
 

  

 

 

 

 

 

 

 

 
 
 

 
Introduction 
 

The utilization of industrial biotechnology for the conversion of 
energy, chemicals and materials to value-added products is centuries-
old. Traditional methods of strain development based on evolution, 
random mutagenesis, mating and selection strategies were successfully 
used for the optimization of production hosts. However, early 
applications of microbial production of chemicals were limited to 
native metabolites, such as amino acids, alcohols, organic acids, fatty 
acids or antibiotics. The foundational development of genetic and 
metabolic engineering made possible the production of a wide and 
diverse range of molecules including biofuels, pharmaceuticals, 
biopolymers, precursors and specialty chemicals [1]. By definition, 
metabolic engineering is the field that involves the construction, 
redirection, and manipulation of cellular metabolism through the 
alteration of endogenous and/or heterologous enzyme activities and 
levels to achieve the biosynthesis or biocatalysis of desired molecules 
[2]. Thus, the design of a cell factory requires a thoughtful 
understanding of the metabolic reactions involved in the synthesis of a 
target product, the consideration of the regulatory elements that affect 
metabolic throughput and the analysis of interconnectedness of 
cellular metabolism. In this sense, the development of the collectively 
named “omics technologies” has prompted the progress of metabolic 
engineering in the past decades: 1) the improvements in genome 
sequencing and DNA synthesis technologies; 2) the expansion of gene 
expression, metabolic reactions and enzyme structures databases; 3) 
the  generation  of  new  genetic  tools  to exert a  strict control  over  

 
 
 
 
 
 

 
 
 
 

metabolic pathways; 4) the setting up of new analytical methods to 
detect and quantify RNA, protein and cell metabolites; and 5) the 
creation of detailed biological models aided to the design of enzymes 
and metabolic pathways [3].  

The potential of metabolic engineering could be exemplified by 
the early successful heterologous production of polyketide 
compounds. Polyketides are an important class of natural products 
with complex chemical structures widely used as antibiotics, 
immunosuppressant, antitumor, antifungal and antiparasitic agents 
[4]. These biomolecules are synthesized from simple building blocks 
such as acetyl coenzyme A (acetyl-CoA), propionyl-CoA, malonyl-
CoA, and methylmalonyl-CoA through the action of multienzyme 
complexes or large modular megasynthases called PKSs [5]. The 
structural complexity of polyketides often precludes the development 
of practical chemical synthetic routes, leaving fermentation as the only 
viable source for the commercial production of these pharmaceutically 
and agriculturally useful agents. Since most polyketide-producing 
organisms are often difficult to culture at industrial scale, and the 
genetic tools available for them are scarce, the use of a more 
genetically and physiologically tractable heterologous host became a 
reasonable alternative. A significant achievement in this field was the 
production of the 6-deoxyerythronolide B (6dEB) aglycone in an 
engineered strain of Escherichia coli [6]. This was followed by the 
successful biosynthesis of yersiniabactin [7], a polyketide-
nonribosomal peptide hybrid, and an ansamycin polyketide precursor 
[8]. These results provide the platform, not only for the expression of 
new clusters of PKS genes but also to greatly enhance the rate at 
which combinatorial biosynthesis tools are developed and PKS are 
engineered. Remarkably, the expression of 23 foreign genes in E. coli 
enabled the conversion of 6dEB into the bioactive erythromycin 
analogs Ery C and Ery D. Further chassis optimization provided a 
robust proof of principle that mature erythromycin analogs can be 
efficiently produced in a single heterologous expression system [9,10].  

Nevertheless, metabolic engineering is not only restricted to 
“compound manufacture”. Nielsen J. grouped different examples of 
metabolic engineering into the following categories [11]: 1) 
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heterologous protein production; 2) extension of substrate range; 3) 
creation of pathways leading to new products; 4) degradation of 
xenobiotics; 5) engineering of cellular physiology for process 
improvement; 6) elimination or reduction of byproduct formation; 7) 
improvement of yield and productivity. 

