conjugated-wheat germ agglutinin for 30 min. Size bar = 5 μm. (B) Quantification of HIV-1

Gag-EGFP VLPs and associated 647 signal intensity using the Volocity 6.3 measurement mod-

ule. Data for more than 15,000 HIV-1 Gag-EGFP VLPs plotted as percent MFI 647/GFP. GFP

positive areas exceeding 500 nm were excluded from analysis.

(TIF)

S2 Fig. Tetherin depletion in MDMs. MDMs were transfected with 60 nM control or tetherin

siRNA on day 8 after plating. Cell lysates were harvested and analyzed by Western Blotting for

tetherin and actin expression at indicated time points. Control (scrambled, SCR) tetherin blot

from day 1 is shown on the left.

(TIF)

S3 Fig. Siglec-1 depletion reduces VCC in VLP-exposed MDMs. (A) MDMs exposed to con-

trol siRNA were examined for EGFP fluorescence representing VLPs (green), Siglec-1 (red),

and DIC. (B) MDMs following siRNA-mediated depletion of Siglec-1 were examined for col-

lections of VLPs (green), Siglec-1 (red), and by DIC. (C, D, E) P24 volume/cell from 15

MDMs exposed to EGFP VLPs from each group were quantified using the Volocity 6.3 mea-

surement module. Mean +/- SD shown for each RNAi group. (C) 30 minutes. (D) 2 hours. (E)

6 hours.

(EPS)

S4 Fig. Siglec-1 RNAi reduces VCC formation in HIV-1 BaL-infected MDMs. MDMs were

transfected with 60 nM scrambled, Siglec-1 or tetherin siRNA followed by subsequent next

day infection of primary HIV-1 isolate BaL at TCID50 0.5/cell. At day 10 post-infection,

MDMs were washed, fixed with 4% PFA and immunostained for p24 (green), Siglec-1 (red),

tetherin (magenta) and DAPI co-stained. Size bars = 10 μm.

(TIF)

S5 Fig. Anti-p24 mAb KC57-RD1 fails to recognize immature HIV-1 Gag-EGFP VLPs

internalized by MDMs. 400 ng of HIV-1 Gag-EGFP were added to MDM cultures in MatTek

dishes and allowed to internalize for 2 hours. MDMs were then washed, fixed in 4% PFA,

immunostained with anti-p24 (red, KC57-RD1) and DAPI co-stained. Two representative

fluorescent micrographs shown. Size bars = 10 μm.

(TIF)

S6 Fig. BMS-626529 prevents HIV-1 infection and does not diminish p24 and Siglec-1

colocalization in virus-exposed MDMs. (A) Dilutions of NL delta Env virus pseudotyped
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with BaL Env (NLΔE/BaL) were pre-treated with either DMSO or 10 μM BMS-626529 and

infectivity assessed on TZM-bl cells. (B) Percentage of p24/Siglec-1 colocalization in 17 thre-

sholded images of NL NLΔE/BaL-infected MDMs from DMSO and BMS-626529 groups. (C)

Percentage of Siglec-1/p24 colocalization in 17 thresholded images of NL NLΔE/BaL infected

MDMs from DMSO and BMS-626529 groups. (D) P24 VCC volume/cell for 17 NLΔE/BaL

infected MDMs from DMSO and BMS-626529 groups. Quantitation created using Volocity

6.3 measurement module. Mean +/- SD shown for each group.

(EPS)

S7 Fig. Electron microscopic imaging of infectious viral particle uptake into VCCs. BaL-

pseudotyped NLΔEnv was added at a TCID50 of 120 (as in Fig 8) to MDM cultures grown on

ACLAR coverslips in the presence or absence of 10 μM BMS-626529. After 24 hours, samples

were fixed, embedded, and sectioned for transmission EM. (A) MDMs in absence of BMS-

626529. Section indicating VCC with dashed box. (B) Higher power view of dashed area from

(A). (C) VCCs from MDM exposed to virus in presence of BMS-626529. (D) Higher power

view of dashed area from (C). Size bars = 0.5 μM.

(EPS)

S1 Movie. Time-lapse imaging of capture and uptake of HIV-EGFP VLPs into the VCC of

a single MDM.

(MP4)

S2 Movie. Time-lapse imaging of capture and uptake of HIV-EGFP VLPs into VCCs of

two MDMs.

(MP4)
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