Maximization of product yields through pathway optimization is 
a central challenge for every metabolic engineering project [3]. 
Natural metabolic pathways are controlled by myriad of regulatory 
systems such as global and specific transcription factors, promoter 
strength, biochemical regulation of enzymes and substrate availability, 
among others. Metabolic engineers can potentially repurpose these 
features to modulate pathway components in order to improve the 
efficiency of product formation. In this sense, the ability to tune 
pathways has improved as the fundamental principles of metabolism 
and biological regulation continue to be discovered [12]. Because the 
yield and productivity of a process are linked to its commercial 
viability, the optimization of production of a target metabolite often 
requires precisely controlled expression of several natural and/or 
heterologous genes to avoid that individual conversion steps in the 
pathway limit the desired product yield, ensuring that cellular 
resources and energy are being efficiently utilized. 

In essence, pathway optimization is a multivariate problem and 
the answer of this challenge is not universal and depends on the 
pathway to be expressed, the compound to be produced, the host, the 
availability of genetic tools, and the substrates utilized. In this context, 
the ability of the metabolic engineer to identify potential bottlenecks 
and eliminate them is critical and has a decisive impact on project 
success. This mini-review will dig into the existing novel approaches 
intended to improve the efficiency of metabolite-compounds 
production in designed microbial cells.  

 
Dynamic control of biosynthetic pathways to balance 
metabolism 

 
The simple overexpression of a biosynthetic pathway often is not 

enough to achieve high yield production of the desired compound. In 
this context, the depletion of essential cellular precursors (for the 
production of needless RNAs, proteins or metabolites) and the 
accumulation of intermediates can cause toxic effects on the host and 
lead therefore to a decrease in productivity [13-15]. On the other 
hand, the suboptimal expression of the genes coding the rate-limiting 
enzymes of a metabolic pathway will also limit the production of the 
target compound. Metabolic flux imbalances are always governing the 
yield of a desired product, therefore methods to tightly control gene 
expression and/or protein levels are essential in the design of any 
metabolic engineering approach. Besides well known “static” methods 
or devices used to regulate gene transcription and RNA translation, 
such as modification of promoter strength, customization of RBS and 
modulation of RNA stability [16]; novel and more flexible strategies 
are being designed to exert a dynamic control over the heterologous 
systems. For example, dynamic regulation would allow an organism to 
adapt its metabolic flux to changes within the host or in its 
environment in real time [17]. An even better regulation system for an 
engineered pathway would sense the concentration of critical pathway 
intermediates and dynamically regulate the production and 
consumption of the intermediates, which would allow the delivery of 
intermediates at the appropriate levels and rates, in order to optimize 
the pathway for its highest productivity as conditions change in the 
cell’s environment [18]. The common principle of these novel 
strategies is the application of “sensor-actuator systems” based either 
in proteins (specifically transcription factors) or in RNA-regulatory 
elements that could exert a fine and tunable control over the level of 

gene expression in a concerted manner by sensing the intracellular 
pool of a specific metabolite. 

Farmer and Liao introduced this idea by demonstrating that 
dynamic control of a flux could improve yields and productivity of 
lycopene production with an engineered E. coli strain [19]. The 
system was design to sense an excess of glucose by using an acetyl 
phosphate-activated transcription factor and its target promoter. 
Excess glucose flux and diversion of carbon to acetate formation 
increased the intracellular concentration of acetyl phosphate and 
reduced the productivity of lycopene. Thus, when acetyl phosphate 
accumulates inside the cell the transcription of two genes of the 
engineered pathway was up-regulated in order to redirect carbon flux 
from acetate to lycopene. This engineered strain produced 180-fold 
higher titers of lycopene than the strain that contains the biosynthetic 
genes under control of tac promoter [19]. Recently, Zhang et al. 
described a dynamic sensor-regulator system (DSRS) to optimize a 
fatty acid-derivative compound production in E. coli [18]. DSRS is 
based on a ligand-responsive transcription factor that regulates the 
expression levels of genes involved in fatty acid ethyl ester (FAEE) 
production. In this system, a biosensor was design in order to 
coordinately regulate the expression of the enzymatic steps that 
provide ethanol and condense it with fatty acyl-CoA according to the 
availability of fatty acids in the cell (Figure 1). This biosensor is based 
on the E. coli FadR transcription factor, capable of binding fatty acyl-
CoA molecules, and on hybrid promoters created by the combination 
of FadR and LacI responsive elements [18]. The FAEE biosynthetic 
pathway contains three modules. Module A uses the native E. coli 
fatty acid biosynthetic pathway and a thioesterase, TesA, to produce 
free fatty acids. Module B is an ethanol biosynthetic pathway that 
converts pyruvate into ethanol. Module C contains an acyl-CoA 
synthase (FadD) and a wax-ester synthase (AtfA). AtfA condenses the 
fatty acyl-CoA product (generated from module A plus FadD 
activity) and ethanol (module B) to form FAEEs (Figure 1). 
Following this approach, 20 different strains were constructed and the 
best ones reached a productivity of 1.5 g/l after 3 days of incubation, 
corresponding to 28% of the maximum FAEE theoretical yield [18].  

Up to date, there are few published examples of engineered 
dynamic control of fluxes in heterologous pathways. However, in 
general, this strategy can be extended to design biosensors and 
regulatory systems for other molecules and metabolic pathways using 
the large pool of natural ligand-responsive transcription factors [20]. 
These systems should allow to sense in real time the metabolism of 
the host cells and adjust the expression of the biosynthetic machinery 
in such a way to prevent toxicity and maximize the efficiency of 
product formation. 

The above mentioned mechanisms were based on proteins which 
are involved in regulating gene expression at the transcriptional level. 
However, as it is widely known, the modulation of gene expression 
can be achieved by intervening at post transcriptional stages. One 
remarkable example of a biological mechanism that has been 
successfully adapted to control the expression of engineered systems is 
based on the use of RNA-regulatory elements called riboswitches. 
These natural elements can recognize a variety of structurally diverse 
ligands, controlling gene expression in a concentration dependent 
manner [21]. Moreover, RNA elements can be subjected to successive 
rounds of mutagenesis and selection in order to generate synthetic 
riboswitches that could respond to a desired compound. Building on 
natural examples, a variety of synthetic RNA regulators have been 
designed to control gene expression. Some interesting examples are:  
1) riboswitches that control bacterial gene expression in a 
theophylline-dependent fashion [22]; 2) RNA switches (termed 
riboregulators) that have been developed in E. coli to activate 
translation in response to RNA signals [23]; 3) an atrazine-responsive  
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RNA switch coupled to cheZ gene to control bacterial cell motility, 
allowing cells to move along a gradient of the pollutant [24]. A clear 
progress in RNA-based metabolic engineering endeavors resulted in 
the development of a modular platform for constructing molecular 
sensors to noninvasively detect biosynthesis of a target metabolite in 
real-time through a fluorescent reporter signal. The successful 
application of these switches was demonstrated in the detection of 
xanthine when a precursor was fed to the cell cultures [25]. Future 
advances in the design of synthetic RNA switches may extend their 
application in metabolic engineering to exert spatial, temporal and 
dynamical control within biosynthetic pathways.  

 
Modularization and systematization of metabolic engineering 

 
As we already mentioned, classical optimization of metabolic 

pathways is achieved by modification of promoters, RBS, codon 
composition, copy number, construction of operons, etc [26]. 
However, these approaches can rarely be extrapolated among different 
hosts since the genetic toolboxes available for each microorganism 
differ greatly and the understanding of regulatory mechanisms 
prevailing into the defined cell host is often incomplete. This scenario 
thus implies that an almost complete optimizing strategy has to be 
designed ad hoc for each new metabolic engineering project, making 
this discipline costly and very time-consuming [27].  

In order to achieve the same flexibility of chemical engineering for 
the production of structurally diverse molecules, metabolic 
engineering need to establish principles of systematization to achieve 
their goals in terms of production and optimization. An excellent 
application of this concept was applied to the design and development 
of engineered pathways for the production of terpenoid derived 
moieties.  

Studies addressing the heterologous pathway optimization of 
isoprenoid-derived molecules on E. coli resulted in innovative and 
interesting advances not only for their particular yield improvement, 
but also because they laid down strategies capable to systematize 
metabolic engineering approaches, generating universal principles 
capable of been transferred to other pathways and/or hosts [27]. 
Chronologically, this case moved from particular to more universal 
optimization principles developed and applied in order to maximize 
product titers of these pathways. Due to their polymer-forming 
functional groups, the natural terpenoid family of products is 
composed of very diverse functional and structural molecules, ranging 
from antioxidant pigments to therapeutic drugs. Amorphadiene 
(amorpha-4,11-diene) and taxadiene (taxa-4,11-diene) are precursors 
for the synthesis of the antimalarial compound artemisinin and the 
anticancer drug taxol, respectively. In nature, terpenoids are 
synthesized by one of two possible routes: the mevalonate (MVA) 
pathway, which starts with the condensation of two acetyl-CoA and is 
present in eukaryotic cells, and the non-mevalonate 2-methyl-(D)-
erythriol-4-phosphate (MEP) pathway, which initiates with the 
condensation of glyceraldehyde-3-phosphate and pyruvate, and can be 
found in bacteria and plant plastids [27]. 

First, amorphadiene production was achieved by heterologous 
expression of the MVA pathway from yeast and a codon-optimized 
amorphadiene synthase gene from Artemisia annua, in E. coli [28]. 
Although this system could produce significant levels of the precursor 
moiety, it was far from the theoretical maximum yield. Further 
optimization of amorphadiene titers was done by Anthony et al. [26]. 
Importantly, in this study the authors gave the first outline for 
systematization of amorphadiene metabolic engineering. They 
constructed a plasmid in which combinations of various promoters 
and operon constructs could be easily substituted and tested. In this 
way they addressed the problems of having many plasmids for high 

Figure 1. Biosensor-derived promoters upstream of modules B and C to control the expression of fadD and atfA, and the ethanol biosynthetic pathway (adhB 
and pdc), respectively. (A) FadR represses production of ethanol and unnecessary fatty acyl-CoA when the fatty acids (FA) concentration is low. (B) When the 
intracellular fatty acid concentration is sufficient, fatty acids would be first activated to fatty acyl-CoA (by chromosomal fadD) and then fatty acyl-CoA would 
release FadR from its DNA-binding sites. This would result in the induction of genes that encode enzymes to produce ethanol and fadD to generate more fatty 
acyl-CoA, and AtfA to convert ethanol and fatty acyl-CoA to FAEE. Increasing enzyme flux in response to fatty acyl-CoA is represented by the thickness of the 
arrows. FAS: Fatty Acid Synthase 
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level of gene expression in the same cell (i.e., the metabolic burden 
imposed to the cell because of the active synthesis of plasmid DNA, 
and the corresponding proteins for antibiotic resistance [29]; and the 
flux imbalances between the segments of the pathway which are in 
different replicons due to plasmid instability and fluctuations in copy 
numbers). Using this backbone they were able to combine on one 
vector two transcriptional units previously located in different 
plasmids, increasing the amorphadiene titers by 3- fold. Furthermore, 
they were able to identify the limiting enzymatic step by 
overexpressing one by one each gene of the pathway and quantifying 
the final amount of amorphadiene being produced. This approach 
constitutes a clear demonstration in which classical optimization 
techniques can be used in a systematic way, providing a strategy that 
can be transferred to other systems. 

 

 
 
 
 
 
 
 
 

 
Ajikumar et al., went further with systematization and they laid 

down a novel approach known as “multivariate modular metabolic 
modeling” (MMME) [30]. They developed a system for efficient 
taxadiene synthesis in E. coli by expressing the native host MEP 
pathway, the geranylgeranyl diphosphate (GGPP) synthase and the 
taxadiene synthase. The MEP pathway has the advantage over the 
MEV pathway in being more balanced and efficient in producing 
isoprenoids from sugars. The MMME approach is based on grouping 
enzymes with similar turnovers in modules, and then doing a 
combinatorial screening varying the expression of the different 
modules. For this, operons are constructed and the toolbox of 
promoters, RBS and plasmid vector can be used to achieve different 
expression levels which will maximize the product titers of the system. 
The combinatorial approach can easily circumvent the non-linear 
interactions between enzymes in the pathway and offer the 
opportunity to broadly sample parameter space [30]. In this way, the 
authors constructed the “upstream module”, an operon coding for the 
genes of the E. coli MPE pathway, which generates IPP (isopentenyl 
pyrophosphate) and DMAPP (dimethylallyl  pyrophosphate); and the 
“downstream module”, a GGPP synthase and taxadiene synthase 
biscistronic transcriptional unit. Thus, instead of dealing with six 
genes, the problem is reduced to two modules, considerably 
simplifying the system, making it more tractable and easy to handle. 
In this way, the carbon flux balance along the pathway is achieved by 
changing the expression levels (plasmid copy number or promoter 
strength) of each module, and doing a combinatorial screening of all 

the possible combinations (Figure 2). Using this approach, the 
authors needed to construct 32 strains in order to obtain a substantial 
increase of 15,000 times in taxadiene titers over the control strain 
without modularization. In this case, this was enough to carefully 
balance the flux trough the heterologous pathway, avoiding the 
accumulation of toxic intermediaries and matching the output with 
the input of the upstream and downstream modules respectively. It is 
worth to mention that the same combinatorial approach without 
modularization involves the tuning of eight genes for MEP pathway 
and two more to reach taxadiene, implying the construction of at least 
10,000 strains and the necessity of having a high-throughput 
screening method. 

Despite its outstanding medical and industrial relevance, the 
progress in metabolic engineering of this family of products is laying 
down the basis for systematization of metabolic engineering in 
general. Principles of codon-adjustment, identification of pathway 
bottlenecks and, more recently, modularization and combinatorial 
experimentation can be transferred and reused to perform the 
heterologous production of completely different products. These 
principles, together with the ever declining costs of DNA synthesis 
and sequencing, and the development of computational software for 
analyzing and predicting the behavior of these heterologous systems 
will lead microbial metabolic engineering to be a systematic and 
flexible tool for production of an expanding array of molecules for 
pharmaceutical and other industrial uses. 

 
Metabolic network flux analysis for yield improvements 

 
The last two decades encompassed what is called “post-genomics 

era” of metabolic engineering, an overwhelming compendium of data 
coming from genomics, transcriptomics, proteomics and more 
recently, metabolomics fields. In this context, the paradigm of 
metabolic engineering has clearly shifted away from one focused in 
perturbing individual pathways, to one which considers cell reactions 
in their entirety, and which integrates metabolic (native and 
heterologous) pathways in a genome-scale metabolic network. 

Metabolic engineering makes particular emphasis in the metabolic 
fluxes and their control under in vivo conditions in order to maximize 
product formation [2]. Since empirical determination of the whole-
cell metabolic fluxes is an almost impossible task, they have to be 
inferred from constraint based computational simulations that include 
measurable parameters (i.e. substrate uptake, growth rate) in their 
equations. Metabolic networks are described as a collection of the 
biochemical reactions that occur in the cell. Each of these reactions is 
linked to the plethora of putative enzymes found in the organism 
genome [31]. In the flux balance analysis (FBA) approaches, the set of 
reactions is displayed as a stoichiometric matrix, in which each 
reaction has an assigned constraint that defines the intervening 
molecules, the direction and the flow through it [32,33]. Once 
defined the laying metabolic network, FBA seeks to maximize or 
minimize an objective function, which can be any linear combination 
of fluxes. Classically, the objective function for microorganisms is to 
maximize biomass-related reactions, i.e. simulating maximum growth.  
Thus by knowing a restricted set of measurable parameters, 
quantitative predictions and testable hypothesis can be generated [34]. 
By altering the constraints in the stoichiometric matrix, FBA can 
simulate different media or gene deletions, calculate the new 
metabolic flux distribution and predict the concomitant parameters of 
growth and yield [33,35,36].  

While it is generally accepted that microorganisms metabolism is 
suited to achieve optimal growth, this may not be the case of a mutant 
organism obtained under laboratory conditions. Frequently, when a 

Figure 2. The genes of the biosynthetic pathway are grouped into modules 
1 and 2 and different promoters are cloned upstream of each one. The 
generated strains contain all the possible combinations between the 
constructs. All these strains are then tested for the production of the 
target compound and the yield of product is plotted as a function of both 
modules. 
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mutation is introduced, the topology and flux distribution of a 
metabolic network is so perturbed that the mutant organism does not 
follow the optimal growth principle. In such cases, the objective of 
“minimization of metabolic adjustment” (MOMA) is better suited 
for predicting growth and product yields, since it is not based on an 
optimal growth objective function, but in the concept that the mutant 
metabolism remains initially as close as possible to the wild type 
optimum in terms of flux values [34]. In this context, MOMA uses 
the same stoichiometric matrix as FBA, but the solution is a metabolic 
flux distribution which is an intermediate scenario between the 
optimal wild type and the optimal mutant flux distribution [34].   

These two different approaches to analyze metabolic networks are 
frequently complementary, and understanding the general principles 
and the biological interpretation of each method provide an extremely 
powerful advantage to the metabolic engineer [31]. Algorithms such 
as COBRA 2.0 toolbox [37], OptKnock [38], OptFlux [39] and 
OptForce [40], among others, are available to suggest gene knockouts 
that in silico predict increasing product titers. For example, Brochado 
et al., have successfully improved vanillin production in yeast by 
knocking out genes of central carbon metabolism [41]. More recently, 
malonyl-CoA supply for heterologous production of target molecules 
was improved by means of genome-scale metabolic modeling analysis 
[40]. Malonyl-CoA is an essential building block for the production 
of many industrial and medical relevant polyketides [6,42] and 
flavanones [43], and also the starting point for microdiesel [44]. Since 
malonyl-CoA is also the precursor for the essential fatty acid 
biosynthesis, the flux towards it is tightly controlled and the cell will 
not easily commit to overproduce recombinant molecules derived 
from such essential metabolites [45]. Many researchers have improved 
the availability of malonyl-CoA by tuning enzymatic steps that 
replenish or deplete malonyl-CoA pools [46]. However, Xu et al., 
provide the first rational approach of in silico analysis of carbon 
metabolism in E. coli for redirecting carbon flux to malonyl-CoA, in 
order to optimize the synthesis of the flavanone naringenin [40]. 
They used OptFORCE algorithm to identify the minimal set of 
genetic interventions that led to maximization of product titers. The 
main targets identified were: A) up-regulation of glycolytic enzymes; 
B) down-regulation of tricarboxylic acid flux; C) increased pyruvate 
dehydrogenase (PDH) and acetyl-CoA carboxylase (ACC) activities. 
In this way, the authors improved the production of naringenin by 
560% over the current state of art by introducing a total of five 
genetic interventions: overexpression of ACC, PDH, glyceraldehyde-
3-phosphate dehydrogenase and phosphoglycerate kinase, and a 
knockout of the succinyl-CoA synthetase and fumarase enzymes. 

Competition with native pathways and metabolites, accumulation 
of side products and consequent growth inhibition are only some of 
the possible effects that a heterologous pathway can have on cell 
metabolism. These examples are a clear demonstration of how 
metabolic networks and metabolic flux analysis can be used to identify 
non-trivial targets for genetic interventions that lead to further 
optimization of product titers. In silico simulation tools open the 
field of metabolic engineering possibilities that can be explored to 
circumvent the problems that arise when expressing a foreign pathway, 
contributing to accelerate the design cycle of metabolic engineering 
and leading to the cost-effective production of industrial and medical 
important molecules. 

 
Perspectives 

 
The rapid rate of fossil resources consumption has drawn the 

attention towards the development of an economy based on renewable 
biological raw materials. In this context, the term “Biorefineries” is 

used to describe biological entities capable of generating high value-
aggregated directly from biomass, in an analogy with petroleum-based 
refineries [47]. Metabolic engineering thus appears as a key discipline, 
modifying and creating metabolic pathways in microbial hosts in 
order to produce complex chemicals of therapeutic and industrial 
relevance [26]. However, these pathways often alter significantly the 
hosts native metabolic network, by either increasing toxic metabolite 
levels or depleting essential building blocks for the cell, and thus 
resulting in sub-optimal yield of the desired product [12]. 

The intersection of metabolic engineering with other emerging 
areas of systems and synthetic biology presents exciting opportunities 
to develop solutions to many of the global challenges we face 
nowadays. In particular, these disciplines will be of fundamental 
importance to promote sustainable energy, reduce the environmental 
impact of several industrial processes and to improve the cell factory 
production of natural and semisynthetic drugs that are currently 
synthesized at very low yields, hopefully having an impact in the costs 
and availability of medicines. 
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